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Populational pan-ethnic screening panel enabled by deep
whole genome sequencing
Linfeng Yang 1,2,7, Zhe Lin 1,2,7, Yong Gao1,2, Jianguo Zhang 1,2, Huanhuan Peng2, Yaqing Li2, Jingang Che2, Lijian Zhao2,3✉ and
Jilin Zhang 4,5,6✉

Birth defect is a global threat to the public health systems. Mitigating neonatal anomalies is hampered by elusive molecular
mechanisms of pathogenic mutations and poor subsequent translation into preventative measures. Applying appropriate strategies
in China to promote reproductive health is particularly challenging, as the Chinese population compromises complex genomic
diversity due to the inclusion of many ethnic groups with distinct genetic backgrounds. To investigate and evaluate the feasibility
of implementing a pan-ethnic screening strategy, and guide future reproductive counselling, high-quality variants associated with
autosome recessive (AR) diseases derived from the largest publicly available cohort of the Chinese population were re-analysed
using a bottom-up approach. The analyses of gene carrier rates (GCRs) across distinct ethnic groups revealed that substantial
heterogeneity existed potentially due to diverse evolutionary selection. The sampling population, sequencing coverage and
underlying population structure contributed to the differential variants observed between ChinaMAP and the East Asian group in
gnomAD. Beyond characteristics of GCR, potential druggable targets were additionally explored according to genomic features and
functional roles of investigated genes, demonstrating that phase separation could be a therapeutic target for autosomal recessive
diseases. A further examination of estimated GCR across ethnic groups indicated that most genes shared by at least two
populations could be utilised to direct the design of a pan-ethnic screening application once sequencing and interpreting costs
become negligible. To this end, a list of autosomal recessive disease genes is proposed based on the prioritised rank of GCR to
formulate a tiered screening strategy.
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INTRODUCTION
The survival rate of children remains a global concern. Although
the under-five mortality rate decreased to 3.8% in 2021 from 10%
in 1990, a total of five million children under five years old yet
have died in 2021, mainly due to congenital anomalies (https://
www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-
child-under-5-mortality-in-2020). The congenital anomaly, cover-
ing a diverse group of disorders that single gene mutations can
cause, large structural variations on chromosomes, and other
environmental factors, is one of the leading causes of lethality
apart from prematurity and infectious diseases1–3. Except for a few
genetic abnormalities, such as Down’s Syndrome and cystic
fibrosis, the causative mechanisms of many birth defects remain
poorly understood, including congenital heart defects, cleft palate
and club foot. Many causative variants have been characterised
and catalogued, further reinforced by large sequencing projects,
including the 1000 genome project4, the UK Biobank cohort5 and
the Taiwan Biobank project6. Despite the enormous translational
potential of identified variants, converting disease-associated
variants with intrinsic populational diversity into preventative
applications remains challenging, and it still undergoes a primitive
exploring phase, especially in preventing congenital anomalies
caused by genetic mutations.
Regardless of poorly elucidated underlying pathogenic mechan-

isms, numerous severe genetic anomalies can be prevented by
imposing global or regional surveillance systems and installing

preventative carrier screening programs7–9. As an effective
preventive strategy, the capacity of widely adopted extended
carrier screening (ECS) panels has been drastically advanced by
the fast-evolving, high-throughput next-generation sequencing
techniques, enabling increased access to genetic risk assessment.
Indeed, most available screening panels can now focus on
100–200 genetic diseases10,11, except for a few larger panels
claiming to examine disease-causing variants in 500–600 genes. In
addition, because genomic compositions across distinct popula-
tions exhibit substantial diversity, carrier frequencies of Mendelian
disorders display population-specific characteristics12. Thus, many
countries or regions have adopted tailored screening panels
based on disease prevalence to promote reproductive health,
including Mackenzie’s Mission8 and Victorian program13 in
Australia and hemoglobinopathies project in China9.
However, one major shortcoming of these ECS schemes is that

