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Surface Laplacian of interfacial thermochemical potential: its
role in solid-liquid pattern formation
Martin E. Glicksman 1,2✉, Peichen Wu 3 and Kumar Ankit3✉

Steady-state solid-liquid interfaces allow both analytic description as sharp-interface profiles, and numerical simulation via phase-
field modeling as stationary diffuse-interface microstructures. Profiles for sharp interfaces reveal their exact shapes and allow
identification of the thermodynamic origin of all interfacial capillary fields, including distributions of curvature, thermochemical
potential, gradients, fluxes, and surface Laplacians. By contrast, simulated diffuse interface images allow thermodynamic evolution
and measurement of interfacial temperatures and fluxes. Quantitative results using both approaches verify these capillary fields and
their divergent heat flow, to provide insights into interface energy balances, dynamic pattern formation, and novel methods for
microstructure control. The microgravity environment of low-Earth orbit was proven useful in past studies of solidification
phenomena. We suggest that NASA’s ISS National Lab can uniquely accommodate aspects of experimental research needed to
explore these novel topics.
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INTRODUCTION
Over the past decade, one of the present authors published
studies applying field-theoretic methods to identify and quanti-
tate interfacial thermodynamic fields1,2. Traditional solidification
analyses of pure materials and alloys employ the energy and
species assays when analyzing solid-liquid transformations
that rely on "Stefan balances”3. Stefan balances directly relate
interfacial growth speed to first-order energy and solute
exchanges. Stefan balances, consequently, overlook higher-
order energy and solute contributions that subtly derive from
the higher-order actions of capillary forces, and represent small,
but significant, deterministic interface perturbations that affect
solidification kinetics.
Along with several other investigations, e.g.,4,5, the present

authors developed precision post-processing numerical methods
that analyzed and measured interfacial parameters using
multiphase-field simulations of selected stationary microstruc-
tures. Steady-state simulations allow measurement of interfacial
temperature fields along curved diffuse interfaces, described
numerically by "isolines” of their paired phase-field indices6–8.
Results from those studies, when compared with predictions
derived from variational analyses of similarly shaped, but perfectly
sharp, solid-liquid (s/ℓ) profiles, led to understanding and
appreciation of how capillary-mediated interfacial energy sources
and sinks arise deterministically, modify interface energy balances
in pure systems, and ultimately influence interface motion and
pattern-formation dynamics.
Hard experimental evidence, however, still eludes us, and is

needed to elucidate interface capillary effects, and to support
the exploration of follow-on efforts to control them in practical
solidification and crystal growth processes. How, for example,
would one determine whether or not capillary-mediated
interfacial energy exchanges and species transfer—in addition
to just random noise9,10—impart significant influence on inter-
face dynamics, stability, and pattern formation? The present

absence of needed experimental evidence is due to as yet
unmet challenges in the experimental measurements needed to
probe minuscule milli-Kelvin temperature variations occurring
over micrometer interfacial length scales, and to accomplish
these difficult measurements on moving interfaces at their
melting temperature.
The purpose of this paper is to provide a wider awareness of

higher-order interfacial capillary effects to researchers interested
in exploring further uses of the microgravity environment for
basic solidification research aboard NASA’s ISS-National Labora-
tory. Theory and new examples are provided herein to
demonstrate the presence of deterministic—and thus control-
lable—capillary fields that act on selected two-phase micro-
structures in pure crystal-melt systems.
The now classical analyses of solid-liquid interfacial stability, by

Mullins and Sekerka, and, independently, that by Voronkov,
describe linear dynamics of random perturbations acting on
planar interfaces and spherical precipitates11–13. The basis
functions with which these investigators chose to represent
"random” interfacial disturbances mathematically along isotropic
planar s/ℓ interfaces were 2-D sinusoids, with waveforms
described as y ¼ δ sin kxx. Here x and y are a perturbation’s
physical coordinates; δ is the wave’s y-amplitude; and kx= 2π/λ is
an arbitrary wavenumber [m−1], the value of which is the number
of cycles (waves) per unit distance in the x-direction. The
wavenumber admits all possible wavelengths, λ, from near zero,
up to the size of the planar solidification front. Their choice of a
"spectrum” of sinusoidal perturbations underscores their stochastic
description of interfacial disturbances—now a well-understood
approach, and widely accepted by the solidification and crystal
growth communities. Most notably perhaps, linear stability theory
in its long-wave limit, captures and integrates all the results of
constitutional supercooling theory, which was the prior accepted
stability paradigm for s/ℓ interfaces of the 1950s14.
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More than a century ago, however, Henry Poincaré cautioned
about assigning randomness to "explain” ostensibly chaotic
events observed in physics and elsewhere, stating that, A very
small cause that escapes our notice determines a considerable effect
that we cannot fail to see, and then we say that the effect is due to
chance. (Science et Méthode,1908). Interfacial instability and
microstructure pattern formation, in our opinion, remain no
exceptions to Poincaré’s prescient warning about randomness.
Fifty years ago, however, it was already demonstrated by direct

observations15 that planar interfaces can spontaneously and
reproducibly initiate deterministic, not random, instabilities and
patterns. Specifically, interfacial instabilities in dilute alloys and
nominally pure melts evolve into cells and then dendrites—
ubiquitous s/ℓ microstructures found in metal ingots and castings,
which were described two decades earlier by Bruce Chalmers and
his co-workers16,17. The sequence of instabilities observed on
otherwise featureless s/ℓ interfaces always occurred where grain
boundaries, sub-boundaries, or even single dislocations, inter-
sected the interface. Deterministic instabilities amplified around
grain boundary intersections into 2-D single and double ridges,
which then split into periodic chains of 3-D hillocks. Isolated single
and double rings also reproducibly formed where individual
dislocations intersected the s/ℓ interface. In regions that lacked
significant substructure, a more chaotic surface pattern gradually
evolved, which encroached from remote edge-meniscuses that
always surround s/ℓ interfaces where they contact their confining
crucible walls.
More recently, Shang and co-workers used phase-field methods

to conclude, that the underlying mechanism for dendritic side
branching was deterministic rather than stochastic, and that
anisotropy and curvature, not noise, were the most important
factors determining detailed microstructure18. It was not known,
until recently, whether deterministic interfacial instabilities arose
from geometric enhancements of heat conduction and local
impurity diffusion, or from more subtle causes to be discussed in
detail in this overview.
We briefly use sine waves again as exemplar interfacial profiles,

to demonstrate how curvature induces controlled non-linearity. As
Nobelist Frank Wilczck so aptly and succinctly stated it, curvature
participates in its own creation.19. Wilczck specifically addressed the
properties of 4-D space-time, but his lapidary statement remains
valid for general thermodynamic systems, including interfaces
with capillarity. Curvature, in fact, is the universally controlling
property of manifolds in 3-D and 2-D that evolve in time.
It is convenient to introduce scale-free Cartesian coordinates,

