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Characterizing the pathogenicity of genetic variants: the

consequences of context

Timothy H. Ciesielski'**™, Giorgio Sirugo'**, Sudha K. lyengar@®"®” and Scott M. Williams ("%’

Beyond initial discovery of a pathogenic variant, establishing that a variant is recurrently associated with disease is important for
understanding clinical impact and disease etiology. Disappointingly, our ability to characterize pathogenicity under varied
circumstances is limited. Here we discuss the role of genetic and environmental background and how it affects variant penetrance
and outcomes. Specifically, genetic and environmental settings determine penetrance, and we should expect lower penetrance
where contexts are diverse. For example, when over 5000 ClinVar pathogenic and loss-of-function variants were assessed in two
large biobanks, UK Biobank and BioMe, the mean penetrance was only 7%. This indicates that the participants in the family-based,
clinical, and case-control studies that identified these variants were more homogenous and enriched for etiologic co-factors, and
the winner’s curse was at play. We also emphasize that the outcome of interest can vary across conditions. The variant that causes
hemoglobin S can increase the risk of death from sickling, lower the risk of death from malaria, or increase the risk of kidney
disease, depending on the presence of other variants, the endemicity of malaria, and a suite of other factors. Overall, annotation on
a single continuum from benign to pathogenic attempts to shoehorn a complex phenomenon into an overly simplistic framework.
Variant effects often vary by context, and thus it is critical to assess potential pathogenicity in different settings. There is no panacea
or easy fix, but we offer two recommendations for consideration. First, we need to routinely evaluate contexts such as sex and
genetic ancestry by conducting stratified analyses and developing methods that can detect heterogenous effects (e.g. female-to-
male allele proportion ratios). Second, we need to consistently document what we know about effect modifiers in our annotation

databases. These are not the only possible approaches, but they begin to provide means to create robust annotations of

pathogenicity.

npj Genomic Medicine (2024)9:3; https://doi.org/10.1038/s41525-023-00386-5

When we talk about the pathogenicity of genetic variants, what
exactly are we talking about? Although this question on its surface
may appear to be a trivial or simply philosophical question, it is
not. It shapes the foundational logic of human genetics research
and determines the utility of our work with respect to disease risk
and clinical intervention. In brief, our standard definitions of
pathogenicity refer to variants that are deleterious, harmful, or
increase the probability of disease'. This sounds simple, but it is
too simple, as this definition often leads us to ignore a key
principle: Genes evolve and function in the contexts created by
their environment, including other genetic variants. These
contexts can determine penetrance and thus the ability of a
variant to cause disease.

VARIANT PATHOGENICITY OFTEN DEPENDS ON CONTEXT

A simple but informative example of the heterogeneity of
pathogenicity is the beta globin variant that causes hemoglobin
S (HbS). The HbS allele in an individual who is homozygous for this
variant has sickle cell disease, thereby increasing risk of death at a
young age*3. However, this same allele in the context of a second
allele that encodes HbA will reduce the risk of risk of death at a
young age in malaria endemic regions*°. This decreased risk of
death is the reason that the HbS allele is common in malaria
endemic regions, and has not been culled by evolution®’.

Furthermore, in regions without malaria, being heterozygous for
the HbS allele may not affect risk of death at a young age, unless
there exists another precipitating variant in that individual’s
genome, or the carrier experiences hypoxia when exercising at
high altitude®'°. In these distinct, yet malaria-free, contexts, the
HbS variant may again increase death risk at a young age. To add
to this complexity, data now indicate that older heterozygotes
may have an increased risk of subclinical kidney pathology, and
increased rates of acute renal failure when exposed to Sars-CoV-
2", Finally, variants that decrease the expression of alpha globin
subunits (HBA1 and HBA2—alpha thalassemia)'?'2 or allow for the
persistent expression of gamma globin subunits into adulthood
(HBG1 and HBG2 - persistence of fetal hemoglobin)'* can greatly
mitigate the risk of death due to HbS homozygosity. Thus, the
pathogenicity of the HbS variant depends heavily on other alleles,
the environment, and the health outcome being evaluated. HbS
can be considered a “simple” case, but even in this situation,
pathogenic potential is strongly shaped by multiple contextual
factors (Fig. 1).