their screening capacity is restricted because of including a limited
number of severe genetic disorders caused by protein-coding
variants at a high national-wide or ethnic-specific prevalence10,11.
The remaining variants and structural variations associated with
diseases at a lower prevalence and uncommon/rare diseases are
barely considered during the reproductive consultation. Unavoid-
ably, the capacity and scope of these screening panels are yet
largely limited and primarily due to the economic consideration
regardless of the consideration of population heterogeneity,
except for panels to target diseases with high prevalence in the
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Ashkenazi Jewish population13. Moreover, multiple lines of
evidence have demonstrated that the gene carrier rate (GCR) of
many diseases causing genetic variants shall be considered when
implementing the screening strategy. The polyethnic nature of
Chinese population calls for a strategical utilisation14,15 toward
mutation spectrum and ethnic-biased prevalence to deliver
integrative reproductive consultation with precision and accuracy.
Nonetheless, the consequences of most observed non-coding

variants remain poorly explained. Failing to reveal the underlying
molecular mechanisms of their regulatory roles in diseases hinders
the search for drug targets, thus the subsequent design of
therapeutic strategies. Increasingly reported evidence has proven
that non-coding variants play essential roles in pathogenesis due
to the dysregulated transcriptional and post-transcriptional
processes16,17. Since molecular interactions are often compart-
mentalised, one of the fundamental processes gaining heavy
focus, particularly in pathogenesis, is the condensate formation
that drives the liquid-liquid phase separation (LLPS)16,17. Whether
autosomal recessive (AR) disease genes associated with LLPS
could be druggable targets is still poorly investigated.
Due to the increased throughput and the drastically decreased

cost of sequencing, the turning point of utilising deep whole
genome sequencing (WGS) data for personalised and precision
reproductive counselling is right on edge. It is now feasible and
desirable to use the whole genome data of individuals to expand
our capacity to explore the variants from large cohorts to provide
a better risk assessment of genetic conditions during reproductive
counselling. Indeed, the ECS for prenatal intervention or newborn
screening to prevent neonatal disorders have been introduced in
many countries18, and new tools or approaches to estimate gene
carrier rate based on large datasets are emerging19. In this study,
we leverage the power of ChinaMAP generated through a natural
cohort with deep WGS data to demonstrate the benefit of WGS. By
comparing GCR estimated from distinct populations, we report the
heterogeneous spectra of variants associated with various
diseases at a low prevalence in China. More interestingly, analyses
of the characteristics of AR disease-causing variants further reveal
feasible implementations of tiered pan-ethnic panels considering
regional prevalence or rare disease subsets for precision
reproduction counselling.

RESULTS
Causative variants of autosomal recessive diseases
To investigate the characteristics of GCR in the Chinese popula-
tion, we re-analysed variants included in ChinaMAP covering the
deep WGS of 10,588 individuals14. After quality control, we
extracted a total of 140,109,159 variants. To uncover the signature
of GCR, 2904 phenotypes corresponding to 2464 AR genes
exhibiting Mendelian inheritance were extracted from Online
Mendelian Inheritance in Man (OMIM) as candidate genes, where
genes associated with syndromes caused by large segmental
duplications or chromosomal variations were discarded. The 12.7
million candidate gene overlapping variants were extracted,
including 11,826,063 SNPs and 898,110 indels. These variants
were subjected to a carefully designed workflow to classify
variants as deleterious (Fig. 1a and Supplementary Fig. 1, see
“Methods”). We then estimated GCR based on these deleterious
variants. Meanwhile, the disease-associating variants were cate-
gorised into groups depending on whether treatments were
available for the associated conditions/diseases.
We identified 19,484 deleterious variants associated with AR

diseases. Among these, 3409 protein-coding variants were
annotated by ClinVar database. Except for 19 manually curated
variants, 14,775 and 1281 were predicted by our workflow as
deleterious missense and deleterious nonsense, respectively (Fig.
1a). Compared to the previously estimated GCR19, the GCR