(μ= x/2Λ, η= y/2Λ), to describe non-dimensional s/ℓ sinusoidal
interfaces, as well as other less familiar periodic profiles to be
introduced later. A scale-free sine wave, for example, with arbitrary
dimensionless amplitude a= δ/2Λ and dimensionless wave
length, λ̂ ¼ λ=2Λ, may be expressed as the function
η ¼ a sin k̂μμ: Physical distances implicit in its wavenumber, kx=
2π/λ [m−1], wavelength, λ [m], and wave curvature, κ [m−1], all

vanish by dividing or multiplying, respectively, by the "character-
istic” length, 2Λ [m]. This reference length, Λ, is the thermo-
capillary distance derived from the Euler-Lagrange equations in
variational calculus, that are solved to find s/ℓ interfacial profiles
with minimum energy8,20, namely,

Λ �
ffiffiffiffiffiffiffiffiffiffi
γsℓΩ
GΔSf

r
: (1)

The length Λ is defined in Eq. (1) using the following parameters:
γsℓ [J/m2] is the interface’s solid-liquid energy density; Ω [m3/mol]
is the molar volume of the phases; G [K/m] is the temperature
gradient that surrounds the s/ℓ interface; and ΔSf [J/mol-K] is the
system’s molar entropy of fusion.
An interface’s dimensionless wave-like profile is defined using

the standard Cartesian form for sine waves. This profile, moreover,
has a dimensionless fundamental wavenumber, k̂μ � 2π=λ̂ chosen
here as unity; with local dimensionless curvature, κ̂ðμðηÞ; a; k̂μÞ,
expressed as the following function of μ,21,

κ̂ðμðηÞ; aÞ ¼ a sin μ

ð1þ a2cos2μÞ3=2
; k̂μ ¼ 1
� �

: (2)

The wave curvature, defined in Eq. (2), is positive for convex
portions of a curved s/ℓ interface, where the center of the
interface’s osculating circle resides in the solid phase, and is
negative for concave regions, where the center of the interface’s
osculating circle is located in the liquid phase.
Plotted (non-isometrically) in Fig. 1 are profiles of this sine wave,

μ(η), along with their amplitude-dependent curvatures, κ̂ðμðηÞ; aÞ,
as calculated from Eq. (2). These pairs of curves demonstrate how
local curvature (solid curves) increasingly deviates and becomes
non-congruent with respect to its defining sine wave profile
(broken curves) as the wave amplitude, a, increases. One finds that
for amplitude a= 0.2, the dimensionless curvature is virtually
indistinguishable—almost congruent—with the plotted profile
that generates it. For a= 0.5, the curvature and generating profile
deviate slightly. But at somewhat larger amplitudes, e.g., a= 1 and
a= 2, curvature rapidly gains higher harmonic content and
deviates from its generating profile.
Given that capillary forces on interfaces act in proportion to

the local curvature, their importance, and thermodynamic
influence increase rapidly, and non-linearly, as an interface
departs from flatness. Indeed, one does find as Wilczck claimed
that curvature participates in its own creation. The sensitive
amplitude-dependence of curvature on shape becomes causal
for deterministic self-interactions that spontaneously arise on
curved interfaces, even, as will be demonstrated, on stationary
interfaces. Also to be shown in this study, capillarity mediates
pattern-formation on moving interfaces, adding determinism to
microstructure formation.
Thermodynamic equilibrium at curved interfaces was first

elucidated by Lord Kelvin (William Thomson)22. Thomson showed

Fig. 1 Sine wave curvatures and capillary non-linearity. Comparison of dimensionless in-plane curvatures [solid curves from Eq. (2)] shown
with their profiles (broken curves). Profiles are plotted non-isometrically. Note the scale change on the ordinates with increasing amplitude, a
Higher harmonic content of the curvature distribution is nearly absent at low wave amplitudes, a < 0.5, but increases rapidly as wave
amplitudes exceed ca. a > 0.5.
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that interfaces, such as those found on droplets that separate a
liquid from its vapor, with increasing curvature will experience an
elevation in their chemical potentials at constant temperature, as
reflected by an exponential rise in equilibrium vapor pressure. The
so-named Kelvin effect explains fundamentally why fogs and
droplet dispersions self-clear, and how clouds produce rain. In
solid materials, Kelvin’s effect similarly explains why precipitate
dispersions used to strengthen alloys become unstable, and
coarsen at elevated temperatures.
Corresponding equilibria for curved interfaces between two

condensed phases, such as a crystal and its melt at constant
pressure, a situation where both phase densities change very
little with temperature and pressure, may also be described with
a linearization of Kelvin’s original exponential equation for fluids.
The influence of curvature on s/ℓ equilibria is credited to J.W.
Gibbs, and is known as the Gibbs-Thomson effect23,24. Note, that
in the case of convex s/ℓ interfaces (positive curvature), the
Gibbs-Thomson effect predicts a similar—but linear—increase in
the interface’s thermochemical potential, as evidenced by a
corresponding linear decrease in the interface’s equilibrium
temperature, Tint. In contrast, concave s/ℓ interfaces (negative
curvature) lower their chemical potentials and raise their
equilibrium temperatures.
Kelvin’s thermodynamic rules, as applied to s/ℓ interfacial

equilibria, are captured by the Gibbs-Thomson equation that
predicts the following linear change in the equilibrium interface
temperature, Tint, caused by local curvature.

T intðyðxÞÞ � Tm ¼ � γsℓ Ω

ΔSf

� �
κðx; yÞ; ðPmelt ¼ const:Þ: (3)

The lumped materials parameters within parenthesis on the right-
hand side of eq. (3) collectively have SI units of [K ⋅m]. Their
product with an interface’s curvature, κ(x, y) [m−1], equals the local
shift in Tint [K] caused by capillarity. For typical microstructures
formed in many s/ℓ systems, these temperature shifts amount to
±10−4 to ±10−2 [K], which typically constitute the rather tiny range
of thermocapillary effects that are usually ignored or simply
overlooked.
However, if one also considers the small distances within a s/ℓ

microstructure over which the curvatures and their Gibbs-
Thomson temperatures fluctuate, or even change sign—recall
the sine-wave case discussed previously—one finds that these
microstructure distances vary from about a millimeter to several
nanometers. This suggests that local gradients of the Gibbs-
Thomson temperature, due to capillarity, occur along curved s/ℓ
interfaces, from place-to-place and from time-to-time. These
mesoscopic interfacial gradients have magnitudes from about 1
to 107 [K/m], which are not at all inconsequential vector fields.
Their influence, to be shown, has consequences.
Dividing through Eq. (3) by a "characteristic” thermo-capillary

temperature interval equal to 2ΛG [K], where G is the local
macrogradient in which a s/ℓmicrostructure is embedded, yields a
dimension-free equilibrium temperature change, or shift in
thermochemical potential, that is induced locally by interfacial
curvature at constant pressure, namely,