This example clarifies that the process of making a universal
pathogenicity assessment, uses an oversimplistic framework to
describe an inherently complex phenomenon. Even when a
variant can cause disease, it often does not, and knowing the
modifying factors is critical to evaluating pathogenicity. Thus
assuming that genetic variants have a single unidirectional effect
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Fig. 1 The complex determinants of phenotype and pathogenicity: example of a relatively simple case—Hemoglobin S (rs334). Starting
at the center of this schematic and moving out radially in any direction, different relevant contexts are encountered. These contexts
determine the type and severity of the observed phenotypes. This schematic is based on our current understanding and is not intended to be
an exhaustive description of all relevant and all possible phenotypes linked to rs334. Some of the modifying contexts and relevant
phenotypes may yet to be discovered. Finally, although it cannot be comprehensively depicted on this figure, phenotypes may serve as
competing risks for one another, and this becomes more complex with age. As an example, a person cannot develop chronic kidney disease in

older age if they die of sickling complications at a younger age.

on one outcome, obscures the complex genetic architecture of
disease'®. Regulatory processes, genetic buffering, environmental
interactions, and epistasis can all play roles in determining the
impact of a given variant'®"'%, and these contexts cannot be
ignored if we want to understand variant pathogenicity'>.

DEFINING PATHOGENICITY IS ESPECIALLY HARD FOR
VARIANTS WITH LOW PENETRANCE AND VARIABLE
EXPRESSIVITY

Nonetheless, attempts are still made to produce “universal
pathogenicity” assessments?°. These assessments may make sense
in the context of highly penetrant variants that cause Mendelian
disease, but what about low penetrance variants with variable
expressivity? Allelic expression levels, epigenetic changes, cis
variants, trans variants, environmental exposures, and other factors,
including lifestyle, collectively shape variant impact?'?? and low
penetrance variants make up a very large proportion of our
annotations. When over 5000 pathogenic and loss-of-function
variants were assessed in the UK Biobank and BioMe, the mean
penetrance was unexpectedly low (6.9%, 95% Cl: 6.0-7.8%)%3. While
some of this pattern can be partly explained by the factors that drive
the winner’s curse (i.e. inflated magnitude of initial associations due
to low power, publication bias, model overfitting, etc)?*2°, it must
be added that smaller associations should be expected when the
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study participants are more diverse. Family-based, clinical, and case-
control studies have more homogenous participants and because
study entry is partly conditioned on disease status, these study
groups are enriched for etiologic co-factors. This means lower
penetrance and smaller effect sizes will often be observed in large
population-based cohorts?*?5%’, even when there are subgroups
where penetrance is high. When a variant has a smaller effect size
and reduced penetrance in a heterogenous, population-based
sample, it is important to examine that variant in multiple contexts.
This can identify potentially sensitive subgroups, such as an
ancestries, environments, or multiplexed families with higher
penetrance and pathogenicity. Overall, assessment of variants in
multiple contexts?®?° is critical to understanding differences in the
causal mechanisms of disease in distinct groups.

DOWNPLAYING THIS HETEROGENEITY IMPAIRS CLINICAL
COMMUNICATION AND PRACTICE

Regardless of the reason for low penetrance, it creates a problem
for pathogenicity assessments and clinical genetic practice. When
these annotations are used as screening tests for disease risk,
there is a systematic problem with test specificity (i.e., the ability of
a test to identify true negatives and avoid false positives3®). Since
penetrance among many pathogenic variants is often low, most
people with these variants will not develop disease. Thus, when
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applied clinically this can result in a very large number of false
positives and subsequent unnecessary actions. While a strong
argument can be made for tolerating false positives (type 1 error)
in the early stages of genetic discovery research®'32, false
positives in clinical settings can lead to patient anxiety, needless
expense, and harm?3,