reported in our study exhibited a moderate correlation, potentially
caused by the intrinsic difference of variants selection using
different strategies, cutoffs and prediction tools (Supplementary
Figs. 2 and 3). After a systematic comparison, we confirmed that
our strategy performed better in predicting P/LP variant as
indicated by AUC- ROC (Fig. 1a), and that predicting tools and
corresponding thresholds used in this study were strongly
evidence-based and widely used, leading to a theoretically lower
false discovery rate and a less biased variant set (Supplementary
Table 1 and Supplementary Fig. 4). Indeed, GCRs reported here
were more consistent with previous designs (Supplementary Fig.
5)20. Interestingly, 142 coding variants within 51 AR disease genes
were annotated to be involved in LLPS. Among these variants, 65
(53.72%) were catalogued in ClinVar, 55 (45.45%) were deleterious
missense variants, and only one was LoF. In contrast, 8.4 million
non-coding variants, accounting for 92% of the non-coding
variants, were enriched in the intronic regions of 1807 AR
disease-causing genes. Unexpectedly, 49 genes were predicted
to participate in LLPS. This suggested a promising yet not well-
studied direction to disclose the affected regulatory processes
beyond misfolded proteins.
As protein-coding sequences only comprised a small portion of

the entire genome and many proteins are not targetable by small
molecules, we retrieved non-coding variants associated with clear
disease-causative genes to explore their potential functional
characteristics. Surprisingly, 5.01% and 4.80% of these non-
coding variants were enriched within the untranslated regions
and up-/downstream of 1891 well-characterised disease-causative
genes, respectively. Approximately 36,655 non-coding variants,
accounting for 0.45% of the genes associated non-coding variants,
were particularly enriched at splicing junctions. Around 45% of
these variants were canonical splicing sites, and hundreds of sites
were validated by the expression profiles in GTEx (102)
(Supplementary Fig. 6) and supported by ICGC (802). However,
only 1908, accounting for 5.2% variants, were predicted as
splicing-altering sites by SpliceAI (438 acceptor gain, 315 acceptor
loss, 269 donor gain, 886 donor loss)21. More interestingly, non-
coding variants were more enriched in disease-causative genes
than non-OMIM genes (Wilcoxon test, p < 2.2e-16). These observa-
tions implied that post-transcriptional regulation was deeply
involved in the pathogenesis apart from that caused by altered
protein products.
WBBC and gnomAD were used to assess the power of

ChinaMAP data. Indeed, ChinaMAP detected more than 12 million
single nucleotide polymorphisms (SNPs), which was over two-fold
on average of that for each chromosome in the East Asian ethnic
group (EAS) reported by gnomAD (Fig. 1b, c), thus enabling the
generation of a much broader and more comprehensive view of
the Chinese population. A further comparison of the mutation
spectra between ChinaMAP, WBBC and EAS demonstrated that
only 43% of gnomAD EAS and 42% of WBBC variants were shared
with ChinaMAP, respectively, indicating potentially distinct genetic
compositions among datasets (Fig. 1d). Further analysis of allele
frequency confirmed that such minor discrepancy did not affect
the separation of distant populations (Fig. 1e).

Estimation of gene carrier rate enhanced by deep WGS in East
Asian population
ChinaMAP covered many diverse minority groups in China,
presenting the most comprehensive variations of the East Asian
population to date. A substantial number of variants were not
detected in the gnomAD EAS population due to technical limits or
smaller sampling sizes (Figs. 1b and 2a). Thus, exploiting the
dataset to obtain a systematic comparison of GCR was carried out
to demonstrate the necessity of WGS to gain improved insight
into reproduction counselling. Despite the slightly distinct GCR
across populations, many genes of which GCR ≥ 1/500 in different
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ethnic groups were shared by at least two populations (Fig. 2b and
Supplementary Fig. 7), suggesting an ancestral origin that
potentially underwent selections22. However, the GCR of DMGDH,
CD36 and GJB2, the variants on which were linked to diseases
Dimethylglycine dehydrogenase deficiency, Platelet glycoprotein
IV deficiency, and Deafness (autosomal recessive 1A), respectively,
exhibited substantial variations across ethnic groups. For instance,
variants on gene CD36 that could cause Platelet glycoprotein IV
deficiency were ranked at the top in East Asian groups. In contrast,
its observed GCR was drastically lower in several other groups,
confirming that diversity caused by potential population-specific
selections existed between some groups (Fig. 2c). However, the
rank of many genes remained unchanged in other ethnic groups
compared to ChinaMAP. In addition, numerous genes with highly
ranked GCR were also observed at the leading ends within several
other populations, confirming that AR disease genes could
commonly affect many ethnic groups other than the non-
negligible diversity (Fig. 2b and Supplementary Fig. 7b).
By comparing GCRs estimated from these datasets, we found

