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Structural variation of the coding and non-coding human
pharmacogenome
Roman Tremmel 1,2,5, Yitian Zhou3,5, Matthias Schwab 1,2,4 and Volker M. Lauschke 1,2,3✉

Genetic variants in drug targets and genes encoding factors involved in drug absorption, distribution, metabolism and excretion
(ADME) can have pronounced impacts on drug pharmacokinetics, response, and toxicity. While the landscape of genetic variability
at the level of single nucleotide variants (SNVs) has been extensively studied in these pharmacogenetic loci, their structural
variation is only poorly understood. Thus, we systematically analyzed the genetic structural variability across 908 pharmacogenes
(344 ADME genes and 564 drug targets) based on publicly available whole genome sequencing data from 10,847 unrelated
individuals. Overall, we extracted 14,984 distinct structural variants (SVs) ranging in size from 50 bp to 106 Mb. Each individual
harbored on average 10.3 and 1.5 SVs with putative functional effects that affected the coding regions of ADME genes and drug
targets, respectively. In addition, by cross-referencing pharmacogenomic SVs with experimentally determined binding data of 224
transcription factors across 130 cell types, we identified 1276 non-coding SVs that overlapped with gene regulatory elements.
Based on these data, we estimate that non-coding structural variants account for 22% of the genetically encoded
pharmacogenomic variability. Combined, these analyses provide the first comprehensive map of structural variability across
pharmacogenes, derive estimates for the functional impact of non-coding SVs and incentivize the incorporation of structural
genomic data into personalized drug response predictions.
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INTRODUCTION
Inter-individual variability in drug response has long been
recognized as a major problem in pharmacological treatment.
Overall, it is estimated that around 50% of patients experience a
lack of efficacy or adverse drug reactions (ADRs), contributing to
considerable patient morbidity and mortality1. In addition to
posing a significant burden on the healthcare system, lack of drug
efficacy and ADRs are major hurdles to drug development. More
than 80% of candidate drugs fail in clinical trials and around 32%
of FDA-approved therapeutics are affected by post-market safety
events2,3. Mechanistically, variable drug responses can stem from
variability in drug disposition or altered pharmacodynamics.
Heritable factors play an important role in differential drug

response and genetic variability, including variations in genes
modulating drug pharmacokinetics as well as drug targets, explain
approximately 20–30% of inter-individual phenotypic differences4.
Among these, single nucleotide variants (SNVs) have been
extensively studied as biomarkers to predict drug efficacy and
ADRs. A multitude of such variants in genes involved in drug
absorption, distribution, metabolism and excretion (ADME) has
been included in the pharmacogenomic guidelines to individua-
lize pharmacological treatment based on patient genotypes5–7.
Comparatively less is known about the functional effects of
pharmacogenetic drug target variability. While the landscape of
SNVs in drug targets has been systematically analyzed8 and
elegant recent studies demonstrated striking effects of SNVs on
intracellular signal transduction and drug action9,10, more
evidence is required to enable the translation of such variations
into clinical recommendations.
In contrast to SNVs, structural variations (SVs), defined as

genomic deletions, duplications, insertions, inversions and other

complex rearrangements that affect >50 bp, are substantially less
studied11,12. While the total number of SVs per human genome is
around two orders of magnitude lower than for SNVs (34,000 SVs
compared to 3 million SNVs), SVs affect 3.4 times more nucleotides
in both coding and non-coding regions of the genome13 and
constitute important contributors to human phenotypes14–16.
Copy number variations (CNVs) in some ADME genes are well
described17,18, whereas the structural variability of human drug
targets has not been systematically analyzed. Furthermore,
comprehensive analyses of non-coding structural variability in
pharmacogenes have not been presented. Here, we systematically
profiled the landscape of structural variability across 908
pharmacogenes (344 ADME genes and 564 drug targets) based
on whole genome sequencing (WGS) data from 10,847 unrelated
individuals19. Our analyses refine previous SV frequency estimates
and, by integrating structural data with experimentally deter-
mined transcription factor binding site (TFBS) information, identify
a catalog of 1276 SVs that impact pharmacogenetic regulatory
elements.

