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Neurodevelopmental disorders and cancer networks share
pathways, but differ in mechanisms, signaling strength,
and outcome
Bengi Ruken Yavuz 1,2,9, M. Kaan Arici1,9, Habibe Cansu Demirel 3,9, Chung-Jung Tsai4, Hyunbum Jang 4, Ruth Nussinov 4,5✉ and
Nurcan Tuncbag 6,7,8✉

Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain
types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs,
such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most
cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs,
and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly
which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we
employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-
specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to
signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts
differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.
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INTRODUCTION
Neurodevelopmental disorders (NDDs) encompass a broad
spectrum of abnormalities in brain development that can affect
cognition, communication, behavior, and motor functions1.
Genetics and risk factors can play a role during different stages
of brain development2. NDDs may originate from dysregulation of
neuron differentiation during synapse formation and maturation,
including formation of specific synaptic contacts, or during other
complex processes, such as emergence from progenitor cells,
neuron phenotypic specification and migration. Disruption of
convergent pathways, including mitochondrial/metabolic pro-
cesses, PI3K/mTOR, MAPK, and Wnt signaling was also suggested
to explain the etiology of NDDs3. NDDs and cancer are highly
complex diseases caused by impairments in cellular processes
such as cell growth, proliferation, and differentiation. This
challenging complexity has led to investigations into how their
genetics, cellular environment, and signaling pathways are
converging to express their distinct phenotypic outcomes4–14.
Cancer results from gene alterations that provide cells growth
advantage. Numerous studies focused on the connection between
the mutations—germline, de novo, or somatic—and cancer15–20.
The number of studies related to NDDs increased, though still
lagging behind those of cancer, far from reaching the same level.
Qi et al. observed that cancer driver genes are more significantly
enriched in germline damaging de novo variants among patients
with NDDs as compared to non-drivers7. Additionally, a compre-
hensive analysis on 219 cancer-related genes and de novo
mutations from 16,498 patients with NDDs (including ASD,

congenital heart disease, and intellectual disability) revealed that
de novo mutations are located significantly more in cancer-related
genes compared to control samples21. In another study focusing
on ASD, an evolutionary action method identified missense de
novo variants that most likely contribute to the etiology of the
disorder22.
Despite seemingly differing from processes associated with the

emergence of cancer, data indicate that NDDs and cancer are
related. One recent hypothesis is that immunity can be a common
factor connecting these two phenotypes since the immune and
nervous systems coevolve as the embryo develops. The outcomes,
cancer or NDDs, reflect the different cell consequences, primarily
proliferation in cancer and differentiation in NDDs. Cell prolifera-
tion requires a stronger signal than differentiation does. This
further suggests that in addition to proteins in the major signaling
pathways, transcription factors (TFs), and chromatin remodelers,
which govern chromatin organization, are key agents in NDDs.
Gene accessibility influences the lineage of specific brain cell types
at specific embryonic development stages23.
Recent epidemiological studies on large cohorts of NDD

patients demonstrated an increased risk for cancer compared to
the general population. In one study, a standardized incidence
ratio model was applied to a cohort of 8438 patients with autism
retrieved from the Taiwan National Health Insurance database
during 1997-2011. The researchers reported an increased cancer
risk for males and young adults. The occurrence of the
genitourinary system and ovary cancers was observed to be
higher than expected24. A population-based study among 2.3
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million individuals from Nordic countries during 1987–2013
revealed that ASD patients with co-morbid conditions, such as
intellectual disability and birth defects, had a higher risk than the
general population, while ASD alone was not significantly linked
to a higher risk of cancer25. A correlation between autism and
cancer rates with shared risk factors was also pointed out26.
Another cohort study proposed that patients with bipolar disorder
and their unaffected siblings have a higher risk of developing
breast cancer compared to normal control groups27. The
association between brain, hepatocellular, and lung cancers
among people with epilepsy was manifested by animal experi-
ments, genotoxicity studies, and epidemiological observations.
Possible underlying mechanisms have also been suggested28,29.
Risk of testicular cancer was increased among patients with NDDs
or other psychiatric disorders which is observed in a case-control
study30.
NDD data has expanded recently, particularly de novo mutation

data obtained by trio-sequencing and publicly available data-
bases. However, it is still not as prevalent as the whole exome/
genome sequencing data for cancer31,32. 32,991 de novo variants
obtained from 23,098 trios are deposited in denovo-db31.
According to the database definition, de novo mutations are
germline de novo variants present in children but not in their
parents. The Deciphering Developmental Disorders (DDD) Study
provides detailed genotype-phenotype information for 14,000
children with developmental disorders, and their parents from the
UK and Ireland. Additionally, there are some knowledge databases
with curated sets of genes and variants associated with one/
multiple neurodevelopmental disorders or cancer33,34. At the same
time, despite epidemiology suggesting a positive correlation
between NDDs and either overall or site-specific cancer risk27,35–37,
not all epidemiological findings agree38,39. Some studies even
reported a lower cancer incidence rate for NDD patients40–42.
These discrepancies may result from factors such as genetic
backgrounds, environmental effects, as well as diagnosis at an
already advanced cancer stage especially in NDDs such as
intellectual delay, autism, and schizophrenia.
With NDDs and cancer sharing multiple features on different

biological levels6,7,43,44, here we aim to shed light on their possible
connection. We expect that these will help us understand the
challenging question of how expression levels and mutations in
the same pathways, and even the same proteins, including TFs
and chromatin remodelers, can lead to NDDs versus cancer, with
vastly different phenotypic presentations. Especially, we aim to
discover the features deciding the major outcome. We address
these daunting goals by comprehensively leveraging mutations,
transcriptomic data, and protein-protein interaction (PPI) net-
works. We compare the effects of mutations on the pathogenicity
of commonly mutated genes in NDDs and cancer. To evaluate the
pathway-level properties of NDDs and cancer, we reconstruct the
disease-specific networks of autism spectrum disorder (ASD) and
breast cancer and identify common TFs.
Here, we use de novo mutations in ~8000 samples with NDDs

from denovo-db and somatic mutations of ~10,000 tumor samples
from The Cancer Genome Atlas (TCGA). Our large-scale analysis
led us to conclude that networks of NDDs and cancer can have
shared proteins and pathways that differ in signaling strength,
mechanisms, and outcomes. This conclusion is in line with our
premise that cell-type-specific protein expression levels of the
mutant protein, and other proteins in the respective pathway and
their regulators, the timing of the mutations (embryonic or
sporadic during life), and the absolute number of molecules that
the mutations activate can determine the pathological pheno-
types, cancer and (or) NDDs. Our thesis is that these define the
signaling strengths. In cancer, the major impact is on cell
proliferation, while in NDDs it is on differentiation.