that the sequencing depth (30X for ChinaMAP, 18X for gnomAD
v3) and sample size affected the estimation of GCR in several
manners (Fig. 2a). The sample size dictated the detection power,
while the under-detected variants caused by insufficient sequen-
cing depth could be compensated by increasing the sampling
size23. We speculated that the partial congruence with previously
estimated GCR of EAS in gnomAD was due to the insufficient

detection of variants and potentially false claim of ethnicity. To
prove this, we performed PCA analysis on the ChinaMAP, EAS of
gnomAD and WBBC at allele frequency level (Fig. 1e) and GCR
correlation test between distinct ethnic groups (Supplementary
Fig. 8 and Supplementary Table 11) to estimate the impact of low-
sequencing coverage and insufficient recovery of rare variants.
Indeed, approximately 3.6 million SNPs detected in both
ChinaMAP and WBBC were missing in gnomAD, a much larger
number compared to that between gnomAD and these two
datasets, implying that a lower detection rate of rare variants in
the EAS group of gnomAD cohort (Fig. 1d and Supplementary
Fig. 9).
After intersecting the selected genes with a list of rare diseases

compiled by the Chinese Center for Disease Control and
Prevention, we found very few overlapping genes, suggesting
that many of the rare diseases lacked appropriate genetic
dissections. Alternatively, this potentially indicated the inflation
of GCR due to either the carrier effect or heterogeneous genetic
composition that could impact the estimation of GCR (Fig. 2c).
ChinaMAP uniquely enabled the recovery of genes with higher
GCR (Supplementary Fig. 10), confirming that EAS in gnomAD had
a distinct genetic background compared to ChinaMAP. We also
observed that the estimated GCR of treatable and untreatable
diseases across several ethnic groups surprisingly differed
significantly (Supplementary Fig. 11). This reinforced the necessity
of introducing reproductive counselling for preventative purposes,
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allocating resources to find novel drug targets, and carrying out
innovative research for rare diseases.

Discovery of potential druggable targets for rare diseases
Although responsible genetic variants of a few neonatal conditions
were characterised, many conditions lacked approved treatments,
including effective drugs and clinical therapies (Fig. 1a). Most rare
diseases are not treatable, calling for unavoidable attention to
explore potential druggable targets for these untreatable diseases
besides implementing preventative measures.
In addition, the prevalence of certain diseases was primarily

dictated by population-specific genetic compositions. Most
affected genes varied across the population. For example, genes
UGT1A1, SERPINB7 and ABCG5 were responsible for Crigler-Najjar
syndrome, palmoplantar keratosis, phytosterolaemia, exhibited
significantly lower GCR in non-Asian ethics compared to that of
the Asian ethnic group, suggesting heterogeneous GCR at the
population level needed to consider a population-centric priority
for the variable genes when implementing preventative strategies
or diagnostic strategies6,12,24. For investigation, both Asian groups

seemed to be more susceptible to diseases Platelet glycoprotein
IV deficiency, Lissencephaly 5, Deafness, autosomal recessive 111,
Dyssegmental dysplasia, Silverman-Handmaker type/Schwartz-
Jampel syndrome, type 1 and Citrullinemia, adult-onset type II /
Citrullinemia, type II, neonatal-onset which were caused by
mutations in CD36, LAMB1, MPZL2, HSPG2 and SLC25A13
supported by a slightly higher GCR compared to other ethnic
groups12,15, restating the importance of strategic and peculiar
drug development to target affected population (Supplementary
Fig. 12).
Growing evidence indicated that LLPS participated in various