RESULTS
The structural variome in genes involved in drug disposition
and drug targets
We first analyzed the structural variability of 344 genes involved in
ADME processes. The highest number of SVs was found in nuclear
receptors (n= 1207; average of 24 SVs per gene) and SLC/SLCO
transporters (n= 1112; average of 17 SVs per gene), whereas SV
numbers in phase II enzymes were around 3-fold lower (n= 437; 8
SVs per gene; Fig. 1A). Additionally, we analyzed the structural
variome in 564 genes encoding the therapeutic targets of 1578
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clinically approved drugs. Most SVs were identified in ion channels
(n= 3112; 24 SVs per gene) and membrane receptors (n= 2840;
19 SVs per gene), whereas the variability in transporter targets was
markedly lower (n= 427; 14 SVs per gene; Fig. 1B). PTGS2
(n= 189), GPD2 (n= 150), HCN1 (n= 145) and KCND2 (n= 145)
featured the most SVs whereas 41 pharmacogenes did not harbor
any structural variations (Supplementary Table 3). When normal-
izing for gene length, ADME genes carried significantly more SVs
per kilo base than drug targets (Fig. 1C). The higher variability was
primarily driven by genes encoding drug metabolizing enzymes
(CYPs, as well as other phase 1 and phase 2 enzymes), whereas
transporter genes and nuclear receptors were significantly less
variable and harbored similar numbers than drug target genes
(Fig. 1D, E).
SVs range in size from 50 bp to 106 Mb with a median size of

312 bp (Supplementary Fig. 1A). Drug target SVs were overall
significantly shorter than SVs in ADME genes (281 bp vs 321 bp;
p < 0.0001). The overall largest SVs (106 Mb) was a singleton
complex rearrangement of duplications and inversions that
affected almost the complete chromosome 10 covering a total

of 589 genes, as well as a rare duplication on chromosome 5
that affected the target genes IL6ST, GHR, HCN1, NDUFAF2,
NDUFS4, PDE4D, PTGER4 (28 Mb). The longest deletions affected
the GABA receptor cluster encoding GABRA1, GABRA6, and
GABRG2 on chromosome 5 (6.5 Mb) and the ADME gene COMT
on chromosome 22 (2.5 Mb). Insertions and deletions had
median sizes of 208–618 bp, whereas the average inversions
were more than 10,000 times larger with a median size of
30.2 Mb (Supplementary Fig. 1B–G). Furthermore, both ADME
and drug target SVs were significantly smaller than SVs in
olfactory genes (p < 0.0001), which were selected as one of the
most polymorphic human gene families due to low selective
pressure20.

Functional consequences of coding pharmacogenomic
structural variability
Of all 14,984 pharmacogenomic SVs, 2198 impacted gene exons,
whereas the remainder affected introns, or non-coding regions
up- and downstream of the gene body (Fig. 2A). To interpret SV
functionality, we classified deletions spanning coding regions as
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Fig. 1 Overview of structural variability in the human pharmacogenome. Number of structural variants (SVs) in different classes of genes
that are involved in drug absorption, distribution, metabolism and excretion (ADME; A) as well as drug target genes (B). C The number of SVs
per kilo base (kb) gene length differ significantly between ADME genes and drug targets. D Among ADME genes, CYPs, as well as phase 1 and
phase 2 enzymes harbor significantly more SVs than nuclear receptors and transporters. E Among drug target genes, ion channels were
significantly less variable than enzymes and membrane receptors. NR nuclear receptors, CYP cytochrome P450s, SLC solute carrier
transporters, ABC ATP binding cassette transporters, CPX complex rearrangement, DEL deletion, DUP duplication, INS insertion, INV inversion,
MCNV multi-copy number variations.
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well as exonic insertions, exon-spanning inversions or partial gene
duplications that resulted in frameshifts as LOF SVs (Fig. 2B). In
contrast, duplications of the entire gene were considered as
increased gene dosage (IGD). While these variations can result in
gain-of-function effects, as shown e.g. for CYP2D621 and