RESULTS
NDD versus cancer mutations and networks data
To disentangle genetic similarities and differences between NDDs
and cancer, firstly we utilized publicly available mutation datasets.
Public databases provide somatic mutation profiles of thousands
of NDDs and tumor samples, including denovo-db and TCGA,
respectively. denovo-db includes de novo mutation profiles for 20
different phenotypes including NDDs and other diseases for
9736 samples31; TCGA covers 9703 samples with point mutations
across 33 tissues (Fig. 1a). Not all genes and their protein product
variants affect the phenotypic output in the same way.
Oncogenes, tumor suppressors, TFs, and chromatin remodelers
are well-known examples of specific genes whose defects can
cause observable alterations in phenotypic outcomes. We
compared mutations and mutated proteins between de novo
mutations in NDD data deposited in the denovo-db and TCGA,
focusing on point mutations that affect only one residue in a
protein. We identified 6909 genes in NDDs and 19,431 genes in
TCGA with point mutations, among which 6848 genes are
common. There are 138 oncogenes, 146 tumor suppressor genes,
and 620 TFs in the NDD data, while 248 oncogenes, 259 tumor
suppressor genes, and 1579 TFs are in TCGA. ~40% of the mutated
genes in TCGA also have mutations in NDD samples.
The network of phenotypes in the denovo-db database covers

eight NDD phenotypes including autism spectrum disorder,
developmental disorder, intellectual disability, schizophrenia,
bipolar disorder, Tourette syndrome, cerebral palsy, and epilepsy
and 12 related phenotypes with a varying number of patients,
mutated genes, and mutations (Fig. 1b). Only two of these
phenotypes—autism and developmental disorders—have more
than 1000 samples. In autism, there are 3473 patients, 3726
mutated genes, and 4794 mutations; in the 2926 samples of
developmental disorders, there are 3531 mutated genes with 4797
mutations. In the network, the width of edges between the
phenotypes is commensurate with the number of commonly
mutated genes; autism and developmental disorders share the
most. Congenital heart disease and intellectual disability have less
than 1000 samples, 912 and 577, respectively. The remaining 15
phenotypes, including schizophrenia, epilepsy, and cerebral palsy,
have less than 500 samples.

Construction and comparison of the networks, expression
profiles, and mutation frequencies in NDDs and cancer
Figure 1c outlines our study as follows: First, we reconstructed the
PPI networks using mutated genes in breast cancer and ASD as
seeds. The networks that we obtained include disease-specific
regions as well as shared subnetworks for ASD and breast cancer.
Then, we compared the expression scores of the pathways in the
shared subnetwork by using gene expression profiles.
Our premise is that NDD mutations offer modest but prolonged

signaling, whereas cancer mutations are associated with higher
signaling levels4,45. Proliferation is a hallmark of cancer. It requires
cell growth and division. Proliferation has been associated with
multiple dysregulated cellular processes controlling cell life46. Key
among them are inhibition of cell death, and dysregulation of
survival pathways, as in the case of the major MAPK pathway in
proliferation, PI3K, Hippo, and Wnt. Differentiation is a hallmark of
NDDs. Differentiation is connected to cell lineage. All relate to the
cell cycle. Cell cycle dysregulation is a hallmark of tumor cells; cell
cycle state regulates differentiation47. Signaling that promotes cell
proliferation is expected to be stronger than that connected to
differentiation.
Driver mutations are frequent, which is why they are often

identified as drivers unless there is experimental data for potent
rare mutations45,48. Weaker or moderate mutations occur less
frequently; otherwise, they are drivers. Similarly, the difference
between passenger and driver mutations is also based on statistics;
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their counts are low. As one indicator of mutation strength, we
compared the frequency of the cancer driver mutations in TCGA
and NDD mutations amongst TCGA samples. For cancer driver
mutations, we used the Catalog of Validated Oncogenic Mutations
from the Cancer Genome Interpreter (CGI)49. Only missense or
nonsense mutations were included in the analyses, which
comprised 3688 driver mutations in 237 genes. Among 11,576
unique NDD mutations, 1222 are in TCGA (Fig. 2a). On the other
hand, TCGA harbors 1060 unique driver mutations. Interestingly,
only 23 mutations are shared across known cancer driver mutations
and NDDs (see the inset Venn diagram of Fig. 2a). This finding
suggests that although there are shared mutations between the
two pathologies, these mutations tend to be on the weaker side in
terms of a driver effect. In addition, compared to driver mutations,

the mutations present in both NDDs and TCGA are notably rare in
the TCGA cohort, as demonstrated by the difference in the
mutation frequency distribution in TCGA with a t-test (p= 0.001).
Therefore, when we limit the mutations to those present in TCGA,
only ~1% of NDD mutations are cancer drivers, and they have very
low frequencies among TCGA samples. Figure 2b depicts the
number of mutated samples in commonly mutated genes among
NDDs and cancer. Most commonly mutated genes have more
mutation hits at different positions among all cancer samples. Our
observations point to only relatively few common NDDs and cancer
driver mutations, making it crucial—even if difficult-to understand
the mechanisms through which these common mutations impact
gene function and disease phenotypes. We used pathogenicity
scores from MutPred250, which probabilistically predict the impact