regulatory processes by forming membrane-less organelles in
cells, including transcriptional and translational dysregulation in
pathogenesis16,17,25. As diseases caused by mutations within the
protein-coding genes only account for a minor portion of the
polymorphism, and many roles of non-coding variants were not
examined thoroughly due to their poorly investigated functional
roles, we expanded the search scope to identify non-coding
variants associated with well-annotated pathogenic genes and
potentially dysregulated condensate alterations during LLPS. The
rationale was that intrinsically disordered regions pervasively
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existed in protein sequences and played essential roles in various
biological processes through regulating non-membrane orga-
nelles. In total, 265,009 variants, accounting for 3.23% of the
functionally uncharacterised variants, were involved in LLPS by
querying against the list of predicted LLPS associating variants16,
implying the direction of future drug design and exploration.
Indeed, mutations in myosin VIIA and filaggrin could impair their
ability to form condensates, leading to subsequent dysregulation
of forming motor protein clusters in stereocilia25 and assembling
keratohyalin granule in keratinocytes, respectively26. However, the
GCR distribution was not significantly different across populations
(Supplementary Fig. 13). A closer examination of the genes that
could be impacted by dysregulated LLPS further revealed that at
least 60% of diseases without available treatments were
associated with the non-membrane organelle forming biomole-
cules predicted by previously reported approaches16 (Supplemen-
tary Fig. 14a). The functional enrichment of genes involved in LLPS
indicated that genes were associated with extracellular matrix
related functions. By performing GO enrichment of 14,487 non-
coding variants adjacent to protein-coding genes (UTRs and
splicing regions, see “Methods”), we also found that non-coding
variants most likely affected genes (83 genes in the top 10 GO)
that were involved in amino acid metabolic processes in addition
to sensory perception, indicating a potential direction, such as
secretome, to search for drug targets. Additionally, we observed
that 265 genes fell into the non-treatable category (Supplemen-
tary Fig. 14b).

Rescale pan-ethnic preventative intervention
Finally, we leveraged the power of the WGS-based mutation
profile to attempt to exploit its potential in guiding the
implementation of preventative measures. The cumulative GCR
across distinct populations was surveyed, and it was clear that the
number of highly ranked AR-diseases-causing genes were
restrained within a certain range regardless of the population-
specific genomic composition (Fig. 3a), suggesting that these
genes were essential and were potentially selected though they
have undergone diverse selection. Based on such observation,
genes with a GCR threshold over 1/200 or 1/500 were examined to
impute the panel design strategy considering the theoretical
prevalence of a disease.
We found that only 20 AR disease-causing genes were

exclusively detected by ChinaMAP with a threshold GCR > 1/200
(Supplementary Fig. 7), and all genes prioritised by ChinaMAP
were unexpectedly shared with other ethnic groups when the
threshold was lowered to GCR > 1/500, potentially because of the

aggregated allele frequency of multiple ethnic groups. The
comparison of GCRs derived from differential genes and their
rankings (Supplementary Fig. 12 and Supplementary Fig. 10)
revealed that such difference was likely due to the sampling or
intrinsically distinct population structures in the studied popula-
tions. These genes showed significantly higher GCR than those in
European (EUR) and African (AFR) populations.
Next, a strategy with a three-tier design was proposed to

optimise the practical feasibility and rationale (Fig. 3b). Tier 1 and
Tier 2 included 144 and 340 genes showing 1/200 and 1/500 GCR
in the Chinese population, respectively. However, when the top
1000 genes of each population were extracted for comparison,
over 83.26% of AR disease genes were shared by at least two
populations (Supplementary Fig. 7c), restating the population
heterogeneity could be circumvented once sequencing cost
became a minor factor to be considered. The genes in Tier 2
have included genes to be screened during the carrier screening.
Indeed, 55% to 80% of genes formed by previously reported panel
designs were covered by the proposed panel at Tier 2
(Supplementary Fig. 15 and Supplementary Table 8). However,
AR diseases caused by copy number variations, such as in HBA1/
HBA2, DMD, SMN1, F8, F9, IDS, MTM1, GLA, IL2RG and OTC etc., were
excluded in our current analysis. Such genes could be selectively
supplemented to augment proposed panels based on prevalence
in the population.
For genes included in Tier 3, although the theoretical

prevalence of their associated AR diseases was much lower in
the current Chinese cohort, they could be considered as a
complementary list for couples to consider during reproductive
counselling and expand the capacity carrier screening panel to a
pan-ethnic panel once sequencing cost became neglectable and
more reliable medical interpretation could be accessed through
advanced or specialised artificial intelligence.