SULT1A122, gene duplications in other pharmacogenes, such as
CYP2E1, resulted in dosage insensitive expression and activity23.
All exonic SVs in drug transporters and nuclear receptors with

putative functional consequences were rare with MAF < 1%,
whereas up to 20% of SVs in genes encoding CYPs (n= 9 SVs),
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other phase I (n= 2) or phase II enzymes (n= 11) were common
(Fig. 2C). LOF SVs with high frequency were identified in GSTM1
(84.5% deletion frequency), GSTT1 (71.8% deletion frequency),
UGT2B17 (56% deletion frequency), UGT2B28 (21.5% deletion
frequency) and CYP2D6 (7.8% deletion frequency; Fig. 2D and
Table 1). Similarly, common IGD SVs were found in SULT1A1 (45.1%
duplication frequency), SULT1A4 (37.2% duplication frequency),
CES1 (25.6% duplication frequency) and CYP2D6 (18.8% duplica-
tion frequency). In aggregate, each individual harbored on
average 7.9 LOF and 2.4 IGD SVs in ADME genes, which might
contribute to inter-individual differences in response to medica-
tions metabolized or transported by the respective gene products
(Fig. 2E). Notably, East Asians harbored most (11.7 per individual)
and Europeans the least (9.4 per individual) functional coding SVs
in ADME genes.

For pharmacodynamic drug targets, more than 95% of all
coding SVs were rare with the only exceptions being found in
structural genes (laminins) and enzymes (alpha glucosidases; Fig.
2F, G and Table 1). The laminins LAMA2 and LAMB4 are targets in
the treatment of ocriplasmin vitreomacular adhesion, whereas the
amylases AMY2A and MGAM are targeted by acarbose, voglibose
and miglitol for the improvement of postprandial hyperglycemia.
Overall, the number of drug target SVs is 5–10 times lower than in
ADME genes with each individual harboring a total of 1.2 LOF and
0.3 IGD SVs (Fig. 2H). In contrast to SVs in ADME genes,
aggregated SV frequencies differed almost 2-fold between
ethnogeographic groups with the lowest numbers of functional
SVs across drug targets in East Asians (0.88 per individual) and the
highest number in individuals of African ancestry (1.64 per
individual).

Fig. 2 The landscape of functional SVs across the pharmacogenome. A Across all identified SVs in pharmacogenes, 15% affected exons
(blue) and 85% were non-coding (gray). Of the exonic variations, functional consequences could be inferred for one third (dark blue), whereas
the functional consequences of the remainder were unknown (mostly SVs in UTRs or in-frame deletions/duplications). B Schematic showing
the different SV classes causing loss-of-function (LOF) or increased gene dosage (IGD) of the corresponding gene. C Fraction of rare and
common SVs for the different ADME gene families. D Allele frequencies for structural LOF and IGD variants across ADME genes. The sizes of
dots indicate the length of the corresponding SVs. Multi CNVs are indicated in red. E Bar plots show the average number of LOF and IGD SVs in
ADME genes per individual for the entire dataset (global) and for individual ethnogeographic groups. F Fraction of rare and common SVs in
the different drug target gene classes. G Allele frequencies are shown for structural LOF and IGD variants across drug targets. The sizes of dots
indicate the length of the corresponding SVs. Multi CNVs are indicated in red. H Bar plots show the number of LOF and IGD SVs in drug target
genes per individual for the entire dataset (global) and for individual ethnogeographic groups. CPX complex rearrangement, DEL deletion,
DUP duplication, INS insertion, INV inversion, AFR African, AMR admixed Americans, EAS East Asians, EUR Europeans.

Table 1. Common functional coding SVs in pharmacogenes with minor allele frequencies above 1%.

Gene Type Function Length (bp) Frequency Drug associations

ADME genes

GSTM1 MCNV (DEL) LOF 19000 84.5% Cisplatin, nevirapine, azathioprine

GSTT1 MCNV (DEL) LOF 54150 71.8% Cisplatin, thalidomide, clozapine

UGT2B17 MCNV (DEL) LOF 117000 56% Ibuprofen, exemestane

GSTT2B DEL LOF 37153 46.2% Cisplatin

SULT1A1 MCNV (DUP) IGD 13000 45.1% Acetaminophen, minoxidil, estrogens

SULT1A4 MCNV (DUP) IGD 50000 37.2% Salbutamol, acetaminophen, morphine

CES1 MCNV (DUP) IGD 17500 25.6% Clopidogrel, irinotecan, methylphenidate

UGT2B28 DEL LOF 109294 21.5% Androgens

CYP2D6 MCNV (DUP) IGD 12202 18.8% Antidepressants, antipsychotics, opioids, tamoxifen

