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CNS tumor stroma transcriptomics identify perivascular
fibroblasts as predictors of immunotherapy resistance in
glioblastoma patients
Maksym Zarodniuk 1, Alexander Steele 2, Xin Lu3, Jun Li4 and Meenal Datta1✉

Excessive deposition of extracellular matrix (ECM) is a hallmark of solid tumors; however, it remains poorly understood which
cellular and molecular components contribute to the formation of ECM stroma in central nervous system (CNS) tumors. Here, we
undertake a pan-CNS analysis of retrospective gene expression datasets to characterize inter- and intra-tumoral heterogeneity of
ECM remodeling signatures in both adult and pediatric CNS disease. We find that CNS lesions – glioblastoma in particular – can be
divided into two ECM-based subtypes (ECMhi and ECMlo) that are influenced by the presence of perivascular stromal cells
resembling cancer-associated fibroblasts (CAFs). Ligand-receptor network analysis predicts that perivascular fibroblasts activate
signaling pathways responsible for recruitment of tumor-associated macrophages and promotion of cancer stemness. Our analysis
reveals that perivascular fibroblasts are correlated with unfavorable response to immune checkpoint blockade in glioblastoma and
poor patient survival across a subset of CNS tumors. We provide insights into new stroma-driven mechanisms underlying immune
evasion and immunotherapy resistance in CNS tumors like glioblastoma, and discuss how targeting these perivascular fibroblasts
may prove an effective approach to improving treatment response and patient survival in a variety of CNS tumors.
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INTRODUCTION
CNS tumors comprise a highly heterogeneous group of malig-
nancies that originate from different cell types and affect various
anatomical structures. Despite recent advances in immunother-
apeutic approaches to treat solid tumors, survival for many types
of CNS cancers has not improved in the past 10 years1,2. Thus,
there is an urgent need for a better understanding of the
underlying mechanisms governing disease progression and
treatment resistance.
Tumor stroma, composed of extracellular matrix (ECM) and

specialized connective tissue cells that include fibroblasts, has
been shown to shape antitumor immunity and response to
immunotherapy across a broad range of epithelial tumors such as
breast, colon, and pancreatic carcinomas3–7. However, little is
known about the immunomodulatory roles of the brain tumor
stroma, and the distinct cellular makeup of the brain makes it
challenging to extrapolate findings from cancers arising in
peripheral organs.
Parenchyma of the CNS is often regarded as “fibro-privileged”

since fibrogenic cells are absent in the normal neural parenchyma
and are instead restricted to perivascular and meningeal niches8,9.
This is in line with the lack of fibrillar collagens in the brain tumor
parenchyma10. It has been shown in a number of neuropathologic
conditions such as traumatic brain injury, ischemic stroke, and
multiple sclerosis that perivascular stromal cells can detach from
the vasculature, migrate into the parenchyma, and form a dense
fibrotic scar11, thereby inhibiting axonal regeneration12. However,
the exact contribution of perivascular stromal cells to the brain
tumor ECM remains unclear. This is partly due to the limited
evidence supporting the existence of fibroblasts in primary brain
tumors that are otherwise commonly found in the ECM-rich

stroma of highly desmoplastic extracranial tumors such as breast,
prostate, and pancreatic carcinomas13–15. Both extracranial cancer-
associated fibroblasts (CAFs) and CAF-derived ECM have been
linked to suppression of antitumor immune responses16–18;
however, evidence supporting their immunosuppressive roles in
brain tumors is lacking. Therefore, a better understanding of the
cellular origin and role of stroma in the brain tumor microenvir-
onment (TME) can reveal novel mechanisms of immune escape
and guide the design of new strategies to improve immunother-
apeutic outcomes in brain tumors.
To this end, we performed a meta-analysis of publicly available

gene expression datasets from multiple cohorts of pediatric and
adult primary CNS tumors. We focused our attention on “core
matrisome” – the ensemble of genes encoding structural
components of the ECM, such as collagens and proteoglycans19,
the latter of which constitute a major component of brain tumor
ECM10,20. Through unsupervised analysis of gene expression data,
we identified a subset of glioblastoma (GBM) tumors characterized
by overexpression of transcripts of extracellular matrix (ECM)
components and the presence of perivascular stromal cells
resembling CAFs. This ECM-high signature was conserved across
a broad range of CNS malignancies and predicted poor patient
survival in a subset of tumors. Interrogation of retrospective data
from recent anti-PD1 immunotherapy trials21,22 revealed an
association between the presence of perivascular fibroblasts and
immunotherapy resistance. In this study, we propose several
mechanisms by which perivascular fibroblasts can contribute to
immune evasion and immunotherapy resistance in CNS disease.
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RESULTS
Unsupervised analysis of extracellular matrix expression in
glioblastoma reveals two states that are conserved in other
CNS tumors
Glioblastoma (GBM) tissue, unlike that of low-grade gliomas
(LGGs), has been shown to display extensive and heterogeneous
ECM deposition and tissue remodeling23. Thus, we began our
analysis with an unbiased characterization of the ECM transcrip-
tome in GBM (Fig. 1a). First, we batch corrected (Supplementary
Fig. 1a) publicly available GBM RNA-sequencing (RNA-seq) profiles
from three independent datasets (TCGA, CGGA-693, CGGA-325)
across 558 patients and performed non-negative matrix factoriza-
tion (NMF) on the core matrisome gene expression matrix, thereby
limiting our analysis to genes encoding structural components of
ECM19. Based on cophenetic correlation coefficient (Supplemen-
tary Fig. 1f) and results from hierarchical clustering (Supplemen-
tary Fig. 1d, e), we grouped the data into two classes and defined
a set of 505 samples as core samples based on a positive
silhouette coefficient (Supplementary Figure 1b). Bootstrap