Fig. 1 Overview of the data and workflow. a Statistics from NDDs and cancer datasets. denovo-db deposits mutation profiles of
9736 samples across 20 phenotypes including eight NDDs (left panel). TCGA provides mutation profiles of 9703 tumors across 33 cancer types
(middle panel). The length of each bar (y-axis in a logarithmic scale) in the upset plots shows the number of all mutated genes and the number
of TFs, TSGs, OGs among the mutated genes for NDDs (left panel) and cancer samples (middle panel). There are 712 TFs, 162 TSGs, and 147 OGs
out of 7907 mutated genes among denovo-db samples. Similarly, there are 1579 TFs, 259 TSGs, and 249 OGs out of 19,438 mutated genes
among the cancer samples. The Venn diagram (right panel) shows that there are 6848 common mutated genes between NDDs and cancer; the
number of NDD- and cancer-specific mutated genes are 61 and 12,583, respectively. TSG tumor suppressor gene, OG oncogene. b Network of
phenotypes in denovo-db. Each node represents one phenotype in the network, and each edge represents the connection between two
phenotypes if they share at least one commonly mutated gene. NDD phenotypes are shown in green color. Each phenotype is represented
with a vector of three numbers; the total number of patients having the phenotype (cyan), total number of genes carrying at least one
mutation (orange), and total number of mutations associated with the phenotype (purple). The ticker edges represent the more commonly
mutated genes. The most tightly connected pair among the phenotype pairs is autism and developmental disorder. c A conceptual
representation of network comparison analysis between NDDs and cancer. Two distinct networks (left panel) reconstructed for breast cancer
(large pink circle) and ASD (large purple circle). These two networks have both shared (shaded green) and separated regions. These networks
contain oncogenes (red circle), tumor suppressors (yellow circle), and TFs (green V-shapes). The transcriptome analysis (upper-right panel)
associates the expression levels of the nodes with the pathway activity. Each enriched pathway in the network can be quantified with the
average expression level of its nodes, which is called “pathway scoring.” The score of each shared pathway (1, 2, .., n) for each disease (ASD,
purple; cancer, red) is calculated (shown as a wifi icon where the higher score is the stronger signal).
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of variants on protein structure and function. We anticipate that
variants may have an impact on protein structure, which can either
stabilize or destabilize the conformation of the protein depending
on protein function and disease phenotypes. The more harmful a
mutation is, the closer its pathogenicity score is to one. A
comparison of the distribution of the pathogenicity scores of the
NDDs and driver mutations calculated using MutPred2 demon-
strates that driver mutations have higher pathogenicity than NDD
mutations (t-test, p < 5 × 10−27) (Fig. 2c). We observe that most
driver mutations accumulate in regions where the pathogenicity
scores are larger than 0.8 on the y-axis. NDDs harbor mutations in
key cancer genes such as PTEN, PIK3CA, MTOR, KIT, etc. These
mutations have lower frequencies among tumor samples from
TCGA, which is an indicator of the lower potency of these
mutations. The number of residues hit by mutations among NDD
samples is usually lower.

Distribution of the locations of NDD and cancer mutations and
modes of action
Phosphatase and tensin homolog (PTEN) and PI3Kα lipid kinase
are respectively negative and positive regulators in the PI3Kα/AKT/
mTOR pathway. Since the PI3Kα/AKT/mTOR pathway is one of the
primary regulators of cell proliferation and differentiation, the
mechanistic hallmarks of the mutations are vital to understand.
Analysis of mutations in PTEN (Fig. 3a) and PI3Kα (Fig. 3b)
sequences reveals that NDD mutations on these proteins usually
occur at less frequently mutated sites among tumors (see
“Methods”). R130* mutation in NDDs on PTEN is an exception,
yet it is less frequent compared to the R130Q and R130G
mutations at the same position in cancer.
While several residues of PTEN were mutated in both NDDs and

cancer, some mutations—such as T131I, L140F, and D268E—are

NDD-specific (Fig. 3a). As to the domain distribution, among the
NDD samples, mutated residues D92, I101, R130, T131, L140, Q149,
and T167 are on the phosphatase domain, and F241, P246, and
D268 are on the C2 domain (Fig. 3c). PTEN’s catalytic activity
occurs in the phosphatase domain that contains the P loop
(residues 123–130) with the catalytic signature motif,
123HCxxGxxR130 (where x is any amino acid). PTEN mutations in
the P loop, or nearby, such as at the residues R130 and T131, can
directly constrain the P loop, leading to silencing PTEN catalytic
activity. The mutation at residue D92 in the WPD loop (residues
88–98) can disrupt the closed WPD loop conformation that can
bring D92 to the active site. D92 is involved in the catalytic activity
during the process of hydrolysis to release the phosphate group
from Cys124 after transferring it from PIP3. Other PTEN mutations,
which are distant from the active site, can allosterically bias the P
loop dynamics, reducing protein stability and its catalytic activity.
A similar pattern is observed in PI3Kα; the rare mutations R108H,
V344M, and R770Q are harbored in both NDDs and cancer, while
R115Q and A1035T are specific to NDD samples (Fig. 3b). V344 is
on the C2 domain; R770 and A1035 are on the N- and C-lobes of
the kinase domain, respectively (Fig. 3d). R770 is located near the
P loop, and R108 is on the interface of the catalytic subunit p110α
and the regulatory subunit p85α. The mutations at these positions
in PI3Kα may promote protein activation and increase protein
stability at the membrane, but their mutational effects appear to
be weaker than the driver mutations.
Several studies investigated germline mutations in PTEN and

their association with tumor susceptibility or developmental
disorders51–54. Although available data are limited, PTEN retains
its tumor suppressive function in NDDs while becoming fully
dysfunctional in cancer samples.

Fig. 2 Comparison of mutations between NDDs and cancer. a Frequency-based analysis of mutations for NDDs and cancer. The cancer
driver mutations in TCGA in comparison to the frequency of NDD mutations. The cancer driver mutations were selected amongst tumor
samples only. Among the cancer mutations in TCGA, 23 mutations are shared between NDD and known cancer driver mutations, while 1199
are NDD-specific and 1028 are cancer-specific mutations (inset Venn diagram). Comparison of the frequency of these mutations in the TCGA
cohort (y-axis in a logarithmic scale, where frequency= log10(N+ 1) and N is the number of patients). The difference between mutation
frequency distribution in TCGA with t-test shows that the mutations present in both NDDs and TCGA are significantly rare in the TCGA cohort
when compared to driver mutations (p < 0.001). b Frequency of mutations on common genes in NDDs and known cancer drivers datasets. The
dumbbell plot shows the mutation frequencies of common genes–the genes harboring at least one point mutation among NDDs and cancer
samples-in cancer (TCGA) and NDDs (denovo-db) simultaneously. Cancer driver mutations (red) are more frequent than or equal to NDD
mutations (blue) except EP300 and PTPRT. The size of the circles represents the number of unique mutations each gene carries. The x-axis in a
logarithmic scale represents the number of patients having at least one mutation in the corresponding gene in TCGA or NDD sets. cMutPred2
pathogenicity scores of NDDs and cancer driver mutations. Violin plots show the distribution of NDD and driver mutation pathogenicity
scores. A comparison of the pathogenicity scores using a t-test shows that the pathogenicity of driver mutations is significantly higher
(p < 0.001). Pathogenicity scores are between 0 and 1, where 1 is the most pathogenic.
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NDD- and cancer-specific networks regulate common
pathways with different signaling outcomes
Although alterations in the shared pathways and proteins
contribute to the emergence of NDDs and cancer with different
weights, the timing of the mutations, the number of activated

molecules, the expression level of the mutated protein, and the
proteins in the corresponding pathway have a major impact on
the phenotypic outcome4,21. To understand the divergence
between these two pathologies, we analyzed NDD- and cancer-
specific networks and compared the signaling outcomes of the
pathways using gene expression values. We reconstructed