One way to vet putative pathogenicity is to perform experi-
ments that biologically validate the effects of genetic variants.
However, it should be noted that such experiments are limited in
their generalizability, and they are restricted by the conditions
under which the experiments are performed. In vitro experiments
and animal models can clearly demonstrate causal and mechan-
istic evidence of pathogenicity, but they cannot test or create all
relevant contexts. For example, the experimental temperature, day
night cycle, diet, air quality, or hormonal milieu may not reflect
those of the humans that carry a potentially pathogenic variant.
Geneticists are aware of these dynamics, known as reaction norms,
and they have been taught in genetics classes for decades*°,
However some physicians and the general public may not be as
familiar with how this fundamental principle of genetic variation
can affect our annotations.

Universal pathogenicity assessments also create a systematic
problem with sensitivity (i.e., the ability of a test to identify true
positives and avoid false negatives®°). This is partly because our
annotation guidelines®, even when thoughtfully refined®” have
traditionally considered the “absence of evidence” to be “evidence
of absence”. In other words, when a variant is observed in a high
number of healthy people (e.g., minor allele frequency [MAF] >5%)
and it has not been yet linked to disease, then it can be labeled
benign. Unfortunately, this approach fails to account for the
determinants of penetrance. If a key determinant of penetrance
was not present among the observations, then a conditionally
pathogenic variant can be labeled a Variant of Unknown
Significance or even Benign. This creates many issues but it seems
particularly troublesome in the clinic when sequencing patients to
identify the cause of rare syndromes>3®. Imagine trying to annotate
the phenylalanine hydroxylase gene variants that cause phenylk-
etonuria®® in a population with almost no access to foods that
contain phenylalanine. Phenylalanine hydroxylase variants would
appear benign in this context. Hence, in most cases when variant
pathogenicity is assessed, the process identifies what can cause
disease, but importantly, it does not identify what will cause
disease in a given person at a given time**4. This context
agnostic approach has utility, but its limitations must be
acknowledged and accounted for.

EXISTING GENOMIC METHODS IMPROVE WHEN CONTEXT IS
CONSIDERED

Despite the drawbacks of often defining pathogenicity as a binary
and immutable feature of variants, genetic researchers have
created many techniques of great utility. For example, molecular
algorithms have been developed that can predict loss of protein
function and these have high value in many settings**~**. We also
now have protocols for molecular and clinical validation with
laboratory-based functional assays**, and the longitudinal tracking
of sequenced individuals in electronic health records*. Further-
more, several key papers have improved our thinking about the
necessity of using diverse convergent evidence for causal
reasoning in genomics3'#748, Perhaps the most impressive
advance in this area, is the scoring system developed by ClinGen
that assembles and interprets empirical evidence for pathogeni-
city*®. However, these approaches can only do so much when
context is not explicitly considered. For example, even if we could
develop a prediction algorithm that perfectly determined loss-of-
function in any protein, we would still not know if loss-of-function
was good or bad for any individual (given the remainder of their
genome, and their environment, and the phenotype in
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question)>°=>%, Take for instance a protein that can convert pro-
carcinogenic compounds to carcinogens. Loss-of-function of this
protein may be beneficial in the context of high procarcinogen
exposure®’, Hence, the context, in this case the environment, can
change a variant from beneficial to pathogenic and vice versa.
Therefore, even if we are using the best methods, we can
observe conflicting evidence of pathogenicity when we do not
explicitly consider context. This is particularly relevant for common
variants. If a given variant is detrimental in all contexts, then this
variant will usually be observed as a rare or de novo variant. In
other words, variants are persistently culled by evolution when
they reduce reproductive fitness in all contexts, but they can be
maintained in the contexts where they do not reduce reproduc-
tive fitness. This may be especially evident when we consider
pleiotropy, because antagonistic pleiotropy appears to play a
major role in the persistence of several human disease
variants®®>°, For example, the strongest genetic determinant of
Alzheimer's Disease, APOE4%%%1, also prevents death from diarrhea
in childhood®3, Our ancestors probably needed infection
protection for their reproductive fitness and one of the variants
that met this early life requirement, also increased the risk of a late
life disease, Alzheimer's Disease?~%®. Thus, it makes very little
sense to talk about the universal pathogenicity of any common
variant. However, from a practical perspective, it is hard to do
anything else.