T intðyðxÞÞ � Tm

2ΛG
¼ � 1

2ΛG
γsℓ Ω

ΔSf

� �
κðx; yÞ: (4)

Replacing the interface curvature, κ(x, y) [m−1], in Eq. (4) by its
dimensionless form, namely, κ̂ðμ; ηÞ � κðx; yÞ ´ 2Λ, and again
dividing the right-hand side by 2Λ, one obtains the dimensionless
Gibbs-Thomson temperature shift, ζint(μ, η). This shift is a scalar
chemical potential field, ζint(μ, η), found along any smooth s/ℓ
interface, μ(η), with locally varying curvatures, κ̂ðμ; ηÞ,

ζ intðμ; ηÞ ¼ � 1

4Λ2

γsℓ Ω

GΔSf

� �
κ̂ðμ; ηÞ: (5)

Equation (5) simplifies further by dint of the consistent use of 2Λ
as the system’s variational scaling distance. Specifically, by
gathering all the lumped constants that defined Λ in Eq. (1),
substituting them for Λ2 in Eq. (5), and then canceling terms, one
obtains the thermochemical potential,

ζ intðμ; ηÞ ¼ � 1
4
κ̂ðηðμÞÞ: (6)

Portrayal of the Gibbs-Thomson effect through Eq. (6) shows
clearly that the distributions of curvature and the ζint-potential
represent proportionate geometric and thermodynamic fields.
Modulo the pre-factor of � 1

4, one finds that interfacial thermo-
chemical potential equals its scaled curvature.
As shown next, the interface’s thermochemical potential field

leads to other higher-order interfacial fields, including superficial
vector gradients and their implied interfacial fluxes25,26. Further-
more, scalar divergences of those vector fields can lead to yet
higher-order surface Laplacian sources and sinks, which can
influence interface stability and affect dynamic pattern formation.
Adjustments in local equilibria, required by changes in the

interface curvature as a s/ℓ microstructure evolves, occur at rates
that are extremely fast. Establishing local equilibrium is fast
because temperatures are close to the melting point, and the
distances over which changes occur are microscopically small. The
time-scales associated with local curvature changes, that adjust the
interfacial distribution of the thermochemical potential, equals the
squared thickness of the s/ℓ interface divided by the mean
thermal, or solute, diffusivity. Our concern and distinction between
sharp and diffuse interphase interfaces—which are the essential
issues in this study—go back to Gibbsian thermodynamics, where
an interface between two phases, A and B, each considered as a
structureless continuum, was described as a "dividing surface” with
zero thickness. For a one-component system, just the energy per
unit area of the Gibbs dividing surface, γAB [J/m2], adequately
serves to characterize an isotropic sharp interface.
One, of course, recognizes in the present study of stationary s/ℓ

interfaces that real interphase interfaces must always have the
added feature of a thickness. The reason is that solids—specifically
crystalline phases—retain near-perfect long-range atomic/mole-
cular order, even up to their melting points. By contrast, liquids,
including melt phases, possess only limited short-range order,
induced by short-range interactions among their randomly
positioned and non-oriented atoms or molecules. Thus, s/ℓ
interfaces always require a finite transition zone, or thickness, to
separate bulk "ordered solid” from bulk "disordered liquid”. The
limit of a perfectly sharp s/ℓ interfaces is indeed a fiction. Typical
transitions required between crystalline solids and their liquid
phases are estimated to be as small as several atomic diameters,
and up to ten times that distance.

METHODS
Study overview
Of particular interest in this study is the use of a class of non-
planar s/ℓ interfaces that can be held stationary for an indefinite
period, by applying a steady, uniform, temperature gradient.
Note, that such stationary interfaces differ greatly from classic
equilibrium Wulff shapes27,28, which are instead isothermal
crystalline objects that achieve full thermodynamic equilibrium.
Wulff shapes, in contrast with the constrained steady-state
interfaces of interest here, are isothermal, closed equilibrium
bodies. They exhibit spatially uniform chemical potentials that
lack gradients, and adopt optimal shapes which minimize their
total energy. The stationary microstructures of interest here are
non-equilibrium systems constrained at steady-state by entropy-
producing thermal gradients.
Figure 2 shows an example of the stationary, curved s/ℓ

interface that was used in this study. Its microstructure consists of
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linked GBGs. These grooves are formed by parallel grain
boundaries (GB) that periodically intersect a stationary s/ℓ
interface, which originally colocated with the x-axis. The x-axis
corresponds with the one-component system’s melting point
isotherm, T= Tm. The resulting profile at steady-state separates
pure solid from its melt, each phase accorded identical thermal
conductivity and molar volume.
This stationary microstructure supports continuous heat-flow

throughout the bulk phases, thus precluding full thermody-
namic equilibrium. Only local equilibrium is allowed, which is
limited to the s/ℓ interface itself. The applied temperature field
that constrains this microstructure is illustrated in Fig. 2. This
field, T(y), is represented by parallel isotherms with an arbitrary,
but uniform, gradient, of magnitude dT/dy= G [K/m], pointing in
the +y direction.
The curved interfaces abruptly separate two bulk phases. The

solid and liquid that surround each GBG support steady heat
flow, and produce entropy continuously over the entire (x, y)-
plane. The s/ℓ interface occupies a relatively narrow 2-D region
within quadrants III and IV of the (x, y)-coordinate system, where
the coordinates of the triple junctions are ytj≤ y(x) ≤ y0 < 0.
Recall that only the s/ℓ interface achieves local equilibrium, as
required by the Gibbs-Thomson effect and its Eq. (6). The Gibbs-
Thomson effect matches the chemical potentials of the two
phases and equilibrates them (locally) along their curved
interfaces. The balance of this s/ℓ system remains locked into
steady-state: immobile, unchanging, and continuously produ-
cing entropy everywhere.
Single, as well as multiple, GBGs appear spontaneously on s/ℓ

interfaces. Such s/ℓ microstructures form sometimes by a single or
nearly isolated grain boundary. Bolling and Tiller29 first deter-
mined the steady-state profile for such isolated GBGs with equal
thermal conductivity and molar volume of the solid and liquid,
constrained by a uniform thermal gradient. More general GBGs
formed between one-component phases with markedly different
thermal conductivity, such as occur in water-ice interfaces30, are
consequently constrained by more complex, non-uniform steady
thermal fields, which were analyzed by Nash and Glicksman31.
GBGs are frequently employed experimentally to measure average
solid-liquid energies for many different s/ℓ systems32,33–37, and
studied dynamically for their effect on interfacial stability during
solidification38,39.