resampling of the core matrisome gene set showed that clustering
results were stable to variations in the gene set when compared to
a reference gene set with a similar expression distribution
(Methods, Supplementary Fig. 1c).
In order to characterize the two classes/subtypes and classify

external samples, we performed differential expression analysis on
core samples between classes. For each class, we identified 49
signature genes as the intersection of top marker genes across the
three datasets analyzed (Fig. 1b, Supplementary Data), such that
differential expression of each signature gene was supported in all
three datasets (Supplementary Fig. 1g). One cluster was char-
acterized by upregulation of genes encoding fibrillar ECM
proteins, including collagens (COL5A2, COL1A2, COL3A1, COL1A1,
COL6A3, COL5A1, COL6A2, COL8A1) and glycoproteins (LAMB1,
LAMC1, POSTN, FN1). All the signature genes encoding ECM
proteins, with the exception of COL8A1 and LTBP2, have been
shown to be present in GBM at the protein level (Supplementary
Table 1). The clusters were defined as ECMhi, extracellular matrix

Fig. 1 Unsupervised analysis of retrospective RNA-seq data reveals two extracellular matrix states in glioblastoma that are prognostic of
clinical outcome and conserved across multiple central nervous system cancers. a Outline of the computational workflow. b ECMhi and
ECMlo signature gene expression in adult (left) and pediatric (right) central nervous system tumors. Select signature genes are labeled.
c Frequency of ECM states across different CNS tumors. d Kaplan–Meier survival curves for ECMhi (red) and ECMlo (blue) tumors of different
histologies. Only tumors with a statistically significant effect (p < 0.05, log-rank test) are shown. e Gene ontology (GO) terms enriched in ECMhi

(left) and ECMlo (right) states in adult gliomas. Top 10 GO terms are shown. f Functional gene expression signatures from Bagaev et al. (2021)
in pediatric and adult brain tumors, grouped by ECM state.
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high, (48.2% of samples) and ECMlo, extracellular matrix low,
(51.8% of samples) to reflect their distinct ECM composition.
Next, to verify the existence of ECMhi and ECMlo subtypes in

other CNS malignancies, we scored additional RNA-seq data
spanning adult low-grade (n= 1164) and pediatric (n= 977) brain
tumors as well as brain metastases (Bmets, n= 47) for expression
of ECMhi and ECMlo signature genes. We found 83% of adult
gliomas, 80% of pediatric gliomas, and 77% of Bmets could be
reliably classified into either subtype, indicating that these
programs are conserved across a range of CNS malignancies
beyond GBM. The remaining samples were defined by contem-
poraneous up- or down-regulation of ECMhi and ECMlo signature
genes and could not be reliably classified as either ECMhi or ECMlo.
Principal component analysis (PCA) of core matrisome gene
expression placed these samples between ECMhi and ECMlow

samples, suggesting that they display an intermediate ECM state
(ECMint) (Supplementary Fig. 1h). In adult gliomas, ECMhi subtype
was associated with higher tumor grade, absence of IDH
mutations, and mesenchymal subtype in GBM, whereas the
majority of ECMlo GBM tumors were of the proneural subtype
(Supplementary Fig. 1k) (P < 2.2E-16, Chi-Square Test). Pediatric
tumors exhibited a highly skewed distribution of ECM states,
where a number of tumors including craniopharyngioma (86%),
neurofibroma (95%), meningioma (97%), and schwannoma (100%)
were classified almost exclusively as ECMhi, whereas glioneuronal
tumors (GNT, 3%) and medulloblastomas (4%) were classified
almost exclusively as ECMlo (Fig. 1c), reflecting an association
between the ECM subtypes and the intrinsic biology of different
brain cancers. However, we did not detect an association between
ECMhi score and the level of malignancy of pediatric brain tumors
(Supplementary Fig. 1i), suggesting that the effect of ECM stroma
may be context-specific. In astrocytoma and mixed glioma tumors
as well as pediatric ganglioglioma and medulloblastoma, we
found an association between ECMhi subtype and decreased
patient survival (Fig. 1d), suggesting that ECM expression
signature can be prognostic of clinical outcome in a subset of
CNS tumors. In GBM, however, we detected an association in only
one of the cohorts analyzed (Fig. 1d), indicating that ECM may not
be prognostic of patient survival at baseline in GBM.
Next, we sought to determine if differences between ECMhi and