DISCUSSION
ChinaMAP is one of the largest publicly accessible cohorts
providing relatively comprehensive deep WGS-based variant
spectra of the Chinese population to understand the hetero-
geneity, which could potentially guide the implementation of
strategies to prevent neonatal anomalies and assist reproductive
counselling.
The approach developed in this study aims to assess the

feasibility of introducing a pan-ethnic screening strategy focusing
on the Chinese population. A thorough comparison with existing
approaches has yet to be carried out. However, the correlation
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between gnomAD EAS and ChinaMAP is at the same level as
previously reported observations19. An in-depth comparison
between approaches demonstrates that GCRs of most genes
estimated by ClinVar P/LP showed a high correlation between
studies except for a few genes with variants that received major
revision of allele frequency in ClinVar. The deviation of GCR could
be introduced by several factors, including distinct input data,
database revision, variant selection strategy, and heterogeneous
strategies applied to predict missense and loss-of function
variants. The primary source of discordant GCR estimation in
ChinaMAP originates from the variant prediction procedure,
where a more stringent strategy in this study has been employed
by selecting 100% concordant prediction of nine tools instead,
leading to the exclusion of ambiguous variants (Supplementary
Fig. 3). Appropriately prioritising genes associated with rare
diseases at low prevalence needs to integrate epidemiological
information, which is the major limitation once sequencing cost
drops to a negligible level.
The substantial difference in estimated GCR between gnomAD

and ChinaMAP could be caused by the insufficient sampling bias
of the East Asian group included by gnomAD or the hetero-
geneous compositions of individuals surveyed in ChinaMAP. The
sample size of ChinaMAP dataset is four-fold higher than the EAS
in gnomAD, which generates the deep WGS data of more than 10
thousand Chinese individuals, granting a more comprehensive
capture of the variant spectra. Additionally, the sequencing
approach is another potential source of incongruence between
datasets as many variants are non-coding variants in ChinaMAP.
The higher sequencing coverage used by the ChinaMAP project
has a theoretically better capability to detect uncommon variants.
It is well-known that China has a complex population structure
that involves 55 minority groups. Thus, intrinsic sampling bias
could be another source. However, the difference could not be
resolved in our study as access to the allele frequency of
ChinaMAP individuals was limited. To gain a holistic picture with
better socioeconomic benefit, the future screening based on WGS
with at 30X shall be considered once the sequencing cost is not a
determinant.
The heterogeneous population in China raises concerns on data

reusability and translational potential. At the 1/500 GCR threshold,
the heterogeneity counterintuitively has refined the power of the
screening panel, potentially due to aggregated allele frequency
has eliminated population-specific bias caused by selection.
Although two-thirds of the genes associated with LLPS have been
detected for potential druggable targets, accounting for only a
tiny proportion of untreatable diseases, these proteins could be
included in the future direction of drug development. One
functional study has demonstrated that mutations in MYO7A
weakens its ability to form MYO7A/USH1C/USH1G complex which
impairs phase separation, resulting in an abnormal tip-link
densities and causing hearing and vision loss in Usher syndrome
patients25. Another example is that mutations in filaggrin (FLG),
which are associated with human skin barrier disorders, could alter
the properties of proteins leading to an abolished formation of
keratophyalin granules that can subsequently compromise skin
defence26, although the role of mutated FLG in AR is yet to be
characterised. Nevertheless, many exciting discoveries related to
LLPS remain to be clarified with substantial research on the
mutation affected LLPS and require clear dissection of corre-
sponding mechanistic insights. More innovative approaches will
be invented to target these variants to find solutions for rare
diseases27. The resulting knowledge from our analysis could
relieve the socioeconomic burdens and, more importantly, benefit
families carrying untreatable rare diseases. The detailed molecular
mechanism, however, requires more experiments to disclose the
altered functional roles in cells, which is beyond the scope of
this study.