B.R. Yavuz et al.
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ASD- and breast cancer-specific networks with pyPARAGON55

based on frequent mutations, comprising 168 driver genes in
breast cancer, and 190 mutated genes that are present in at least
three ASD patients. We extracted the graphlet motifs, small
significant subnetworks, from the reference interactome HIPPIE
through mutations with an unsupervised learning approach56,57.
To select the most relevant interactions in a disease from the
graphlet motifs with the PageRank-Flux algorithm, we constructed
a ASD-specific network with 350 proteins and 1291 interactions,
and a breast cancer-specific network with 284 proteins and 1878
interactions (Supplementary Data) (Fig. 4a)55,58. As can be
expected based on our relatively weak mutation outcome premise
of NDDs, some critical TFs such as Myc, p53, and Jun with cancer
driver mutations are not frequently mutated in ASD. However,
mutated genes can indirectly regulate these TFs in the ASD-
specific network due to the rewiring of the signaling network. We
found 23 common TFs in ASD- and breast cancer-specific
networks. TF complexes including Myc/Max or Jun/Fos (AP-1,
activator protein 1) regulate the expression of numerous target
genes downstream the MAPK phosphorylation cascade in signal
transduction59,60. Complexes composed of common TFs are
primarily involved in cell cycle regulation through their targets,
such as E2F mediating cyclin-dependent kinases (CDKs) in cell
proliferation61,62.
All TFs in ASD- and breast cancer-specific networks regulate 752

commonly targeted genes. The disease models in both networks
can use different wiring mechanisms to control shared pathways
since different TFs control the transcription of the same genes.
Overrepresentation analysis of these common targets demon-
strated that shared pathways, including p53, FOXO (forkhead box
O), PI3K/AKT, MAPK, and JAK/STAT (Janus kinase/signal transducer
and activator of transcription) signaling pathways, are regulated
by different TFs (Fig. 4b).

Gene expression and signaling strength point to
differentiation in ASD and proliferation in cancer
Following the construction of the networks and identification of
the TFs and their targets, we focused on the signal levels in the
constructed networks through an analysis based on differential
gene expressions from healthy and disease samples (see
“Methods”).
It is challenging to determine how this signal alteration affects

these common pathways because of multiple molecular function-
alities. Thus, we averaged the absolute values of the differential
expression of pathway participants and defined them as the
expression score of the given pathway to measure the signal
strength in these pathways63,64. The expression scores of the
overrepresented pathways demonstrated that ASD generated
significantly lower signal strength than breast, brain, and kidney

cancers (Fig. 4c), influencing the cell cycle at the G1 phase. The
change in stimulus and feedback loops regulate signaling
intensity and duration65. Overexpression and multiple mutation
combinations on these pathways disrupt cellular processes and
can govern disease development.
The expression profiles of ASD in shared pathways emphasize

differentiation. Differentiation reduces the proliferative advantage
for the cells and increases their resistance to oncogenic
mutations66. Mutations in ASD are mostly embryonic; they do
not accumulate over time as cancer mutations do. The propensity
score of pathways, which demonstrates the probabilities of
mutations on a gene in a pathway, reveals that mutations in
cancer tend to accumulate in these pathways. Shared pathways in
ASD do not have high propensity scores. The already existing
mutational burden makes ASD patients more susceptible to
multifactorial and/or polygenic diseases, like cancer6,67. At the
same time, their weak/moderate effect can bring about cell cycle
arrest and impact the differentiation capabilities of cells.

TFs regulating common pathways underscore the trends of
differentiation in NDDs and proliferation in cancer
For a more in-depth analysis, we compared 71 TFs regulating
common pathways through the expression profiles of ASD and
breast cancer patients. We observed that 57 TFs have the
expression score in ASD, and 21 TFs have distinct expression
profiles in ASD and breast cancer that are clustered into three
groups (Supplementary Data). Cluster-1 and Cluster-2 demon-
strated a distinct separation, while Cluster-3 includes genes that
do not show a clear difference in the heatmap of gene expressions
(Fig. 5a). The genes in Cluster-1, such as MCM2, STAT1, BRCA1, and
MCM5, are overexpressed in the cancer samples. These genes
mostly play a role in cell proliferation, and their overexpression in
cancer promotes cell division and growth68–71. On the contrary,
ASD samples have relatively lower expression levels for TFs that
control cell proliferation. STAT1 has dual roles in both differentia-
tion and proliferation; it also acts as a tumor suppressor and an
oncogene in cancer. The genes in Cluster-2, such as JUN, SMAD3,
SMAD4, and KLF2, play a role in cell differentiation72–75. Their
moderate expression levels in ASD suggest that they can maintain
the cell differentiation state. To reveal the signal flow starting from
these TFs, we defined the regulatory interaction in common
pathways by identifying target genes of these TFs. Since one TF
can also target other TFs in the same pathway, we extended the
regulatory interactions with targeted TFs and their targeted genes
(Fig. 5b). Expression profiles of differentiation and proliferation
appear moderate in ASD, which suggests weak signal activation in
cell proliferation23. However, the suppression of differentiation
and the overexpression of proliferation indicate strong activation
of the proliferation state in cancer.