ECMlo GBM are driven by changes in ECM gene expression alone,
or by other gene expression programs that could induce ECM
gene expression changes as a bystander effect. First, ECM
subtypes were applied to primary and recurrent tumors from
the longitudinal Glioma Longitudinal AnalySiS (GLASS) cohort. We
did not observe any association between ECM subtype and tumor
recurrence (Supplementary Fig. 1j), contrary to previous findings
that ECM deposition is higher in recurrent GBM tissue23. Next, we
performed differential expression analysis between primary ECMhi

and ECMlo tumors. Gene ontology (GO) enrichment analysis of
differentially expressed genes revealed an upregulation of
immune effector process, wound healing, and angiogenesis
pathways in adult glioma ECMhi tumors (Fig. 1e). In contrast,
ECMlo samples were characterized by upregulation of neurosy-
naptic pathways (Fig. 1e), likely suggesting an enrichment of non-
neoplastic cells. Additionally, ECMhi tumors upregulated numerous
immune and stromal-related signatures (Fig. 1f).
Using data from the Ivy Glioblastoma Atlas Project (Ivy-GAP), we

confirmed that ECMlo signature was preferentially expressed at the
leading edge (LE) and infiltrative region (IT) of the tumor, which
are known to consist largely of non-neoplastic cells24, whereas the
ECMhi signature was upregulated in regions corresponding to
microvascular proliferation (CTmvp) and hyperplastic blood
vessels (CThbv), in line with a recent study25 (Supplementary
Fig. 1l). We also examined in situ hybridization (ISH) and adjacent
hematoxylin and eosin (H&E) tissue sections annotated for the
same histologic features. We found that ECMhi hallmark genes
COL1A1, COL4A1 were expressed in CTmvp regions

(Supplementary Fig. 1m), suggesting that ECMhi signature is
spatially associated with GBM vasculature.

ECMhi tumors are characterized by the presence of
perivascular fibroblasts whose enrichment predicts poor
response to immunotherapy
The vascular microenvironment is an important brain tumor niche
with a heterogeneous and not fully revealed cellular makeup26. In
order to identify vascular/perivascular cellular components con-
tributing to the ECM stroma in CNS tumors, we applied SCIPAC – a
tool designed to identify phenotype-associated cells in single-cell
RNA-sequencing (scRNA-seq) data – to a scRNA–seq dataset from
16 GBM patients (Supplementary Fig. 2a–e)27. SCIPAC predicted
43% of PDGFRβ+ ACTA2+ mural cells to be associated with the
ECMhi signature (Fig. 2a). We sub-clustered and annotated mural
cells based on gene expression signatures characterizing pre-
viously identified perivascular cell types in the human brain9. We
identified two clusters as perivascular fibroblasts (P-FB; FBLN1,
LAMA2) and meningeal fibroblasts (M-FB; SLC4A4, KCNMA1), as well
as separate clusters of pericytes (PC; PDGFRB, COL4A1), and
smooth muscle cells (SMC; ACTA2) (Fig. 2b). Integration of GBM
mural cells with those from a human brain vascular atlas9 resulted
in alignment of respective subpopulations in UMAP space (Fig. 2c).
We found that 86% of perivascular fibroblasts were associated
with the ECMhi phenotype, suggesting their pro-fibrotic role in the
GBM TME (Fig. 2c). Additionally, we found that perivascular
fibroblasts resembled previously identified murine brain
fibroblast-like cells28 (Supplementary Fig. 2i). To determine the
contribution of these perivascular cells to ECMhi and ECMlow

states, we deconvoluted bulk gene expression profiles using a set
of signature genes identifying each perivascular cell type. We
found that ECMhi metagene was highly correlated to perivascular
fibroblast, pericyte, and SMC signatures but not to meningeal
fibroblast signature (Fig. 2g), likely reflecting their low frequency
in GBM, which is consistent with rare cases of primary
extracerebral meningeal GBM29. Notably, the P-FB cluster
expressed several classical CAF markers such as PDGFRA, PDGFRB,
COL1A1, and FAP17,30,31. Strikingly, we found that enrichment of
perivascular fibroblasts was prognostic of poor clinical outcome in
GBM (Supplementary Fig. 2g) and correlated with mesenchymal
subtype (Supplementary Fig. 2f), suggesting their possible pro-
tumorigenic role. Therefore, we refer to this population of cells as
“CAF-like” whenever appropriate to reflect their CAF-like tumor-
promoting phenotype.
Next, we applied SCENIC to infer active regulators of the