RESULTS AND DISCUSSION
Sharp-interface profiles
The present authors determined the mathematical solution for the
steady-state variational profiles of periodic GBGs with equal phase
conductivities and molar volumes, as depicted in Fig. 2. In the
interest of brevity, only our final analytical results are presented
here for these periodic GBG profiles. Detailed methods needed to
derive the following variational solution and the determination of
thermodynamic free energies for GBG formation will be published
elsewhere. We will concentrate on their use.
The (μ, η) coordinate system needed to describe such periodic

GBG profiles was presented in the Introduction. The (mirror-image)
semi-profiles of periodic GBGs, μ= ±U(η; η0,Ψ), are defined by the
following equation pair:

± Uðη; η0;ΨÞ ¼ 2η20þ1ð Þ
2η0

Elliptic F 1
2 arccos 1 � 2 η2 � η20

� �� �
; � 1

η20

h i

�η0 Elliptic E
1
2 arccos 1 � 2 η2 � η20

� �� �
;� 1

η20

h i
; ðηtj � η0 < 0Þ:

(7)

Unit profiles for periodic GBGs begin and end at their triple
junctions, each located at the profile’s most negative η-coordinate,

ηtj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 � 1

2 sin Ψ
2

� �� þ 1
2

q
: Note that the ordinate of the triple

junctions, ηtj, as does the entire profile, fundamentally depends on
two parameters: the midpoint, η0, and the dihedral angle, Ψ.
Equation (7) is cast here as weighted incomplete elliptic integrals

of the first and second kind. We use the formal nomenclature of
Gradshteyn and Reyzhik40. The restriction that sets the range of the
independent η-variable in Eq. (7) requires specification of the GBG’s
dihedral angle, 0 ≤Ψ < π. In addition, incomplete elliptic integrals,
such as Elliptic E and Elliptic F, require an "angular-amplitude",
expressed here as the term in brackets before the functions’
commas. This amplitude depends both on the running variable η,
and a GBG profile’s midpoint parameter, η0. Incomplete elliptic
integrals also require a second, independent "m-parameter”, given
here as the negative term in brackets after the functions’ commas.
The m-parameter depends only on a profile’s midpoint coordinate,
η0, which is a constant always less than zero.
Using this nomenclature, one finds that each variational GBG

profile requires specification of two key numbers: (1) the value of
the profile’s midpoint coordinate, η0 < 0, always located below
the system’s melting point isotherm (η= 0), and (2) the value of
the profile’s steady-state dihedral angle, Ψ. The Ψ-value affects the

Fig. 2 Grain boundary grooves, GBGs, linked along a stationary curved s/ℓ interface. Periodic GBGs separate bulk crystal and melt that
support energy flow through a constant thermal gradient, pointing in the +y direction. The thermal field constraining the s/ℓ interface is
illustrated here by a uniform grid of isotherms, where the x-axis coincides with the system’s melting-point, Tm. Triple junctions formed at each
grain boundary (GB) intersection are spaced apart a distance λ [m] along the x-axis. All triple junctions are located on coordinate ytj. Each triple
junction supports a constant dihedral angle, 0 ≤Ψ < π. Midpoints of the GBGs are located periodically at coordinate y0 < 0, where the slope is
zero, and curvature exists.
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interface profile by limiting the eigenrange of the profile’s slopes.
Slopes vary between a profile’s midpoint value, η0, where by
symmetry the slope is set to zero, and its triple junctions, ηtj,
where the slope angles are respectively ±(π−Ψ)/2. See again a
GBG’s configuration as illustrated in Fig. 2.
Surprisingly, these formal spatially periodic profile formulae do

not require input of a grain boundary spacing, which, in nature,
provides the physically causal feature that sets the form and
spacing of these common microstructures. As discussed later, a
specified grain boundary spacing is always required for phase-field
simulation of a GBG, but is not needed to calculate their profiles
from variational theory. Instead, the elliptic integral solution, Eq. (7),
determines a self-consistent sharp-interface profile for any
combination of dihedral angle, Ψ, and midpoint parameter, η0 <
0. The steady-state separation of their triple junctions, located at η
= ηtj, is equivalent to the more realistic presence of periodically
spaced grain boundaries. GBG variational profiles are made
periodic by joining their semi-profiles at their common midpoint,
η0, and then linking those units along the μ-direction.
Although not obvious in the Cartesian setting given in Eq. (7),

the angular amplitude of these elliptic integrals equals the half-
angle of the profile’s slopes. Slopes, as mentioned above, are
limited in magnitude by the profile’s dihedral angle. In sum, a
GBG’s stationary profile, according to variational theory, requires
evaluation of two-parameter functions, viz., the incomplete elliptic
integrals. These functions include: (1) the profile’s midpoint
ordinate, η0, a number less than zero, and (2) the profile’s
dihedral angle, 0 ≤Ψ < π. This parameter pair completely deter-
mines the periodic GBG’s profile. The GBG’s shape, repeat spacing,
and location relative to the system’s applied thermal field
establishes the coordinate location for ζint= 0, where one sets
η≡ 0 > η0. All these geometric and thermodynamic features may
be reproduced and verified by directly comparing their exact
analytic shapes, viz., Eq. (7), with counterpart images indepen-
dently simulated with a multiphase-field model.
The advantage of analyzing steady-state sharp-interface profiles

is that their variational shapes satisfy a non-linear ordinary
differential equation (ODE), which stipulates that local interface
potential equals local interface curvature, modulo a constant of
proportionality. Interfacial capillary-mediated fields are then easily
calculated from these analytically defined sharp profiles. Most
importantly, however, using field theory the origin and character-
istics of capillary-mediated scalar and vector fields are precisely
identified from a thermodynamic standpoint, and their interfacial
distributions determined8,41. A sampling of steady-state, sharp-
interface GBG profiles, derived from Eq. (7) is shown in Fig. 3 for
several midpoint values, η0.