Fig. 3 Profiles of TCGA and NDD mutations for PTEN and PI3Kα at the residue level on the sequence and structure. a Mutations of PTEN
are shown as circles, where the phosphatase domain (red), C2 domain (dark green), and C-tail (light green) are represented as colored boxes
along the sequence. The number and size of the circle represent the frequency of each mutation in the NDD (blue) or TCGA (red) datasets.
Mutations shared by both datasets are highlighted with rectangular borders for emphasis. Total mutation frequencies and the total number of
patients in each dataset are shown in the bottom right box. Nonsense mutations are abbreviated with star (*) sign. 6 of 11 PTEN mutations in
the NDD set are present in TCGA. Only R130* has a high frequency relative to other shared mutations, yet it is much less frequent when
compared to two other TCGA mutations on the same position, R130Q and R130G. b Mutations of PI3Kα (PIK3CA) are shown as circles where
ABD (green), RBD (yellow), C2 domain (gray), helical domain (light orange), and kinase domain (orange) are represented as colored boxes
along the sequence. The number and size of the circle represent the frequency of each mutation in the NDD (blue) or TCGA (red) datasets.
Mutations shared by both datasets are highlighted with rectangular borders for emphasis. Total mutation frequencies and the total number of
patients in each dataset are shown in the bottom right box. Three out of five PI3Kα mutations in the NDD set are present in TCGA. None of
these TCGA mutations are on the most frequently mutated residues or among the most frequent mutations. ABD adapter-binding domain,
RBD Ras-binding domain. The 3D structures of c PTEN (PDB: 1D5R) and d PI3Kα (PDB: 4OVV) with selected NDD and TCGA mutations. For each
residue, mutated amino acids are colored in red, blue, or orange if they are present only among cancers, NDDs or both phenotypes,
respectively. In PTEN, these mutations are known to affect the functions of protein including loss of phosphatase activity, reduced protein
stability at the membrane, and failing to suppress AKT phosphorylation. In PI3Kα, these mutations may interrupt protein activation and reduce
protein stability at the membrane.
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DISCUSSION
Here, we comprehensively analyzed mutations, transcriptomic
data, and PPI networks of NDDs and cancer patients to

comprehend why some mutations can promote cancer while
others abet NDDs, and why the same mutations can support both
phenotypes. We surmised that cancer mutations are connected to
elevated signaling levels, measured by high expression in the

Fig. 4 ASD- and breast cancer-specific networks regulating common pathways. a Disease-specific network reconstruction for ASD and
breast cancer is performed by using pyPARAGON tool, where the frequently mutated genes are used as seeds. The nodes in reconstructed
networks involve wild type (green circle), mutated genes (red circle), TFs (chevron), and TF-targets (diamond). The complete ASD-specific
network (left side) features the mutated proteins (SRCAP, BRG1, PTEN, etc.) in ASD cases and reveals disease-associated proteins (Jun, p53, and
Myc). The breast cancer-specific network (right side) illustrates driver genes, although some driver genes, such as TP53 and MYC, are not
frequently mutated in ASD. Both ASD- and breast cancer-specific networks involve 23 common TFs targeting 752 common genes. These
common targets are employed to identify shared pathways. BRG1 brahma-related gene 1, a.k.a. SMARCA4, SRCAP SNF2-related CREBBP
activator protein, CREBBP cAMP response element binding protein, CHD8 chromodomain helicase DNA-binding protein 8, CSF1 macrophage
colony-stimulating factor 1, HD9 histone deacetylase 9, FOXP1 forkhead box protein P1. b Overrepresentation analysis determines significant
shared pathways (FDR ≤ 0.05) related to cell differentiation and proliferation among KEGG pathways. The pathways include MAPK, PI3K/AKT,
and JAK/STAT. These shared TF-target genes play a significant role in cell fate by altering the signal strength and flow, as well as cell cycle and
cellular senescence. HIF-1 hypoxia-inducible factor 1, TNF tumor necrosis factor. c Signal changes in shared pathways are illustrated with the
expression scores of pathways, the mean of the absolute z-scores of proteins in a given pathway. We define expression scores as a mean of the
absolute z-scores of proteins in a given pathway to indicate the magnitude of the deviation from the average expression values of the normal
samples, regardless of the direction of the change. The vulnerability of common pathways to mutation is measured with a propensity score,
the average unique mutation in the pathway. The darker red represents a higher change in expression scores of genes in the pathway, and the
larger circle shows a higher mutation propensity for the corresponding pathway. ASD has the most minor signal differences and mutation
propensities compared to all cancer types in shared pathways, where kidney cancer has the highest signal difference. However, there is an
insignificant difference in mutation propensities amongst cancer types. The higher expression scores in cancer types point to stronger signal
changes in pathways critical for cell fate, such as proliferation and differentiation. The higher propensity scores in cancer reveal that cancer
mutations tend to group in shared pathways. Thus, shared pathways are more vulnerable to cancer than ones in ASD. However, mutation
loads and signal deviations on the shared pathways might make ASD patients more fragile to cancer onset.
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shared pathways, while NDD mutations encode sustained but low
levels. We further surmised that signaling levels are largely
determined by the total number of molecules that the mutations
activate, either alone or in combination, along with the cell-type-
specific expression levels of the mutant protein and other proteins
in the relevant pathways, the timing of the emergence of the
mutation (inherited or during embryonic development, or
sporadic), as well as additional factors4. Ample data indicate that
even high expression levels of an unmutated protein can already
provoke cancer.

Cancer involves uncontrolled cell proliferation, whereas NDDs
are connected to anomalies in the development of the nervous
system. Proliferation and differentiation take place in both cancer
and NDDs. Since NDDs are mostly related to dysregulated
differentiation, mutations in genes regulating chromatin organiza-
tion rank high. Risk genes for NDDs include more than a third of
the cancer driver genes, and NDDs and cancer share hallmarks of
cell division and growth76,77, thus proliferation and differentia-
tion7. In brain cells, embryonic mutations in both pathways give
rise to NDDs78. Hundreds of genes are implicated in NDDs;
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however, they are involved in few conserved pathways regulating
transcription, including chromatin accessibility, and synaptic
signaling6,79. PI3K/mTOR and Ras/MAPK are frequently linked with
synaptic dysregulation79,80. Proteins in the Wnt, BMP/TGF-β (bone
morphogenetic protein/transforming growth factor-β), SHH (sonic
hedgehog), FGF (fibroblast growth factor), and RA (retinoic acid)
pathways, are also involved in autistic brain development81. Gene
expression profiles of 22 cancer types and frontal cortical tissues
from ASD patients identified similarities in genes and pathways82.
The tumor suppressor phosphatase and tensin homolog (PTEN),