fibroblast populations and confirm their identity in GBM. For
perivascular and meningeal fibroblast populations, SCENIC pre-
dicted a high activity of several common brain fibroblast
transcription factors ZIC1, FOXC1, NR2F232, TWIST133, and a CAF-
specific transcription factor NR2F1 (Fig. 2f)34. The activity of these
regulons was restricted to cells with perivascular and meningeal
fibroblast signatures, indicating that their phenotype is distinct
from that of pericytes or smooth muscle cells (Fig. 2e). These
results suggest that fibrotic scarring in GBM may share some of its
mechanisms with other CNS pathologies in which fibrogenic cells
are derived from perivascular fibroblasts in response to inflam-
matory stimuli. Interestingly, however, our analysis of genomic
copy number using the CopyKat algorithm identified a fraction of
perivascular stromal cells as aneuploid (Supplementary Fig. 2d).
Since mesenchymal differentiation of glioma stem cells (GSCs) into
pericytes has been previously shown (deCarvalho et al. 2010; Ricci-
Vitiani et al. 2010), these findings raise an intriguing possibility
that malignant cells can undergo a mesenchymal differentiation
to assume a CAF-like phenotype in GBM.
Next, to identify the presence of closely related stromal cell

types in other ECMhi-enriched CNS tumors, we analyzed scRNA-
seq data from neurofibroma (n= 3), meningioma (n= 7), low-
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Fig. 2 Cancer associated fibroblast-like cells of perivascular origin are present in ECMhi GBM and predict poor response to
immunotherapy. a Top: a UMAP plot showing subpopulations of mural cells. Bottom: barplot showing the frequency of ECMhi-associated cells
within each cell type. b Marker genes identifying subpopulations of mural cells in GBM. P-FB – perivascular fibroblast; PC – pericyte; SMC –
smooth muscle cell; M-FB – meningeal fibroblast. c Joint UMAP embedding of mural cells from a human brain vascular atlas (grey) and GBM
mural cells (red). d UMAP embedding of GBM mural cells, colored by the enrichment of the perivascular fibroblast metagene (top) and SCIPAC
predictions (bottom). e SCENIC-inferred regulon activity in subpopulations of mural cells. Shown in red are top 10 regulons for each mural cell
subpopulation based on regulon specificity score (RSS). f RSS of transcription factors in perivascular and meningeal fibroblasts; 10
transcription factors with the highest RSS are labeled in red. g Pearson correlation between ECMhi/ECMlo metagenes and mural cell
subpopulations. h Kaplan–Meier plot of overall and progression free survival for patients with high (red) or low (blue) presence of perivascular
fibroblasts in Cloughesy (n= 28) and Zhao (n= 38) cohorts treated with anti-PD1 therapy (P values were calculated using log-rank test).
i UMAP embeddings of scRNA-seq data from different tumors, colored by cell type (top) and positive (red) or negative (blue) association with
ECMhi state, as predicted by SCIPAC. HGPT – high-grade pediatric tumors; LGPT – low-grade pediatric tumors.
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grade pediatric tumors (LGPT; n= 26), high-grade pediatric
tumors (HGPT; n= 23) and Bmets (n= 15) (Fig. 2i). Stromal/
mesenchymal cells were detected at the highest frequency in
BMets (21%), meningioma (26%), and neurofibroma (56%). We did
not detect any stromal cells in HGPTs which our previous analysis
identified to be ECMhi-enriched which could be ascribed to
variability in cell isolation protocols, since detachment of cells
embedded in the basement membrane requires stronger tissue
dissociation methods28,35.
In order to verify their fibrogenic phenotype, we applied SCIPAC

on scRNA-seq and tumor-matched bulk RNA-seq data. SCIPAC
predicted fibroblasts as the cellular source of ECM in neurofibroma
and meningioma (Fig. 2i). In Bmets, in addition to perivascular
stromal cells, myeloid cells and endothelial cells were significantly
associated with ECMhi phenotype, suggesting their possible role in
ECM remodeling. No ECMhi-associated cells were found in HGPT
and LGPT tumors, consistent with the absence of stromal cell
types in these datasets. Next, in order to identify conserved
stromal cell states across different cancers, we performed the
mutual nearest neighbors (MNN) batch correction on combined
data and sub-clustered stromal cells based on MNN-corrected
gene expression values (Supplementary Fig. 2j, k). The majority of
GBM perivascular fibroblasts were clustered together with
mesenchymal stem-like cells (MSCs) from Bmets. Indeed, perivas-
cular CAF-like cells also upregulated mesenchymal progenitor
markers CTHRC1 and ISLR (Fig. 2d)36, indicating that MSCs may be
a source of CAF-like cells in GBM, as previously suggested14.
Neurofibroma fibroblasts, which have been characterized as
distinct from classical fibroblasts37, formed a separate cluster.
Clusters 3, 4, and 5 predominantly contained meningioma
mesenchymal subtypes together with meningeal GBM fibroblasts;
cluster 0 consisted almost entirely of pericytes and smooth muscle
cells. Overall, the results of this integrative analysis suggest that
despite their common role in ECM remodeling of the tumor
stroma, stromal cells exhibit distinct and largely non-overlapping
phenotypes across different CNS malignancies.
Finally, to determine whether perivascular fibroblasts play a role