Diffuse-interface microstructures
To achieve independent and accurate comparisons with sharp-
interface variational profiles, we simulated multiphase-field
images of steady-state GBG microstructures. Phase-field images

and their companion thermal fields were determined by
numerically solving coupled partial differential equations (PDEs)
through sequential, small, time steps that accurately portray a
system’s evolved sequence of thermodynamic states. We empha-
sized that it was essential for the boundary conditions required by
analytically derived sharp-interface GBG profiles be consistent
with the same periodic environment as that used to simulate their
diffuse-interface microstructures via phase-field modeling. Select-
ing consistent boundary conditions for both approaches allows
close, meaningful comparisons between simulated phase-field
images and measured potentials on diffuse-interface microstruc-
tures with predicted fields, the latter identified and calculated by
analysis of their counterpart sharp-interface variational profiles.
Note, however, that the applied, linear thermal field, illustrated

in the analytic model shown in Fig. 2, imposes, ab initio, a uniform
temperature gradient on the s/ℓ profile. That ab initio gradient
differs in detail from the evolved local potential gradients
associated with the simulated temperature field that co-develops
with each steady-state phase-field microstructure. When applying
phase-field simulation, two temperatures and a calculation box
distance are specified as inputs, instead of applying a uniform
gradient. Specifically, a temperature above the melting point is
selected as the upper limit of the phase-field computation box,
and a second temperature below the melting point is selected as
the lower-limit. Importantly, we learned that the thermal field that
finally develops around a simulated microstructure includes all the
system’s capillary-mediated thermodynamic fields. Not all these
fields are admissible, however, in the solutions for the variational
sharp-interface profile, for reasons to be discussed in detail. These
subtle, but critical differences between variational profiles and
simulated images will be elucidated later in this section.
Multiphase-field models also rely on continuum descriptions of

matter, and are solved numerically from a system of simulta-
neous PDEs. Phase-field models solve for the evolving thermo-
dynamic state that develops over time as two or more phases,
labeled, say, as 0, 1, and 2. These phases evolve their collective
space-time trajectories to form the microstructure. Phase-field
models respect thermodynamic rules for the system’s energy and
entropy, and obey the locality (impenetrability) and indestruc-
tible nature of matter. Such models produce reasonably realistic
images of polyphase structures—here s/ℓ microstructures—that
evolve dynamically over time. The two-phase microstructures
that form here, are rather special; they all eventually relax into a
steady-state, so these simulated systems never attain full
thermodynamic equilibrium.
In brief, the images produced by simulation actually consist of

continuous phase regions: two solid phases, labeled phases "0"
and "1" that differ only in their crystallographic orientation, and
their common equilibrium melt phase, labeled phase "2". Each
equilibrium phase, i= 0, 1, or 2, is "fully present” when its phase
index, ϕi= 1, and "completely absent” when ϕi= 0. One may also
think of intermediate states where ϕi (0 < ϕi < 1) are lines—loci
that act as avatars—for the continuous states of matter needed to

Fig. 3 Profiles of sharp-interface GBGs, plotted from eq. (7), with zero dihedral angle. Each steady-state profile is labeled by its η0-value.
The value η0 equals the vertical distance between the profile’s midpoint and the system’s isopotential ζint= 0. As η0→ 0, the profile width, or
grain boundary separation, diverges, and its midpoint region approaches true flatness. The limiting periodic GBG configuration (η0= 0)
formally corresponds to the class of "isolated GBGs'', for which a profile formula consisting of elementary functions was first derived by Bolling
and Tiller29.
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bridge between adjacent bulk phases. Thus, inasmuch as ϕi= 1 or
0 denote, respectively, the presence, or absence, of equilibrium
phase i, intermediate values of their phase indices represent the
model’s higher energy states of matter that exist between pairs of
bulk equilibrium phases to form their diffuse interfaces. This
continuous variation of all the phase indices, from 0 to 1, over a
single computational domain, underlies the essence of phase-field
models. This scheme eliminates the daunting task of tracking the
motions of distinct, sharp, "free boundaries”, yet allows complex
geometric development of continuous phase domains, including
even topological changes like pinch-off, nucleation, and particle
vanishing, that can occur during microstructure evolution.
Thus, simulated equilibrium phases are separated from each

other by diffuse interfaces—actually a tight distribution of their ϕi-
index isolines—that describe the continuous spatial transitions
between evolving phase regions. This "bridge", or transition
between phases S0↔ S1, represents their intermediate "grain
boundaries", whereas those between phases S0↔ L2, and S1↔ L2
represent their equivalent "s/ℓ interfaces". These diffuse interfaces
actually provide more realistic evolving phase contours that also
visually define the temporal and spatial aspects of a microstruc-
ture’s development. For example, Fig. 4 shows three interphase
interfaces—actually three ϕi-index contours—that meet at triple
junctions spaced periodically between adjoining crystals and their
adjacent melt phase. The left and right half-crystals shown in this
image are mirror images, because the microstructure is specified
through periodic boundary conditions identical to those applied
to the sharp-interface variational profile described with Eq. (7).
To avoid improperly reducing the simulated system’s interfacial

energy by just trivially reducing all interfaces to zero-thickness, i.e.,
again replacing the matter and excess energy associated with
phase borders by an unrealistic sharp "dividing surface”, the
gradients of the ϕi-indices normal to their isolines for each phase
pair are evaluated. Each gradient contributes a "penalty”, or
energy cost, charged according to the local steepness of that
gradient. The phase-field model accomplishes all this complex
dynamic accounting and seeks an appropriate thermodynamic
pathway, which requires large-scale fast computations that
converge efficiently to resolve the finer details of the loci of all
interphase isolines. Multiphase-field models now provide suffi-
ciently realistic phase images that impart diffuseness to their
interfaces, as appropriate to the pixel density and computational
capacity of these simulations.
Figure 4 also shows the comparison achieved between a

simulated image and its counterpart analytic profile for a periodic
GBG with a 16 deg. dihedral angle. The grain boundary spacing,