which carries germline and de novo mutations in NDD patients, is
related to cancer and several NDDs, collectively named PTEN
hamartoma tumor syndrome (PHTS). The NDDs include pheno-
types observed in disorders such as Cowden syndrome (CS),
Bannayan-Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome
(PS), Proteus-like syndrome (PSL), and ASD. NDDs often overlap
mutation-wise and genome-wise83–85. Among these, deletions,
and duplications of the 16p11.2 region are common. About 48%
of deletion carriers and 63% of duplication carriers have at least
one psychiatric diagnosis86,87. RASopathies, which include Noonan
syndrome (NS), cardiofaciocutaneous (CFC) syndrome, neurofibro-
matosis type 1 (NF1), and Legius syndrome (LS), are NDDs that
result from overactivation of the MAPK pathway due to germline
mutations and/or overexpression in embryogenesis88,89. Their
phenotypic overlaps may emerge due to shared proteins/path-
ways as in the case of PIK3CA-related overgrowth spectrum
(PROS), PS, and CS which share phenotypic characteristics with
RASopathies90. The commonality of cancer and RASopathies
prompted MEK (MAPK kinase) inhibitors and Ras-targeted
therapies for some RASopathies like selumetinib for NF1
patients89,91–93.
Although there is a strong association between PTEN germline

mutations and cancer–PHTS–they have also been described in
patients with ASDs85,94. PTEN mutations linked to ASD can lead to
an unstable but still catalytically active gene product95. C124S,
G129R, H118P, H123Q, E157G, F241S, D252G, N276S, and D326N
are autism-related; A39P, N48K, L108P, L112P, and R130L are
PHTS-related mutations51. AKT, downstream of PTEN, signaling
was suppressed in all seven ASD-related PTEN mutations where
PTEN was affected but functional. On the other hand, AKT
phosphorylation was promoted by all five PTEN mutations in
severe PHTS cases, suggesting that variants with partial loss of
PTEN function are predominant in ASD patients51. Thus, catalyti-
cally inactive PTEN mutant is connected to tumor phenotypes,
partially active PTEN to ASD96,97.
Dysregulation of the PI3K/AKT/mTOR pathway is a primary

factor in NDDs, including megalencephaly (also known as “large
brain”), microcephaly (sometimes known as “small brain”), ASD,
intellectual disability, schizophrenia, and epilepsy98. Mosaic gain-
of-function mutations in the PIK3CA gene lead to PROS, with

clinical outcomes such as excessive tissue growth, blood vessel
abnormalities, and scoliosis99,100. Among ~200 individuals with
PIK3CA mosaic mutations, highly activating hotspot mutations
were associated with severe brain and/or body overgrowth, whilst
fewer activating mutations were linked to more mild somatic
overgrowth and mostly brain overgrowth101,102. R88Q, V344M, and
G914R mutations were identified in PI3Kα patients with macro-
cephaly and developmental delay or ASD103.
We further pursued the complex relationship between geno-

type and phenotype by constructing disease-specific networks for
ASD and breast cancer. We observed distinct PPIs in shared
pathways controlling the cell cycle. These rewired interactions
could be a reason why shared pathways have different signal
strengths in ASD and breast cancer. Under physiological condi-
tions, MAPK and PI3K/AKT/mTOR pathways coregulate the cell
cycle through feedback loops to control cell functions, including
growth, division, differentiation, and apoptosis. In cancers, they
are frequently hyperactivated104–106. The PI3K/AKT pathway is also
critical in early embryonic development and maintenance of stem
cell pluripotency through inhibition of the MAPK proliferation
pathway107–110. The strength of the signaling perturbations
induced by the mutations is manifested in weak/moderate and
strong signaling changes, epitomized by ASD and breast cancer,
respectively. Strong signals enhance proliferation, and weak/
moderate signals may drive cell cycle exit in differentiation111.
The expression scores of TFs were grouped based on

proliferation and differentiation. TFs enhancing proliferation were
mainly overexpressed in cancers while relatively low-expressed in
ASD. Proliferating cells can be more vulnerable to mutations than
those differentiating, both since dividing cells have less time to
repair DNA damage than quiescent cells, and with more
replication cycles, there is a higher chance for mutations66,112.
As to TFs in the differentiation state, ASD has relatively higher
expression profiles, while there are significantly low expression
profiles in cancers. In cancers, high expression couples with the
accumulation of mutations, cell growth, and metastasis66.
TF complexes are primarily involved in cell cycle regulation

through their targets, such as E2F mediating CDK that accelerates
proliferation61,62. In the breast cancer-specific network, CDK4
interacts with MAPK1, JAK3, and p53, promoting proliferation113.
In the ASD-specific network, TF complexes such as forkhead box
protein G1 (FOXG1) and sex determining region Y-box 2 (SOX2),
also implicated in microcephaly, play critical roles in lineage
determination, neural stem/progenitor cell proliferation, and
maintenance of pluripotency114,115.
Finally, immunity could be viewed as a common factor in NDDs

and cancer4,23. Multiple pathways related to immunity can be
dysregulated in NDDs due to the coevolution of the immune and
nervous systems116. Signaling pathways related to immunity, such

Fig. 5 Differential expression profiles in shared pathways. a Differential expression profiles of TFs in shared pathways. There were 71 TFs in
shared pathways that determine cell fate via changes in signal levels. However, 57 TFs have expression scores in all diseases and 21 TFs were
identified to be at least one time differentially expressed more (less) in ASD than in other cancer types. On the left hand, the heatmap of these
differentially expressed genes (high in red, low in blue) clustered expression z-scores into three groups. On the right hand, the pathways TFs
belong to, and related cell states (proliferation, green; differentiation, blue) are demonstrated. MCM2, STAT1, BRCA1, MCM5, DAXX, IRF1, and
MDM2 in cluster-1 are highly expressed in cancers, while NR4A1, JUN, JUND, TP73, SMAD3, SMAD4, SRF, and KLF2 in cluster-2 are highly
expressed in Autism. Genes more expressed in cancer types than in ASD mainly belong to the proliferation state, while genes related to
differentiation are predominantly more expressed in ASD than in cancer types. b Differences between proliferation and differentiation on
shared pathways. The signal flows from TFs (chevron) to targets (diamond) in common parts of ASD- and breast cancer-specific networks and
in shared pathways were demonstrated with z-scores. The low and high expression levels were illustrated with blue to red, respectively. The
relationship between cell state and proteins is represented with arrows whose color also demonstrates the level of expressions, low or high.
Differentiation-related proteins, such as Jun, SMAD3, and SMAD4, mainly have low expression profiles in breast cancer, while most are highly
expressed in ASD. PTEN, EGFR, and STAT1, related to proliferation and differentiation, have similar expression profiles. E2F4 E2F transcription
factor 4, RBL1 retinoblastoma-like protein 1, NF1 neurofibromin, IRF1 interferon regulatory factor 1, BRCA1 breast cancer type 1 susceptibility
protein, SMAD mothers against decapentaplegic, EGFR epidermal growth factor receptor, PCNA proliferating cell nuclear antigen, CREBBP
cAMP response element binding protein, Hsp90α heat shock protein 90α.
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as Wnt, Notch, JAK/STAT, and Hippo, also play roles in cancer
metastasis and drug resistance117,118.
It is difficult to find ground truth datasets for precise negative/