Finally, interpreting the present screening results of ECS to
assist reproduction counselling in China depends on prior
knowledge established based on non-Chinese populations. This
potentially could cause biased evaluations and lead to undesired
reproductive decisions. Our analyses provide a more compressive
view of the GCR in the Chinese population to guide the design of
preventative measures and even drug searching direction. As the
advance in sequencing techniques will continuously reduce the
sequencing cost, biobanks with larger cohorts and more
comprehensive information will emerge rapidly and globally.
The rationale and feasibility of implementing a pan-ethnic
screening strategy for preventative reproductions also need to
consider the rapid iteration of artificial intelligence. With an
automated, precise and yet reliable interpretation driven by state-
of-art artificial intelligence algorithms, the economic cost will
eventually reduce to a level where almost all rare diseases can be
screened to promote human reproductive health.

METHODS
Candidate genes of autosomal recessive diseases
To focus on the autosomal recessive (AR) disorder caused by
SNPs/Indels, a list of candidate genes was collected from OMIM
database (https://www.omim.org/downloads) based on the fol-
lowing rules:

a. includes AR-associated genes,
b. excludes genes labelled by non-disease phenotypes or

associated with multifactorial disorders, or the relationship
between phenotype and gene is provisional,

c. exclude genes of which phenotype is a chromosome
deletion or duplication syndrome.

In total, 2464 candidate AR genes were obtained to perform
subsequent analysis (Supplementary Table 1).

Variants collection of different population
The China Metabolic Analytics Project (ChinaMAP) dataset was
used to estimate the GCR of AR disorders in the Chinese
population. The ChinaMAP project has released a variants
frequency spectrum of 10,588 Chinese individuals determined
by deep whole genome sequencing14, a site-only VCF containing
allele frequencies was downloaded from mBiobank
(www.mbiobank.com/download/). To obtain high-quality variants,
QUAL ≤ 100 was discarded, common variants with AF ≥ 0.05 were
also filtered out. In addition, to narrow down the margin error of
low allele frequency (0.001) to ± 0.0005 in 95% of interval
confidence, allele with AN < 10,229 was filtered out28.
The gnomAD29 v3.1.2 data was used to compare the difference

of GCR among populations with distinct genomic compositions.
Allele frequencies of candidate genes of different subgroups
stored in the VCF files were collected from gnomAD (https://
gnomad.broadinstitute.org/downloads). The ‘Non-Cancer’ group
was used to calculate GCR. Variants without “PASS” tag in the
FILTER column or AF >= 0.05 were discarded. A list of candidate
variants of five populations, including EAS, SAS, EUR, AMR and
AFR, was selected by setting at least one allele cutoff (AC > 0) for
each population.
The Westlake BioBank for Chinese (WBBC) cohort30, which

recruited 14,726 participants in the pilot project, was included to
survey the potential diversity within the Chinese population. The
samples were primarily collected from Jiangxi, Shandong and
Zhejiang provinces. Site-only VCFs of autosome chromosomes
were also obtained (https://wbbc.westlake.edu.cn/
downloads.html). All variants in the files were considered high
quality.
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Variants annotation
All variant files from public databases were normalised using
bcftools (bcftools norm -m -)31 before being annotated by VEP32

with ensemble database release version 108, the most severe
transcript of each gene was considered to identify potential
deleteriousness. The ClinVar33 database (release version
V20221113) was also applied to annotate the variants. An in-
house script was used to extract variants located in the candidate
genes. These subsets of annotated variants were used to identify
the subsequent deleterious variants.