λ, chosen for the simulation was 250 x-grid units in the phase-field
computation box. The phase-field image shown here developed its
steady-state after several hundred-thousand computational steps,
when the dihedral angle stabilized at its steady-state value of
16.0062 deg. within 1 part per thousand of the desired input value.
The vertical distance between the simulated GBG image midpoints,
y0, and its triple junctions, ytj, settled at 62 ± 0.1y-grid units. The
measurements of depth-to-width equal the image’s simulated
steady-state aspect ratio, viz., A≡ (y0− ytj)/λ= 0.248 ± 0.008.
Theoretical aspect ratios, Â, were then calculated for this

phase-field image’s counterpart sharp-interface variational pro-
file, where Â-values were obtained from Eq. (7), using a matching
dihedral angle of Ψ= 16 deg. Iteration on the profile’s η0
midpoint value continued until the theoretical aspect ratio
agreed with the mean value of the measured phase-field
ratio: viz., Â () A ¼ 0:248 ± 0:0005. When the value of the
sharp-interface aspect ratio, Â, agreed, within the measured
tolerance, with the phase image aspect ratio, A, its iterated
midpoint coordinate converged to η0=−0.095 ± 0.001; the triple
junction coordinate, ηtj=−0.663; and the profile’s periodic
dimensionless spacing between triple junctions was Δμ= 2.289.
These parameters collectively provide the statistical match

shown in Fig. 4, between the theoretical sharp-interface profile,
Eq. (7), and its simulated diffuse-interface image. Equation (7)
provided (μ, η)-coordinates that determine the sharp-interface
profile, from which a (red) variational profile curve was
isometrically magnified and added to Fig. 4, to envelop the
simulated steady-state image. The "goodness of fit” achieved
between the phase image and the sharp-interface profile, shown
in Fig. 4, is ±0.5%, a precision limited by the pixel resolution of the
phase-field’s digital image, which controls the accuracy of its
measured aspect ratio, A.
It is the diffuseness of a s/ℓ interface that determines its

fundamental ability to transport energy or solute tangentially by
tangential interfacial gradients of the capillary-mediated potential.
Sharp (non-diffuse) interfaces, such as the variational profiles
calculated from Eq. (7), are incapable of supporting any thermal
conductance or species diffusion. Their surface transport number,
specifically the interfacial thermal conductance, kint [W/K], is zero
in this extreme limit.
The issue of isoline pixel width, and its effective tangential

thermal conductance of isoline image borders was investigated
recently by the present authors. We measured the intensity of
capillary-mediated fluxes induced by curvature gradients devel-
oped along steady-state phase-field images of GBGs with s/ℓ
isoline borders having different diffusenesses, or pixel widths.

Fig. 4 Comparison of a multiphase-field simulated image of a periodic GBG with its variational sharp-interface counterpart, the μ-η
profile (red curve). To achieve the fit shown in the figure, uniform magnification was applied to the isometric μ-η profile, calculated with the
same dihedral angle used in the simulation, viz., Ψ= 16 deg. The value of Ψ is the only parameter shared between models. The goodness of fit
between the simulated GBG image and its sharp-interface profile is estimated from their respective aspect ratios, A and Â, where, A is
measured on the phase-field image, and Â is calculated from Eq. (7) for the variational profile. The A-value was measured using the white-arrow
distances shown on this image, and a matching Â-value was calculated from Eq. (7) using iterated η0 values. η0 converged to −0.095, a value
estimated to be accurate to three significant figures. The quality of the fit between models is limited by the pixel resolution of the interfacial
isolines that define the phase-field image. The broken red line represents the theoretical position of the melting point isotherm, or
isopotential, ζ= 0, where a flat s/ℓ interface would reach equilibrium.
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Perhaps not too surprising, the effective tangential interfacial
conductance along such GBGs increased linearly with their
diffuseness42. Although that finding was both an interesting and
satisfying result from the multiphase-field model, the subjects of
capillary-mediated fields and the detailed influences of interface
diffuseness still lack direct experimental probing. This remains a
knowledge gap concerning interfacial structure that could be
closed by well-controlled microgravity experiments.

Curvature and potential gradients
The key idea offered from this study is that real, or simulated,
diffuse-interface GBGs develop curvatures and capillary-mediated
potential gradients, the scaled distributions of which are
essentially identical to those calculated for their sharp-interface
counterparts. These matched geometric and thermodynamic
gradient fields, however, cause profoundly different effects: viz.,
gradients along diffuse interfaces stimulate tangential fluxes,
whereas gradients along sharp-interface profiles do not.
The same scalar divergences that cause divergent vector flux

fields to act as sources and sinks along diffuse interfaces exist only
as proportional "inert divergences” of the gradient field along
sharp-interface GBGs. This odd dichotomy in the behavior of the
scalar divergence of the thermochemical gradient, or, to be shown
next, the surface Laplacian of the thermochemical potential, is
explained by the fact that perfectly sharp "Gibbsian interfaces”
have zero tangential conductance, which, of course, precludes any
flux response from the presence of interfacial potential gradients.
Specifically, only interfaces with steady-state curvature distribu-

tions support time-independent spatial distributions of their
thermo-potential and curvatures. Equation (6)—a dimensionless
form of the Gibbs-Thomson equation—relates curvature and
thermochemical potential. The two restrictions needed to derive
that linear relationship are those that also undergird the Gibbs-
Thomson equation: (1) the interface is at local equilibrium, and (2)
the interface is sharp. The questions of exactly how sharp or
diffuse a s/ℓ interface must be to respond under these
thermodynamic conditions, and to influence interface dynamics,
are among the issues addressed in this research, and which will
doubtless demand further study.

Gradients of the potential
The tangential gradient of an interfacial scalar distribution is a
vector field pointing along the interface’s (dimensionless) arc
length, ŝ � s=2Λ,43. The normal component of this gradient field
remains zero everywhere along the interface. An interface’s arc
length in (μ, η)-coordinates has the total differential
dŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dμ2 þ dη2

p
, from which application of the chain rule,

Fig. 5 Plots of Eq. (9) showing tangential gradients of the
interface for various GBGs with a dihedral angle of 16∘. Each curve
represents a specific midpoint-value, η0, noted near its upper
ordinate. The plot for η0=−0.095 corresponds to the gradient
associated with the red sharp-interface profile added in Fig. 4,
whereas the plot for η0= 0 shows the limiting behavior of the
tangential gradients for an isolated GBG with the same dihedral
angle. GBGs with Ψ= 16∘ develop their maximum gradient
magnitudes of ≈4 at their differing triple junctions, ηtj. Gradients
all vanish, by symmetry, at a GBG’s midpoints.