in anti-tumor immunity and response to immunotherapy in GBM,
we interrogated retrospective data from two recent anti-PD1
immunotherapy trials21,22. In both cohorts, we found a significant
reduction in overall survival for patients whose tumors were
enriched in perivascular fibroblasts (Fig. 2h), but not other mural
cell subpopulations (Supplementary Fig. 2h), suggesting that the
presence of perivascular fibroblasts is prognostic of a poor
immunotherapeutic response.

Glioblastoma perivascular fibroblasts express chemotactic
factors that may recruit tumor-associated macrophages to
the TME
Next, we hypothesized that GBM perivascular fibroblasts may play
a role in modulating neuroinflammation and contribute to the
establishment of an immunosuppressive TME that is resistant to
immune checkpoint blockade such as anti-PD1 antibodies. To
verify this, we first performed cell type deconvolution of GBM bulk
gene expression profiles. We found a strong positive correlation
between the presence of perivascular fibroblasts and myeloid
cells, including macrophages, dendritic cells, and monocytes (Fig.
3a). Perivascular fibroblast signature was positively correlated to
expression of CD11B (ITGAM) and CD163, but not CX3CR1 (Fig. 3b),
indicative of increased numbers of monocyte-derived macro-
phages38, as well as T cell exhaustion markers (Supplementary Fig.
3a). This was supported by differential abundance analysis of GBM
scRNA-seq data, in which we found an enrichment of two
populations of tumor-associated macrophages (TAMs) s-Mac1 and
s-Mac2 (Supplementary Figure 2b), myeloid-derived suppressor
cells (MDSCs) and proliferating (Prolif.) macrophages in samples
that were classified as ECMhi based on pseudobulk expression

profiles (Fig. 3c, Supplementary Fig. 2b, c). Additionally, macro-
phages, dendritic cells (DCs) and MDSCs displayed a lower
expression of genes encoding MHC class II (MHC-II) molecules
(Supplementary Fig. 3b), indicating their poor antigen-presenting
capacity, characteristic of the M2-like macrophage state.
To investigate possible mechanisms of macrophage recruitment

by perivascular fibroblasts, we applied the CellChat algorithm that
can infer cell-state specific signaling communications from scRNA-
seq data39. CellChat predicted active chemoattractant signaling
from perivascular fibroblasts to macrophages via chemokines
CCL2, CXCL1, CXCL2, CXCL12, CSF1, and matricellular protein
periostin (POSTN), which are known to induce chemotaxis and
alternative polarization of tumor-supporting M2-like myeloid cells
(Fig. 3d–f)3,40–44. These results suggest that perivascular fibroblasts
may contribute to the establishment of an immunosuppressive
microenvironment by driving M2-like TAM recruitment and
polarization via chemotaxis and periostin signaling, respectively.

Perivascular fibroblasts promote immune-evasive stem-like
cancer cell phenotype in GBM
GSCs are maintained within perivascular collagen-rich niches45,46,
and are known to evade antitumor immune responses through
various mechanisms, including downregulation of MHC class I,
induction of quiescence, and other mechanisms that promote
immune tolerance47. In GBM, CAFs are known to enrich GSCs14.
Therefore, we hypothesized that GBM perivascular fibroblasts may
also modulate anti-tumor immune responses through mainte-
nance of GSCs in the perivascular niche. In order to verify this, we
first quantified the stem cell-like tumor phenotype by computing
“stemness score”48. We found that ECMhi tumors displayed a
higher stemness score across all three datasets analyzed (Fig. 4a),
suggesting that a fibrotic microenvironment may favor the
emergence and/or maintenance of glioma stem-like cell pheno-
type. We then classified glioma cells into oligodendrocyte-
progenitor-like (OPC-like), neural-progenitor-like (NPC-like),
astrocyte-like (AC-like), and mesenchymal-like (MES-like) cell
states49, and found that ECMhi tumors were characterized by an
enrichment of MES-like cells and reduced frequency of NPC-like
and OPC-like states (Fig. 4b, Supplementary Fig. 3d), which is in
line with the preponderance of myeloid cells in ECMhi tumors and
their proposed role in maintaining the MES-like cell state49.
GBM contains hierarchies of mesenchymal and proneural GSCs