positive controls in complex diseases such as cancer, neurode-
generative disorders (NDGDs), and neurodevelopmental disorders.
Apoptosis119, differentiation81, and proliferation113, respectively,
may cause NDGDs, NDDs, and cancer due to the altered signal
level in cell cycle check point mechanisms120. Epidemiologically,
cancer is inversely correlated with NDGDs. As in NDDs, the
signaling levels of NDGDs can be low, or moderate121. We expect
that this could be a reason for the inverse relationship with cancer.
The low signaling levels in NDGDs can suppress cell proliferation;
and conversely, a preexisting cancer with strong proliferative
signaling in old age may suppress the emergence of NDGDs. The
time windows of the occurrence differ. NDDs’ signaling takes
place as the embryo develops. In contrast, NDGDs are much later
in life. At the same time, there is a certain overlap in shared
pathways and proteins between NDGDs, cancer and NDDs, and all
can experience senescence, in aging, in cancer (OIS, oncogene
induced senescence)122 and in NDDs121. We expect that signaling
strength, at either extreme, strong, or weak, may abort the cell
cycle, leading to premature exit. Comprehensive analysis and
comparison of NDGDs with NDDs and cancer may also clarify the
impact on cell differentiation123.
In a study of the English population, half of the decedents with

intellectual disabilities and cancer were at stage IV when
diagnosed124. Additional statistics reported that the mortality of
cancer patients with intellectual disabilities was reported to be
approximately 1.5 times higher than the general population125.
One of the reasons mentioned is that symptoms suggestive of
cancer are not always considered due to a bias toward patients.
Alternatively, as we discuss below, the preexisting mutational
burden may render NDD patients more vulnerable to cancer6, with
faster cancer progression and higher mortality. As a result of
altered signal strength, cancer initiation and progression may
differ in individuals with NDD than in the broad apparent NDD-
free population, with different outcomes via common pathways.
Our findings offer a mechanistic interpretation for PTEN and

PIK3CA mutations frequently observed in cancer and NDD
samples, which may form the basis for functional and detailed
structural analysis, including molecular dynamics simulations126.
Comparing expression scores of shared pathways by leveraging
the transcriptomic profiles of NDDs and cancer samples revealed
that NDD samples have higher expression scores for genes
functioning in differentiation than proliferation. These findings
provide an essential step toward understanding the etiology of
the two different pathologies, NDDs, and cancer. Despite having
common signaling pathways, their regulation and differences in
signal levels enhance different cell states: proliferation for cancer
and differentiation for NDDs.
Comparisons of the time windows of NDDs and cancer

frequently conclude that while cancer is predominantly caused
by somatic mutations and alterations in signaling and transcrip-
tional programs, NDDs are primarily linked to germline mutations
that express during embryonic development. A recent study has
similarly suggested that mutations in cancer susceptibility genes
are not necessarily inherited or somatic; they can also arise
throughout embryogenesis as a result of errors occurring during
cell division127. These mosaic mutations, occurring in early
embryogenesis, were suspected to be associated with some rare
cancers. Genetic changes associated with RASopathies are
believed to be often sporadic, not inherited. Along these lines,
according to the NCI page128, this means that typically multiple
family members do not share the same NDDs.
Different from this view, here our thesis is that inherited and de

novo mutations (missense or truncation) can be major causes of
NDDs such as intellectual disability, ASD, epilepsy129–132, and
cancer. As in cancer, more than one mutation is required for

observable symptomatic NDDs. Our premise is that family
members can harbor these NDD germline mutations; however,
they are not diagnosed as having the disorder. Their offsprings
are, however, already susceptible to it. Individuals with NDDs have
a higher probability of developing cancer25,125,133, likely due to the
preexistence of the mutations in the shared proteins, making
them more susceptible. Patients with autism have an increased
mutation load in genes that drive cancer. We hypothesize that
strong driver mutations in cell growth and division pathways are
chiefly responsible for uncontrolled cell proliferation in cancer.
NDDs’ weak/moderate strength mutations may be a reason why
inherited NDDs have not been identified in a parent while
predisposing an offspring to it. An additional mutation promotes
NDD clinical manifestation. It may be inherited from the other
parent or emerge during embryogenesis. It may also promote
cancer by providing companion mutations.
Here, we employed de novo mutations in ~8,000 samples with

NDDs from denovo-db and somatic mutations in ~10,000 tumor
samples from TCGA. We observed that around 40% of the 19,431
mutant genes in TCGA are also altered in NDD samples. 1222 of
the 11,576 distinct NDD mutations are present in TCGA. On the
other hand, TCGA contains 1051 distinct driver mutations,
whereas known cancer driver mutations and NDD only share 23
mutations. This result suggests that common mutations across the
two pathologies do exist, although they are typically less potent
than cancer drivers. Especially, PTEN and PI3Kα possess a range of
mutations scattered through their protein sequences that are
either common or disease-specific. This work argues for the
examination of such mutations even in undiagnosed family
members and their combination in the offspring. It further
supports the consideration of cancer pharmacology in NDD
patients.
The innovative concept at the basis of this work is that cell

proliferation requires a stronger regulatory signal than cell
differentiation, and that this difference may explain how the
same genes may underpin both cancer (proliferation) and NDDs
(differentiation). With our approach, we find that mutations in
NDDs tend to have a weaker functional impact and are more likely
to influence differentiation compared to those in cancer, which is
intriguing and in line with our hypothesis. A major strength of the
study is that it provides a broad overview of the mechanistic
similarities and differences between the effects of de novo
mutations and somatic cancer mutations.