Fig. 6 Minus the surface Laplacian of the thermochemical potential versus μ-coordinate along a sharp GBG interface profile
(η0=−0.095, Ψ= 16 deg). The boxed insert contains data for 46 scaled temperature residuals [K], which are proportionate to the local
capillary-mediated cooling rate. Residuals were measured independently along the phase-field image isolines shown in Fig. 4. Residuals are
the local isoline temperature minus the value of what a linear temperature field would be at that point, were the gradient a constant equal to
the total temperature difference spread over the total y-grid, divided by the box height. The calculated surface Laplacian for the sharp
interface is proportionate to the cooling rate developed along diffuse s/ℓ isolines that have identical divergences of their tangential heat flux.
Distributed interfacial cooling is responsible for the development of non-linearities in the temperature field within the microstructure, as
displayed in Fig. 7.
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dζ int
dŝ ¼ dζ int

dη � dηdŝ , yields the tangential, or arc-length vector gradient

of the thermochemical potential, dζ int=dŝ � τ!. Here, τ! is the unit
tangent vector along the interface. The unit tangent extends over
the profile’s range of η-values indicated in Eq. (8) for a periodic
GBG, and is given by the following vector equation,

dζ int
dŝ

� �
� τ!¼ � 1

4
dκ̂
dη

� �
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdμ=dηÞ2
q

2
64

3
75 � τ!; ðηtj � η � η0Þ:

(8)

Carrying through the steps indicated in Eq. (8), and using Eq. (7) to
evaluate κ̂, dκ̂=dη, and dμ/dη, one obtains the arc-length
derivative, or tangential τ-gradient of the interfacial thermoche-
mical potential along sharp-interface variational GBGs. The
magnitude of the tangential potential gradient is independent
of the dihedral angle. The dihedral angle, however, determines the
spacing of the GBG’s triple points for a given midpoint value, η0,
and thereby sets the allowed range of gradients developed along
a GBG interface.

∇!τ ζ intðη; η0Þ½ � ¼ �8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 � η20
� �� η� η0ð Þ2 ηþ η0ð Þ2

q
; ðηtj � η � η0Þ:

(9)

Several plots of the capillary-induced gradient, Eq. (9), are
shown in Fig. 5 for GBGs with various η0 values and a dihedral
angle of Ψ= 16 deg. Sharp interface profiles of periodic GBGs
support negative tangential vector gradients that point opposite
to the profile’s unit tangent. By convention, tangent vectors point
anti-clockwise along a s/ℓ interface, keeping solid always on the
left. The plots in Fig. 5 show that for this range of midpoint values
the most intense gradients tend to surround the GBG’s triple
junctions. Their intensities diminish to zero at their midpoints,
because of mirror symmetry applied at that point.

Laplacian of the potential
The surface Laplacian of the thermochemical potential,
∇2

τ ζ intðη; η0Þ½ �, equals the scalar divergence of the tangential

potential gradient, viz., ∇!τ � ∇!τ ζ intðη; η0Þ½ �. The negative of these
quantities represent a scalar distribution of capillary-mediated
cooling rates along a diffuse s/ℓ GBG interface. The GBG’s surface
Laplacian of ζint is easily found along a sharp interface profile, as a
cubic polynomial of the running variable, η, namely,

∇!2

τ ζ intðη; η0Þ½ � ¼ �16η �2η2 þ 2η20 þ 1
� �

; ðηtj � η � η0Þ: (10)

Figure 6 provides a cross-plot of the negative this surface
Laplacian for the sharp-interface profile, μ(η)=U(η; η0,Ψ), calculated
for the parameters Ψ= 16 deg, and midpoint, η0=−0.095. Note
again that although the surface Laplacian appears independent of
the dihedral angle, the latter sets the triple point spacing, and limits
the allowed range of the Laplacian. The same parameter pair was
shown to specify a sharp-interface GBG, the shape of which is
isometrically congruent with the diffuse-interface phase-field image
shown in Fig. 4. The μ-distribution of these divergences over its
range of potential gradients, plotted in Fig. 6, indicate an initial
increase in the magnitude of the Laplacian, from its smallest
magnitude of approximately −1.5 at the profile’s mid-point, to its
largest magnitude of −4.5 approaching the profile’s triple junctions,
where the Laplacian magnitude falls to −1.4 at each triple junction.
The steady-state phase-field images simulated in Figs. 4 and 7

have their profile shapes defined by dense isolines separating
the bulk phases. This allows proportionate realization of their
divergence distributions as active isoline cooling rates based on
the surface Laplacian distribution shown in Fig. 6. These cooling
rates were measured as proportionate to the depression of the
thermochemical potential along the interface, and are plotted in
Fig. 6.

Residuals of the measured potential
Residuals data (depressions of the thermochemical potential from
capillary cooling) reported in Fig. 6 were also measured with a
post processing algorithm after steady state was achieved in
the simulated phase-field image. These data closely follow the
divergences of the tangential heat flux predicted from the
surface Laplacian derived for the sharp-interface GBG profile.
Interface potential reduction, called "residuals”, are direct mani-
festations of proportionate cooling rates experienced along the
diffuse isolines of the simulated GBG. Laplacian cooling reduces
the interfacial temperature (isoline chemical potential) below that
expected from the applied thermal gradient acting alone. The
imposed cooling rates by capillarity cause small, but measurable,
milli-Kelvin depressions of the steady-state interface temperature,
or thermochemical potential. Capillary-mediated cooling modifies
the system’s temperature distribution, especially along and near
the s/ℓ interface. Indeed, for the first time, the effect of capillary-
mediated divergence and cooling can be directly visualized both
on Fig. 7, the steady-state temperature distribution, and on Fig. 8,
the corresponding heat-flux vector map.
To reiterate, the major assumption applied in our interpretation

of the comparative behavior found between these geometrically

Fig. 7 Steady-state temperature field (where red is warm, blue is cool) and its co-dependent phase-field image. Isotherms (white lines)
remain nearly horizontal in the liquid phase, where they lie well above the s/ℓ (black) isolines. Lower isotherms break into loops surrounding
the triple junctions, which are locations where capillary-mediated cooling, i.e., heat absorption, is most intense, forming cooler "blue valleys"
that surround the triple junctions.
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related 2-phase microstructures is that we chose an analytic shape
for the counterpart sharp-interface profile that has the same
aspect ratio and profile as its diffuse-interface image. The former
sharp interface profiles have, by virtue of their curvature
distributions, identical vector gradients, but with inert divergences
that lack the ability to cool the sharp interface. Diffuse interface
images, by contrast, with similar curvatures, temperature gradi-
ents, and presumably comparable surface Laplacians of the
chemical potential, permit active divergent heat fluxes that
proportionately "cool” the phase image’s s/ℓ isolines, and probably
cause very small, higher-order shape changes in the simulated
profile, which at present remain below detectabilty.

Steady-state divergences of the potential gradient
Verification of steady-state gradients in the Gibbs-Thomson
potential along sharp-interface GBGs allow analytic examination
of those vector fields to detect the presence of any scalar
divergences. Divergences of potential gradients are proportional to
the heat-flux divergences that they would actually impose if
present on similar diffuse interfaces. Flux divergences on diffuse
interfaces are proportional to the surface Laplacian calculated for
the ζint potential along similarly profiled sharp-interfaces26,44. We
plotted minus the surface Laplacian distribution in Fig. 6, the
magnitudes of which are proportional to cooling rates expected,
and to interface potential residuals actually measured along
simulated, capillary-cooled, GBG microstructures.