Deleterious variants
Deleterious variants of each population were identified separately
following a carefully designed workflow (Supplementary Fig. 1).
First, variants annotated as benign or likely benign by ClinVar were
discarded, while those annotated as pathogenic or likely
pathogenic with at least one star of review status were kept.
The remaining variants, including pathogenic/likely pathogenic
with conflicting annotation in ClinVar database, were further
classified into three subgroups: (i). missense variants were
predicted by nine computational tools with general cutoff:
CADD ≥ 2034,35, Eigen≥136, REVEL ≥ 0.7537, DANN >= 0.538,39, Poly-
phen2==’D’40, SIFT== ’D’41, MetaSVM==’D’42, MutationAsses-
sor==‘H’ or ‘M’43,44, PROVEAN == ‘D’. Only variants with all tools
passed the cutoff were considered as deleterious. (ii). nonsense
variants (including frameshift_variant, stop_gained, splice_do-
nor_variant, splice_acceptor_variant and start_lost), which classi-
fied as highly-confident loss-of-function by LOFTEE29, were
predicted by autoPVS145 in advance. Only variants with ‘Strong’
or ‘Very Strong’ adjusted strength were considered as deleterious.
(iii). non-missense/nonsense variants were discarded. Tools and
corresponding cutoff settings listed above were carefully chosen
based on the performance reported by previous studies46,47

(Supplementary Table 10). Moreover, we filtered out variants by
gene based on AF. For genes with at least one pathogenic variant
identified by ClinVar, the max AF of ClinVar variant was used as a
cutoff, otherwise using 0.005. Finally, for the ChinaMAP dataset,
we manually revised missense variants that failed by the above
process but with conflicting pathogenic/likely pathogenic inter-
pretations in the ClinVar database. All putatively deleterious
variants of each population were listed in Supplementary
Tables 2–8.

Candidate autosomal recessive gene annotation
To distinguish untreatable diseases from treatable diseases, we
searched for potential treatments from “Treatments for genetic
disorders” (www.rx-genes.com) by the name of genes carrying
deleterious variants. Genes with any treatment returned by the
database were considered as treatable, otherwise untreatable.
Additionally, we used a set of deleterious variants, including
predicted (missense and LoF) variants and those catalogued in
ClinVar, that affect liquid-liquid phase separation (LLPS) as
described in Salman F Banani’s study16, to identify genes related
to non-membrane organelle formation. If a deleterious variant in
this study was also reported by Banani et al., the corresponding
gene was considered as LLPS gene.

GO enrichment
To investigate the potential of drug development, a set of LLPS-
related genes which contain more than 200 adjacent non-coding
variants (including 5′- and 3′-UTR, up- and downstream and
splicing region variants) were collected for GO enrichment using
clusterProfiler48, all significantly enriched (p-value < 0.01 and
adjust p-value < 0.05) GO terms were ranked according to the
count of input genes for visualisation.

Gene carrier rate
To estimate GCR, the variant carrier rate (VCR) was first calculated
according to Eq. (1) introduced in49:

VCR ¼ 1� AC � 2 � Hom
0:5 � AN (1)

Hom represents the number of homozygous individuals. To
facilitate the calculation, a simplified estimation was applied to all
candidate genes under the assumption that homozygous variants
are rare for severe AR conditions, where Hom count could be
ignored. To confirm this hypothesis, GCRs with and without
accounting for homozygous of the WBBC dataset were used to
investigate the effect of Hom alleles. Assuming that homozygous
individuals only accounted for a relatively small proportion of a
population, the results showed that the two calculation methods
are almost identical (Supplementary Fig. 16). Hence, the GCR can
be estimated through Eq. (2):

GCRg ¼ 1�
Yv

i¼0

1� VCRið Þ ¼ 1�
Yv

i¼0

ð1� AC
0:5 � ANÞ (2)

GCR of each population was summarised in Supplementary
Tables 2–8.

Panel design and comparison
To assess the robustness of proposed screening panels selected
based on distinct cutoffs, two potential panels described by Xi
et al.50 and Wei et al.6 were used to carry out a thorough
comparison (Supplementary Tables 2–8, Supplementary Fig. 15).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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