(mGSCs and pGSCs, respectively) that are considered largely
responsible for cancer cell heterogeneity observed within GBM
tumors50. To understand the contribution of these progenitor
states to glioma cell heterogeneity observed in ECMhi and ECMlow

subtypes, we scored single cells using previously identified mGSC
and pGSC signature genes. We found that MES-like glioma cells in
ECMhi tumors were enriched in mGSCs (Fig. 4b, S4e), which is in
line with their increased frequency.
Next, to elucidate possible mechanisms of mGSC enrichment,

we compared CellChat-inferred signaling networks between ECMhi

and ECMlo tumors. We found an upregulation of ANGPTL and
PDGF signaling by perivascular fibroblasts to glioma cells, which
have been implicated in maintenance of stem-like cell phenotype
in GBM (Fig. 4d)51–53. MES-like glioma cells expressed multiple
receptors for ANGPTL4, including SDC2 SDC3, SDC4, and integrins
ITGA5 and ITGB1 (Fig. 4e), suggesting that the ANGPTL pathway
may be responsible for the enrichment of GSCs in ECMhi tumors.

DISCUSSION
Previous studies have shown that therapeutically reducing ECM
deposition can alleviate immunosuppression across various cancer
models, including GBM54–56. However, to date, comprehensive
analyses of the ECM across different brain tumors, which could
provide important insights into tumor progression and treatment
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Fig. 3 Perivascular fibroblasts express chemotactic factors that may recruit tumor-associated macrophages to the GBM TME.
a Correlation between perivascular fibroblast (P-FB) signature score and monocyte-derived macrophage (ITGAM, CD163) and microglial
(CX3CR1) marker genes. Value of the spearman correlation coefficient is shown together with the p value. b Spearman correlation between
perivascular fibroblast signature score and immune cells fractions in bulk RNA-seq data, estimated using the TIMER algorithm. c UMAP
embedding of myeloid cells colored by cell subpopulation. d Differential abundance analysis of ECMhi and ECMlo tumors. The left panel shows
a graph of cellular neighborhoods superimposed on the UMAP embedding of the data. Color represents log fold change (logFC) relative to
ECMlo, node size represents the size of the neighborhood, and edge width represents the amount of overlap between neighborhoods.
Relative changes which were not statistically significant (p > 0.05) are not shown. The right panel shows the distribution of differential
abundance of cellular neighborhoods across myeloid subpopulations. e Heatmaps showing interaction strength between P-FB cells and
myeloid cells for select pathways. Mac – macrophage; Mic – microglia; Prolif. – proliferating macrophage; MDSC – myeloid-derived suppressor
cell; DC – dendritic cell. f Expression of selected ligands and their receptors for pathways from (e).
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resistance, have been limited. In this study, we undertake a pan-
CNS analysis of the ECM transcriptome to identify which cellular
and molecular components contribute to the formation of ECM
stroma in CNS tumors. Using unsupervised analysis of core
matrisome gene expression in 558 GBM tumors, we define two
ECM subtypes that capture up- or down-regulation of ECM gene
expression and are conserved across at least 20 additional adult
and pediatric CNS cancers in over 2000 tumor samples. In this
study, we find an association between the ECM subtypes and the
intrinsic biology of different brain cancers as well as their clinical
course and therapy response.
While our study presents new findings through its purely

computational approach, it is crucial to acknowledge its inherent
limitations. First, despite our efforts to computationally validate
our findings, ECM signatures discovered here may represent
technical or regional artifacts rather than true inter-tumoral
heterogeneity. Therefore, future studies should experimentally
investigate whether ECM proteins that define ECMhi subtype co-

exist within the same tumor, and whether variable abundance of
these proteins also gives rise to the ECMhi/lo dichotomy on the
proteomic level.
Deposition of ECM components in brain tumors has been

proposed to have three different origins: adjacent stromal cells,
normal brain cells that are activated in response to tumor-derived
factors57, or by malignant cells as a part of their mesenchymal
phenotype58. In human GBM specimens, ECM-rich zones border-
ing cellular tumor regions and around blood vessels are
characterized by high expression of smooth muscle actin23

(encoded by ACTA2) – a marker of the pericyte lineage in the
normal brain, suggesting the contribution of perivascular stromal
cells. A recent study of human GBM identified pericytes as the
cellular source of an ECM gene signature with a negative
prognostic value at recurrence25. However, the reliance of this
study on cell surface markers without comprehensive gene
expression profiling raises the possibility that the identified
PDGFRβ+ cells could be other cells in the microenvironment