CONTEXT IS COMPLEX—HOW CAN WE SPECIFY IT?

Context is easy to invoke as a concept, but the relevant context or
determinants of penetrance, can differ for virtually every variant.
Thus, when operationalizing research questions: What contexts do
we measure? What contexts do we analyze? What phenotype do
we examine? Even in the simplest research case with a single SNP,
the potentially relevant context can be a cryptic and computa-
tionally impractical search space. Unfortunately, this explodes into
intractability when considering Genome Wide Association or Next
Generation Sequencing data (millions of SNPs and potentially
thousands of environmental exposome variables). So, how can this
problem be addressed? How can contexts that need attention be
identified? It may be most practical to start with common and
easily measured “contexts” that are known to have strong
biological functions. This will help to optimize precision, statistical
power, and the likelihood of documenting context-dependent
pathogenicity.

With these features in mind, biological sex is among the easiest
contexts to evaluate. It is easily measurable, it divides all human
populations approximately in half, and there are many anatomic,
physiologic, and pathophysiologic distinctions that align with it.
Thus we can, and probably should, run sex-stratified sensitivity
analyses in most genetic research studies®’~%° especially when a
trait is sexually dimorphic’®. Failure to do this can obscure
important biological patterns. Another step would be to
encourage new methods for probing the X-chromosome, a
chromosome that is often-ignored in association analyses. We
have already started this strategy by analyzing the female-to-male
allele frequency ratio as tool for the discovery of pathogenic
variants (Equation 1)”". The reasoning is as follows: females have 2
copies of all Non-Pseudoautosomal X-chromosome loci and males
only have one. Thus, females can be biologically more resilient to
the presence of harmful variants at these sites. The exception is
variants with dominant effects, in which case ratios will not be
useful for detecting these variants. In any dataset of adult humans,
when a Non-Pseudoautosomal X-chromosome variant exists at a
higher proportion in females, this pattern can serve as evidence
that the variant may increase the probability of premature death.

Following this simple logic, we used gnomAD data’? to
characterize this phenomenon. Our methods are fully described
in”!, but in short, we obtained exome data from the
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X-Chromosomes of 76,702 males and 64,754 females. Then, we
calculated female-to-male allele frequency ratios for the 44,606
variants that had an allele count of at least 5. None of the
pseudoautosomal variants had a ratio above 11, but 319 of the
non-pseudoautosomal variants had ratios above this empiric
threshold.

Only 25 of these high-ratio variants were annotated in ClinVAR
and had a rs number. Most of these variants had high sex-averaged
MAFs and no known associations with disease, and they were listed
as benign or likely benign (Table 1). As an example, one of the 25
variants had a sex-averaged MAF of 0.13, no known disease
associations, and was listed as likely benign. This site had been
genotyped 38,527 times in males (one locus each) and 104,056 times
in females (2 loci each), so there was no shortage of data. Overall, the
variant was observed a total of 18,736 times, but not one of these
observations came from a male or a homozygous female. It was only
found in heterozygous females. Thus, it is likely that this variant is
almost 100% lethal (perhaps even embryonic lethal) in males and
homozygous females, but is without large effect in heterozygous
females. When we considered the other 24 variants, we found similar
patterns, although the comparisons were less extreme.