CES1 DUP LOF 6300 14.4% Clopidogrel, irinotecan

CYP3A43 DEL LOF 2171 9.9% Erythromycin, olanzapine

CYP2D6 MCNV (DEL) LOF 12202 7.8% Antidepressants, antipsychotics, opioids, tamoxifen

CYP2E1 DUP IGD 91684 5% Acetaminophen, ethanol, anti-tuberculosis drugs

CYP2A6 DEL LOF 30617 3.6% Nicotine

CYP4F12 DUP IGD 53300 2.8% Astemizole

CYP2E1 DUP LOF 9600 2.6% Acetaminophen, ethanol, anti-tuberculosis drugs

SULT1A1 MCNV (DEL) LOF 13000 2.6% Acetaminophen, minoxidil, estrogens

CYP2A6 DUP IGD 30939 1.1% Nicotine

CYB5R3 DEL LOF 511 1% Metoclopramide, lidocaine, dapsone

UGT2B10 DUP IGD 37000 1% Amitriptyline, olanzapine, nicotine

Drug target genes

LAMB4 DEL LOF 254 30.6% Ocriplasmin

AMY2A MCNV (DUP) IGD 165900 12.6% Acarbose

MGAM DEL LOF 25985 11.8% Miglitol, acarbose, voglibose

LAMA2 DEL LOF 835 11.5% Ocriplasmin

AMY2A MCNV (DEL) LOF 165900 6.2% Acarbose

DEL deletion, DUP duplication, IGD increased gene dosage, LOF loss of function, MCNV multi-allelic copy number variation.
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Interpreting the functionality of non-coding SVs
While the consequences of SVs in coding regions have been
studied extensively, interpretation of the functional effects of non-
coding structural variability, which account for >85% of all
pharmogenomic structural variation, has not yet been presented.
Here, we inferred functional effects by analyzing the overlap of
structural variation with experimentally determined transcription
factor binding site (TFBS) data of 224 transcription factors and
their expression across 130 cell types and tissues. Of all 12,786
non-coding SVs identified in ADME genes and drug targets, 2958
(23.1%) overlapped with at least one TFBS (Fig. 3A). The most
commonly affected binding motifs corresponded to transcription
factors with globally important functions, such as CTCF (impacted
by 481 SVs), which plays critical roles in genome partitioning and
maintenance of the chromosomal architecture, RAD21 (291 SVs), a
member of the cohesin complex, and FOS (272 SVs) and JUND
(232 SVs), which dimerize to form the AP-1 transcription complex
that plays pleiotropic roles in the activation of gene expression
(Fig. 3B). Further, various binding sites of key tissue-specific
transcription factors were impacted, including HNF4A (affected by
197 SVs), a transcription factor of central importance for
hepatopancreatic development and xenobiotic response24, and
RXRA (affected by 169 SVs), a combinatorial partner that dimerizes
with approximately one third of nuclear receptors in human
liver25.
Since most TFs are not ubiquitously expressed, SVs in their

respective TFBSs can only impact the target gene expression in
tissues where the respective transcription factor is expressed. We
thus analyzed the expression overlap of pharmacogenes (both
ADME and drug targets) that harbor SVs affecting TFBSs with the
respective transcription factors across nine tissues of major
pharmacokinetic or pharmacodynamic importance (Fig. 3C). In
total, we identified 1276 non-coding SVs where the affected gene
and the respective transcription factor were co-expressed in at
least one tissue with each individual carrying an estimated
average of 21.7 putatively functional pharmacogenomic SVs
(Supplementary Table 4).
Deletions of TFBSs ablate TF activity for the associated gene,

which would entail reduced or increased expression in the case of
transcriptional activators or repressors, respectively. Inversely,
duplication of TFBSs can be expected to have opposite effects. In
ADME genes, the highest frequency of such non-coding deletions
affecting TFBSs was found in SLC10A2 (encoding the intestinal
transporter ASBT; MAF= 25.9%) where it affected the binding
sites of the co-expressed transcription factors CTCF (Table 2).
Similarly, deletion of TFBSs of CTCF, RAD21 and SP1 in SLC28A1
encoding the renal transporter CNT1 was identified in 20% of
alleles, and the most common deletion of an hepatic gene was
found in hepatic sulfotransferase SULT2A1 (MAF= 5.4%), affecting
TFBSs of CTCF, CHAMP1, ATF2 and CREB1. When normalizing for
gene length, we observed a similar number of TFBS SVs in ADME
genes and drug targets (p= 0.52 for Wilcoxon Rank Sum test
based on the 1276 non-coding putatively functional SVs) with
deletion and insertions being the most common variant types.
In addition to ADME genes, we also discovered a multitude of