Fig. 4 Perivascular fibroblasts secrete factors that upregulate stem-like programs in ECMhi glioblastoma. a Stemness signature scores in
ECMhi and ECMlo tumors in TCGA (n= 175), CGGA325 (n= 325) and CGGA693 (n= 693) GBM cohorts. b Two-dimensional butterfly plot of
glioma cell states in ECMhi and ECMlo tumors, colored by enrichment of the mesenchymal glioma stem cell (mGSC) signature. OPC –
oligodendrocyte progenitor cell-like; AC astrocyte-like; NPC – neural progenitor cell-like; MES – mesenchymal-like. c Proneural (top) and
mesenchymal (bottom) glioma stem cell scores in ECMhi and ECMlo tumors. Two-sided t-test. Benjamini-Hochberg adjusted P values are
shown. d Strength of outgoing and incoming signaling in perivascular fibroblasts (P-FB) and MES-like glioma cells for selected pathways with
known role in cancer stem cell maintenance. e Expression of ANGPTL4 and its receptors in GBM scRNA-seq data. In (a) and (c), p values were
obtained using two-tailed t-test. P values corrected for multiple comparisons using the Holm–Bonferroni method are shown. For violin plots in
(a) and (c), the center lines represent the median. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles, respectively). The upper whisker extends from the hinge to the largest value no further than 1.5 times of inter-quartile range (IQR)
from the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5 times of IQR from the hinge.
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such as fibroblasts or smooth muscle cells, which share over-
lapping cell surface markers with pericytes59. Indeed, Dias et al.
identified a subpopulation of Slc1a3+ pericytes as the main source
of scar-forming αSMA+ cells in mouse models of traumatic brain
injury, ischemic stroke, and multiple sclerosis, but not glioma11.
Our findings similarly implicate GBM vasculature in ECM

deposition. ECMhi subtype identified in this study is characterized
by overexpression of genes encoding cerebrovascular ECM
proteins such as collagens, laminins, and fibronectin (Lau et al.
2013) and is enriched in the perivascular tumor region. Our results
suggest that perivascular fibroblasts may be primarily responsible
for ECM deposition in GBM and may therefore act as analogs of
CAFs in peripheral tumors. Recent efforts to comprehensively
characterize human cerebrovasculature identified and character-
ized this cell population in human and murine brains9,28,35,60. The
presence of perivascular fibroblasts in GBM vasculature has been
reported previously61, and a recent study by Jain et al. reported
isolation of cells with phenotypic and morphological similarities to
CAFs. Although the cellular origin of these diploid cells is
unknown, it is plausible that these cells originate from perivascular
CNS fibroblasts that become recruited and activated in response
to tumor-derived factors. While we cannot conclude that the cells
identified in our analysis represent bona fide CAFs based solely on
in silico results, perivascular fibroblast population expresses
several CAF-specific gene markers (PDGFRA, FAP, FN1, COL1A1)
and transcription factors (NR2F1) (Wu et al. 2022), which warrants
further investigation of their identity and pro-tumorigenic roles
in GBM.
Interestingly, we find that about 25% of cells in the P-FB

population carry the same genomic abnormalities as malignant
glioma cells, indicating that at least some fraction of perivascular
fibroblasts may have a neoplastic origin. GSCs are known to
localize to perivascular niches and have the ability to undergo
mesenchymal differentiation62,63. Indeed, an analysis of human
GBM specimens showed that GSCs can generate vascular pericytes
upon stimulation with TGF-β, and that the majority of GBM
pericytes are derived from malignant cells64. Whether GSCs can
directly assume a fibroblast identity is still unknown; however,
pericytes have been shown to undergo differentiation into
fibroblasts upon detachment of tumor microvasculature65, as well
as in kidney fibrosis66. Therefore, our findings raise an intriguing
possibility that a fraction of GBM perivascular fibroblasts may
originate from GSCs.
In epithelial tumors such as breast, colon, and pancreatic

carcinomas, CAFs are known to suppress effector immune cell
activation and tumor infiltration, leading to resistance to
immunotherapies such as ICB3. Our findings suggest that
perivascular fibroblasts, similar to CAFs in peripheral tumors,
may play a role in immunosuppression and immunotherapy
resistance. Our results show that perivascular fibroblasts may
simultaneously induce GSCs and reprogram the immune response
to facilitate tumor immune evasion and immunotherapy resis-
tance. GSCs are known to be less immunogenic, evade immune
responses through the downregulation of MHC molecules and
promote immune tolerance47. We also show that perivascular
CAF-like cells can activate the production of chemoattractant
molecules to recruit M2-like macrophages into the GBM TME,
which contributes to immunosuppression. In addition to attraction
and retention of tumor-promoting myeloid cells, CAFs are known
to affect antitumor immune responses indirectly by production
and remodeling of ECM components, which serves as a physical
barrier restricting access of immune cells to cancer cells. Indeed, a
recent immunohistochemical analysis of GBM tissue showed an
enrichment of T cells in ECM-rich zones23, suggesting that T cell
trafficking to the tumor is impeded due to pathologically high
deposition of ECM components by stromal cells in the perivascular
niche. This has important implications for adoptive cell-based
therapies, such as CAR-T and CAR-NK cell therapies. CAR-T cell

therapy in GBM has shown limited success, partly due to limited
CAR-T cell infiltration into the tumor when CAR-T cells are
administered systemically67,68. This suggests that overcoming
these biophysical and biochemical barriers by targeting perivas-
cular fibroblasts in GBM may help overcome immunotherapy
resistance and increase patient survival.