To further characterize these variants, we probed them with a
diverse set of web-based bioinformatic resources: dbSNP73,
VarSome’4, OMIM”?, and VENUS’%77. These databases provide
additional information on evolutionary conservation, gene-
phenotype relationships, protein-structure predictions, and other
aspects of these variants that need consideration in pathogenicity
assessments. We found that:

1. Existing annotation methods can miss sex-specific patho-
genicity. We observed that 22 out of 25 (88%) high ratio
variants are listed as Benign or Likely Benign in ClinVar (1 is
listed as Conflicting [Uncertain Significance and Benign] 2
are listed as Uncertain Significance). These variants are
commonly observed in healthy heterozygous females and
they achieve high sex-averaged MAFs so they appear
benign, but males are rarely observed (i.e., these variants
are not often tolerated in males)

2. QC procedures can mislabel evidence of sex-specific
pathogenicity as genotyping error. We looked in the second
dataset from gnomAD site (the genomes data) and
observed that 22 out of the 25 (88%) high ratio variants
failed QC filters”*. Sex differences in MAF were assumed to
be error rather than putative evidence of sex-specific
pathogenicity. Thus, these QC filters may systematically
remove variants with sex-specific pathogenicity before they
can even be assessed.

3. Our ratio method identified genes that were already linked
to clinical syndromes through other variants. In all, 23 of 25
(92%) genes implicated by the high ratio variants have
specific links to clinical syndromes listed in OMIM?>. The
other two genes have tentative links to pathology described
in their OMIM entry.

4, Structural predictions are not available or useful for most of
these top ratio hits. Michaelangelo-VENUS structural predic-
tions’®’” were only possible for 6 of the 25 variants (24%).
VENUS requires the specification of a specific amino acid
substitution at a specific site in the protein. This makes
sense for some variants, but 19 of the 25 variants do not
have that impact, or their exact impact on amino acid
sequence cannot be yet specified (synonymous, intronic,
splice donor variants, etc.)

5. Additional heterogeneity exists and some high ratio variants
might be better tolerated by males and homozygous
females in specific contexts. Some high ratio alleles had
frequencies that differed by ancestry group, and this is
consistent with the interpretation that these variants may
not have sex-specific pathogenicity in all contexts.
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Overall, these 5 points indicate that seeking and documenting
evidence of sex-specific effects could improve pathogenicity
annotations. The existing tools for variant characterization can
only do so much if context is not explicitly evaluated. Finally, we
note that the many potential mechanisms for sex-specific
pathogenicity remain to be characterized, but there is some
indication in our initial results that regulatory function may
sometimes be involved. RegulomeDB evaluations of the 25 high-
ratio variants provide diverse and nuanced information on the
likelihood of regulatory function at these loci (Table 2). They reveal
that 13 of the 25 high ratio variants (52%) have some indication of
regulatory function: a rank less than three or a score greater than
0.5. A rank less than three indicates the presence of at least two
strong pieces of experimental evidence that are consistent with
regulatory function, and scores greater than 0.5 are in the top half
of possible scores from models that predict transcription factor
binding.

Sex differences in allele frequency on the X chromosome are a
special case, but this pattern may also be found in autosomal
variants that affect disease risk differently between males and
females. Very large and very small allele proportion ratios in the
autosomes may also be indicative of sex-specific effects that
deserve further investigation. While this area of genetic research is
still in its infancy, and thresholds for discovery and confirmatory
findings are not yet established, we have already observed
extreme female-to-male allele proportion ratios on autosomes
(many standard deviations above or below the mean). Work in
progress has already revealed a distribution of ratios on
chromosome 21 that demonstrates this point (Table 3). Ratios
this high are very unlikely occur by chance. Finally, we note that
biological sex is just the first and simplest context to consider.
More complex situations such as ancestry and environmental
exposures will need increased attention. For example, we already
know that failing to assess ancestry-specific associations can
generate ancestry-specific misinterpretations of genetic tests that
disproportionally harm marginalized groups’®. We need to collect
genetic data on diverse ancestry groups’® and explicitly consider
this context in order to avoid generating health disparities with
ancestry-specific medical error®,