General divergences of chemical potential gradients
The reverse occurrences can happen too, on interfaces with
distributions of curvature that present a negative surface
Laplacian of the chemical potential, where "convergence” of the
induced heat flux occurs. Convergent heat fluxes release heat and
cause local heating. In the case of alloys, where solute species
are present, they too would be rejected from the interface by the
convergent tangential solute flow. GBGs do not exhibit negative
surface Laplacians.
Finally, dynamic solidification shapes that develop during active

freezing, including cells and dendrites, exhibit surface Laplacians

with isolated roots, where interfacial convergent and divergent
regions meet at isolated points along a moving interface. Near
such Laplacian roots, interfacial bumps, or waves, are stimulated,
that leads to deterministic branching and invagination of the
interface2,45. These events tend to multiply over time and can lead
to the development of extremely complex s/ℓ interfacial patterns.

Conclusions
• An overview is provided of recent research into capillary-
mediated thermodynamic fields on s/ℓ interfaces constrained at
steady-state. Examples are given of energy fields that autono-
mously appear on 2-D periodic grain boundary grooves (GBGs).
The shapes of these interfaces were obtained analytically from
variational theory. Variational GBGs have sharp profiles that allow
exact analytic calculations of their curvature distribution, thermo-
chemical potentials, interface gradients, and surface Laplacians,
the latter of which represent inert divergences of their potential-
gradients that do not produce flux responses on sharp interfaces.
Microstructure images simulated at steady-state using multiphase-
field modeling produce virtually identically shaped diffuse
interfaces. Simulated GBG images actually consist of phase-index
isolines, which more realistically model the "diffuse” transition
between solid and liquid phases. Diffuse interfaces, in contrast to
sharp interfaces, allow their curved isolines to develop thermo-
dynamically active temperature gradients that drive divergent
interfacial heat fluxes. In the case of GBGs, divergent heat fluxes
result in interface cooling, which could affect their subsequent
growth and pattern formation during solidification.
• Analytic GBGs are ascribed well-posed, well-understood,

thermodynamic fields that can’t be measured, but can be
calculated. Calculated fields for such profiles, of course, evoke
neither a past, nor a future, just an instantaneously formed,
enduring steady-state. Importantly, comparable thermochemical
potentials, their gradients and divergences, predicted for sharp-
interface profiles should, in principle, co-develop with real, or even
simulated, diffuse-interfaces. In fact, we find simulated GBGs
dynamically develop interfacial temperature changes until their
steady-state microstructure is reached. These particular phase re-

Fig. 8 Vector heat-flow map for the steady-state periodic GBG microstructure in Figs. 4 and 7. The s/ℓ interfaces and their grain boundaries
are shown as heavy black borders. Heat flow introduced through the hotter liquid has trajectories that remain downward above the stationary
s/ℓ interface. Heat flow locally deflects toward the cooler "blue valleys", contoured on the thermal map shown in Fig. 7. Downward flow
vectors, upon entering the solid, rapidly change their directions. Cooling rates become largest close to the triple junctions, and flux vectors
terminate their pathways where they enter the interface. The flow map shows general "convergence'' of heat vectors associated with the
applied temperature field toward capillary-cooled s/ℓ isolines, especially near the microstructure’s triple junctions.
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arrangements may, in practice, be observed and measured in the
laboratory, or, as demonstrated here, simulated numerically.
Where it was possible to establish curved interfaces at steady-
state—as shown in the case of periodic GBGs—precision
measurements of their interfacial temperature and, indirectly,
their divergent flux cooling, become possible through post-
processing of the simulated image. See Figs. 4 and 6. In contrast
with sharp-interfaces that instantly appear at steady-state, real, or
simulated, microstructures arrive, respectively, by thermodynamic
evolution from some initial state, or via mathematically described
step-wise thermochemical processes. Precision temperature data
reported in Fig. 6, using a post-processing algorithm, yield non-
linear residuals that are proportionate to the intensity of the
isoline’s cooling rate, or the variational surface Laplacian of the
interface potential. These data are also supported by companion
temperature and heat-flow maps shown in Figs. 7 and 8, that help
demonstrate the presence of significant capillary-mediated
interfacial cooling.
• Specifically, we showed that divergent heat fluxes, propor-

tional to the surface Laplacian of an interface’s thermochemical
potential, also result in gradient divergence equivalent to a
distribution of autonomous heat-sinks. Heat-sinks that develop
along the s/ℓ interface cool the surrounding phases by thermal
conduction. Capillary-mediated sinks in pure systems modulate
the local temperature by only a few tens of milli-Kelvins, and
whilst small, these temperature shifts perturb the interface
region by generating substantial thermal gradients and cooling.
These capillary conduction fields are not confined to the
interface itself, but penetrate the spaces of the surrounding
bulk crystalline and melt phases. This entire thermodynamic
scenario may have significant, and potentially controllable,
consequences on microstructure pattern formation during
solidification and crystal growth.
• With reference to the predicted distribution of the surface

Laplacian and cooling along the sharp-interface counterpart
profile of the phase-field image in Fig. 6, one also sees resultant
distortion of the isotherms near the s/ℓ interface, as simulated in
Fig. 7. The coldest areas, as predicted, show undercooled "blue”
regions that surround each triple junction. A slightly warmer zone,
with downward heat flow, extends above the interface. Figure 8
shows the integrated capillary cooling along this stationary s/ℓ
interface appears capable of reversing the mean direction of heat
flow below the level of a GBG’s triple points. Solid and liquid
phases such as these, with identical bulk thermal conductivities,
but lacking capillary cooling, should, to the contrary, have
isotherms that remain unaffected by the interface shape.
Isotherms without interfacial cooling would appear uniform and
straight, as suggested in Fig. 2, unless, of course, active cooling
were present, as is predicted here.
• Comparing thermodynamic fields on sharp-interfaces with

those on simulated s/ℓ microstructures with diffuse interfaces
can deepen our understanding of processes that subtly control
pattern formation during solidification and crystal growth.
Although thermodynamic fields determined with both diffuse
and sharp interfaces show acceptable agreement between
their respective measurement and calculation, there remains a
dearth—indeed a void—of experimental data. The authors
suggest that advanced facilities and the excellent microgravity
environment available on NASA’s International Space Station
Laboratory could provide unique opportunities and research
support needed to confirm an experimental basis for these
novel interfacial phenomena. As capillary-mediated self-inter-
actions result from deterministic physics, they could prove
usefully controllable via chemical or physical means, such as
adding surfactant elements, applying pressure or magnetic
fields32. Such practical applications could improve microstruc-
ture control in advanced manufacturing based on solidification
and crystal growth.
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