METHODS
scRNA-seq data processing and analysis
The scRNA-seq data (GSE182109) was obtained from Gene
Expression Omnibus27. Individual samples were log-normalized
and integrated using Seurat’s (v4.3.0.1) reciprocal PCA69. Doublets
were identified and removed using Scrublet (v0.2.3) algorithm70.
Next, cells were clustered and annotated based on previously
reported marker genes27 as well as copy number alterations
(CNAs) inferred using CopyKat (v1.1.0) algorithm71. To exclude
poor quality cells within each cell type, we applied median
absolute deviation (MAD)-based outlier detection approach, as
described previously72. Clusters characterized by low UMI counts,
high fraction of mitochondrial reads, and uninformative marker
genes were removed.
Malignant cells were assigned to meta-modules defined by

Neftel et al. Briefly, single-cell scores were computed for each of
the signatures (MES1-like, MES2-like, NPC1-like, NPC2-like, AC-like,
OPC-like), and cells were assigned to each cell state, as previously
described49.

RNA-seq data processing and analysis
Publicly available RNA-seq data were downloaded from TCGA and
CGGA databases. In total, three cohorts were used in this study:
TCGA GBM, CGGA-693, and CGGA-325 (Supplementary Table 2).
The datasets were TMM-normalized (edgeR v3.40.2), and logCPM
values were used for all downstream analyses. The datasets were
combined, and batch-corrected using limma’s (v3.54.2) remove-
BatchEffect function.
Spatial distributions of ECM signatures were examined using the

Ivy GAP dataset24. Gene expression FPKM values were log
transformed prior to analysis.

Identification and validation of extracellular matrix subtypes
Batch-corrected logCPM values were mean-centered prior to
clustering. Using the core matrisome geneset NABA_CORE_MA-
TRISOME available in the Molecular Signature Database (MSigDB),
we performed consensus non-negative matrix factorization (NMF)
with rank 2 using NMF R package (v0.26), as we observed the
highest average cophenetic correlation coefficient for k= 2. We
also performed consensus hierarchical clustering using the
ConsensusClusterPlus package (v1.62.0) with average linkage
which produced similar clustering results73.
To determine how stable our clustering results are to variations

in the gene set, and if ECMhi or ECMlo states can be recapitulated
by other gene sets, we performed bootstrap resampling on the
core matrisome geneset and compared our clustering outcomes
to each resampled dataset using the Adjusted Rand Index (ARI). To
generate a null ARI distribution, we performed NMF using a
control gene set by binning all analyzed genes into 30 bins based
on average expression in all samples, and for each gene in the
core matrisome gene set, randomly selecting a gene from the
same expression bin.
In order to characterize ECM signatures and classify external

samples, we generated subtype-specific gene signatures by
searching for genes that were upregulated in all three datasets,
according to the Wilcoxon test. As a result, a set of 49 signature
genes for each subtype was obtained.
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Classification of external samples
External samples were classified into subtypes/signatures based
on their signature scores, which were computed as previously
described49. Since signature scores reflect up- or down-regulation
of a gene signature compared to a control geneset, we classified
samples into subtypes based on the sign of the signature score.
For example, Samples scoring greater than 0 for gene signature of
subtype A and lower than 0 for the signature of subtype B were
classified as subtype A, samples scoring greater than 0 for gene
signature of subtype B and lower than 0 for the signature of
subtype A were classified as subtype B, and other samples are
labeled as unidentified. For scRNA-seq data, pseudo bulk samples
were generated, TMM-normalized, and classified as
outlined above.

Wang subtype classification
Uncorrected bulk RNA-seq data were classified into three
molecular subtypes using the SubtypeME tool in the GlioVis
portal74,75. Each sample was assigned to a molecular subtype with
the lowest p-value.

Computation of cell-type-specific gene signatures
To estimate the enrichment of cell type-specific signature genes in
bulk RNA-seq data, top marker genes were first identified for a cell
type/state of interest using the FindMarkers function in the Seurat
package69. Genes expressed in fewer than 50% of cells and with
fold change (FC) less than 2 were removed. Top 50 genes with the
highest log2FC were considered as top marker genes. Bulk tumors
were then scored for the resulting top marker genes as previously
described49. Samples were classified as high or low for a cell type/
state, if their signature score fell into the upper or lower quartiles,
respectively. For immunotherapy cohorts, signature score of 1 was
used as a cutoff.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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