Overall, considering context will not solve all the problems in
pathogenicity assessment, but it is a necessary step for addressing
key clinical and translational issues in genetics. Sex-stratified
GWAS®, and female-to-male allele proportion ratios”’ can start us
on a path that probes multiple determinants of penetrance. A lot
of work remains in determining how to best explore contextual
frameworks for variant pathogenicity, and other tools will be
needed to evaluate additional factors, such as xenobiotic
exposures and ancestry. However, biological sex is an ideal
context to start with, because it will not require any new data.
Information on biological sex is extractable from virtually all
existing genomic data, and these data can be easily re-evaluated
at low cost. Furthermore, it will not be hard or expensive to better
evaluate sex differentials in allele frequency and improve the
definition of benign in pathogenicity annotations. As an easy first
step, ClinVar could present MAFs by sex. Overall, we call on the
genetic research community to proactively consider context.
While the optimal frameworks for achieving this goal are not fully
established, we can to start by routinely evaluating the sexes
separately, and documenting what is known about effect
modifiers in our annotations. We have proposed a deeper dive
into sex as a common effect modifier but other strata should be
explored and documented in annotations. Covariates should be
collected in our datasets and exploratory sensitivity analyses
should be more routine or we will fail to identify many
determinants of penetrance that have clinical relevance.
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Table 2.
variants.

Evidence of regulatory function among the high ratio

rs number from RegulomeDB— 8283

dbSNP73 rank82831
Integrative metric
based on existing
evidence
1 = strong evidence
7 = no evidence

RegulomeDB—score
prediction based on
transcription factor

binding models

0 = lowest probability of

regulatory function

1 = highest probability of
regulatory function

rs201580891 7 0.18412
rs1315062158 5 0.38000
rs782666190 5 0.00454
rs1432363549 5 0.00000
rs782705493 2b 0.73553
rs777010333 5 0.01895
15782664878 0.00000
rs372580592 0.09659
rs782792601 0.70497
rs782032695 2b 0.48000
rs781824575 2b 0.79371
rs745354475 5 0.00000
r$199626569 4 0.60906
rs782072345 4 0.70497
rs745338783 5 0.00125
rs751314374 5 0.58955
rs1250133030 5 0.58955
rs72609545 5 0.58955
rs12849277 5 0.58955
rs781379769 5 0.00000
rs145404090 5 0.23589
rs148934011 5 0.58955
rs782233695 4 0.60906
rs1446705794 5 0.98500
rs201558029 7 0.18412

'Possible scores in the RegulomeDB ranking system.

1a eQTL/caQTL + TF binding + matched TF motif + matched Footprint +
chromatin accessibility peak.

1b eQTL/caQTL + TF binding + any motif + Footprint + chromatin
accessibility peak.

1c eQTL/caQTL + TF binding + matched TF motif + chromatin accessibility
peak.

1d eQTL/caQTL + TF binding + any motif + chromatin accessibility peak.
1e eQTL/caQTL + TF binding + matched TF motif.

1f eQTL/caQTL + TF binding / chromatin accessibility peak.

2a TF binding + matched TF motif + matched Footprint + chromatin
accessibility peak.

2b TF binding + any motif + Footprint + chromatin accessibility peak.
2c TF binding + matched TF motif + chromatin accessibility peak.

3a TF binding + any motif + chromatin accessibility peak.

3b TF binding + matched TF motif.

4 TF binding + chromatin accessibility peak.

5 TF binding or chromatin accessibility peak.

6 Motif hit.

7 Other.

CONCLUSION

In summary, these strategies will not provide better answers to the
old questions; they simply refine the questions so that they are
more relevant. The old questions are generally context agnostic,
and they have set the basis of our understanding reasonably well,
but not well enough. If we want to keep advancing, we must now

Published in partnership with CEGMR, King Abdulaziz University

Table 3. Summary statistics for the 21493 female-to-male allele
proportion ratios calculated on chromosome 21 in the GhomAD
exomes data.

Mean SD Min Max
Ratio 1.5 1.1 0.1 43.6
Log2(Ratio) 0.3 0.8 -2.7 5.4

address the ubiquity of pleiotropy and the contextual determi-
nants of penetrance.
Equation 1. The female-to-male allele proportion ratio”’

MVe+1)/(Ar+ 1)
(Vi +1)/(Am + 1)

R: allele proportion ratio

Ve the minor allele count in females
Az the total allele count in females

Vi the minor allele count in males
Am: the total allele count in males
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