METHODS
Data collection and processing
NDD mutations were obtained from denovo-db31 which holds a
collection of human germlines de novo variants of 20 phenotypes.
From these 20 phenotypes, we have selected 8 NDDs including
ASD, developmental disorder, intellectual disability, schizophrenia,
bipolar disorder, Tourette syndrome, cerebral palsy and epilepsy
for downstream analysis based on DSM-5 classifications and
literature resources134–137. Variants from two ASD studies were
collected by targeted sequencing of different patients coming
from two different studies, while the remaining datasets come
from either whole exome or whole genome studies. The
phenotypes, the number of samples, unique mutated genes and
unique mutations are given in Fig. 1b. We mapped the genomic
coordinates to the proteins to obtain the amino acid changes on
the protein level using VarMap138. We only kept the point
mutations that map to the canonical protein sequences. After
these filtering steps, we obtained a total of 11,576 unique
mutations on 6909 genes from 7880 samples.
Somatic missense and nonsense cancer mutations were down-

loaded from TCGA. There are 9703 tumor samples from 33
different cancer types in the annotation file where corresponding
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protein changes are also present. In total, we have 1,546,652
unique mutations on 19,431 genes. 6848 of these genes are also
mutated in the NDD dataset. 12,583 of them are only mutated in
TCGA, while there are only 61 genes that are mutated solely in
NDDs. Because these datasets are open source, no ethics
committee authorization or participant consent was required for
their use in this study.

Cancer drivers
A list of cancer driver mutations was downloaded from the Cancer
Genome Interpreter (CGI)139, which is available as the Catalog of
Validated Oncogenic Mutations on their website. We only used
missense or nonsense mutations, resulting in an analysis of 3688
driver mutations belonging to 237 genes.

Visualization of mutations in protein sequences and 3D
structures
We used the ProteinPaint tool140 to show NDD and cancer
mutations on PTEN and PI3Kα. To map the mutations to the 3D
structures of PTEN (PDB: 1D5R141) and PI3K (PDB: 4OVV142) we
used PyMol.

Expression datasets
We utilized processed RNA expression data from ASD, breast,
kidney, and brain cancer samples, listed in the Supplementary
Data. The ASD dataset was an integrated dataset from the frontal
cortex samples in three studies and covered 34 ASD samples and
130 controls. We employed integrated datasets for breast, kidney,
and brain cancers that are composed of 7, 10, and 8 studies,
respectively. Differential gene expression meta-analyses scored
3579 genes in ASD and 11,629 genes in cancer cohorts with z-
scores.

Pathway and network analyses
Inference of disease-specific networks. ASD and breast cancer-
specific networks were reconstructed with frequently mutated
genes and known PPIs. In cases of observations seen in at least 3
patients, 190 genes were selected as seed nodes in ASD. 168
genes were retrieved from the Cancer Genome Interpreter (CGI)
and recruited as the seed nodes of breast cancer139. The reference
network, HIPPIE v2.3, comprises 19,437 proteins and 779,301
PPIs57. Each interaction in HIPPIE was scored with a confidence
score that was computationally optimized and weighted by the
amount and quality of the experimental evidence of PPI. The
open-source network inference tool, available at https://
github.com/metunetlab/pyPARAGON, pyPARAGON (PAgeRAnk-
flux on Graphlet-guided-network for multi-Omic data integratioN),
is used to infer ASD and breast cancer-specific networks in three
steps. Firstly, pyPARAGON identified an associated region of the
reference network through motifs that are frequent non-
isomorphic graphlets composed of 2-, 3-, and 4-nodes. The union
of significant graphlet motifs constructs a graphlet-guided
network (GGN)55. Then, The PageRank algorithm weighted all
nodes in a reference network, starting from seed nodes. We used
the flux computation to weight the edges58. In the last step, highly
scored interactions in GGN were assembled in our disease-specific
networks. We used pyPARAGON with the following parameters:
α= 0.5, where α is the probability of walking to neighbor nodes,
τ= 0.8, where τ is a scaling factor to select a set of top-ranked
edges from GGN. This algorithm stops adding edges when the
number of interactions reaches 2000.

Identification of common pathways. To understand the common
functions of disease networks, overlapping regions of networks were
analyzed through TFs, target genes, and their associated pathways.
TFs and their targets, retrieved from TRRUST v2, were parsed in

disease-specific networks, and TFs in these networks were called
specific transcription factors (STF)143. The targets of STF were selected
as regulated genes by disease-specific networks. These commonly
regulated genes among ASD and breast cancer were utilized for
overrepresentation analysis on WebGestalt to uncover the common
pathways (p< 0.05 and FDR < 0.05) using manually curated open-
source pathway databases, KEGG and Reactome144–146.

Pathway assessment metrics. The signal strength and mutation
vulnerability of the common pathways were evaluated. The
expression level of each gene contributes to the signal deviation
in the respective pathway. To measure the expression score (ES) of
a given pathway, we calculated the average absolute signal
differences of a pathway63,64,147–150 by applying the Eq. (1),

ESP ¼
Pn

k¼1jek j
n

(1)

where P= (G, E, U), a pathway composed of genes/proteins (g1, g2,
…, gn, ∋ G), expression of genes (|e1 | , |e2 | , …, |en |∋ E), and the
number of unique mutations belonging to genes (u1, u2, …, un ∋
U). We assessed the mutation vulnerability of a pathway by
calculating the propensity score (PS) of a given pathway
considering the number of unique mutations by using the Eq. (2),

PSP ¼
Pn

k¼1uk
n

(2)

where the total number of individual mutations in the pathway
was normalized with the number of gene members in the
pathway.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The results shown here are in whole or part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga. The list of cancer driver mutations
underlying the results presented in the study is available in the Cancer Genome
Interpreter (CGI) as Catalog of Validated Oncogenic Mutations: https://
www.cancergenomeinterpreter.org/home. The reference PPI network, HIPPIE v2.3
was downloaded from http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
download.php. 3D protein structures were obtained from Protein Data Bank (PDB):
https://www.rcsb.org. Data analyzed in this study are available with the accession
codes GSE28475, GSE28521, GSE4290, GSE9385, GSE74195, GSE68848, GSE15824,
GSE42568, GSE54002, GSE65216, GSE45827, GSE29431, GSE11151, GSE77199,
GSE47032, GSE53757, GSE53000, GSE66272, GSE68417, GSE71963, GSE40435,
GSE7635 in Gene Expression Omnibus: https://www.ncbi.nlm.nih.gov/geo/. Transcrip-
tion factors and their targets were retrieved from TRRUST v2: https://
www.grnpedia.org/trrust/. Pathways were obtained from KEGG database: https://
www.genome.jp/kegg/pathway.html.

CODE AVAILABILITY
All the code used for data analysis and generation of figures will be available upon
request. ASD and breast cancer-specific networks were prepared using the open-
source network inference program pyPARAGON (PAgeRAnk-flux on Graphlet-guided-
network for multi-Omic data integratioN), which is accessible at https://github.com/
metunetlab/pyPARAGON.
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