SVs that impacted transcription factors co-expressed with drug
targets (Table 3). For instance, the upstream region of GABRP
encoding the π subunit of the GABAA receptor that constitutes the
target of a multitude of mostly anesthetic and anxiolytic drugs,
contains a frequent insertion polymorphism (MAF= 62.4%) that
impacts the TFBS of the neuronal transcription factors MAFK,
which could modulate GABRP expression in the central and enteric
nervous system. Similarly, expression of the prostaglandin
receptor PTGER4 in the lung might be impacted by common
deletions of JUND and SP1 binding sites (MAF= 14.2%), which
might have important roles in the modulation of prostaglandins in
allergic pulmonary inflammation and asthma. These analyses

constitute to our knowledge the first systematic evaluation of the
impact of structural pharmacogenomic variation on experimen-
tally validated transcription factor binding motifs and will provide
an important resource for future biological validation efforts.

Impact of SVs on pharmacogene expression
To systematically interrogate the functional impact of PGx and
drug target SVs, we mapped the profile of pharmacogenomic SVs
to published multi-tissue eQTL data from the GTEx project26.
Because of different detection workflows and cohort sizes
between the eQTL study and gnomAD, the number of detected
SVs differed more than 7-fold between both studies (approx. 61k
to 433k) and only 23% of SVs mapped within 100 bp in both data
sets. In total, we found 21 common SVs of ADME and drug targets
(15 coding, 6 non-coding) that were significantly associated with
mRNA expression (Table 4). As expected, well-known functional
SVs of AMY2A, CYP2A6, and its corresponding pseudogene CYP2A7,
CYP21A2, GSTM1, GSTT1, SULT1A1, and UGT2B17 are significantly
associated with mRNA expression in various tissues (Table 4, Fig.
4A). Of note, CYP2D6 SVs, which are known to improve phenotypic
predictions27, are not included in the GTEx dataset, likely due to
issues with appropriately calling variations in this complex locus28.
A very frequent partial deletion within the S1PR4 locus

(combined MAF= 0.64) were significantly correlated with its
expression in lymphocytes (Benjamini-Hochberg [BH] p < 0.005).
This finding is interesting as reduced expression of S1PR4 has
been associated with protection from diet-induced non-alcoholic
steatohepatitis and hepatic fibrosis29. Interestingly, almost one in
five individuals carried homozygous S1PR4 deletions and there
was a population difference in SV frequency from 53% in East
Asians, Latinos (65%), Africans (88%) to European subjects (90%).
Similarly, a previously described intronic deletion (MAF= 2%) of
CYP4F12, which covers several TFBSs30, was associated with
decreased expression in thyroid and heart tissue (BH p < 0.004).
Furthermore, depending on the transcript reference, a 1.2 kb
upstream or partial coding duplication of ALDH1A2 was associated
with higher expression in blood, while a non-coding deletion
(covering TFBS) of INSIG2 was associated with decreased expres-
sion in adipose and artery tissues.
Overall, each individual carried on average one structural eQTL

that impacted the expression of drug targets and 3–5 variations
affecting ADME gene expression (Fig. 4B). Interestingly, the
distribution of eQTL-SVs per individual were overall similar
between Europeans, Africans and admixed Americans, whereas
the number of ADME SVs was considerably higher in East Asians.
Based on these data, we carefully estimated the functional impact
of non-coding structural variations (see Eq. (1) in the Methods
section for details). Specifically, by cross-referencing the number
of functional non-coding SVs in ADME genes and drug targets
(21.7 per individual), as well as the number of functional exonic
SVs in ADME genes (10.3 per individual) and drug targets (1.5 per
individual) calculated in this study with data about the functional
impact of with available information about the number of
functional SNVs in ADME genes (40.6 per individual) and drug
targets (26 per individual) from the literature10,31, we calculated
that non-coding structural variants account for approximately 22%
of the overall genetically encoded pharmacogenomic variability.
As such, both coding and non-coding SVs constitute a consider-
able source of pharmacogenomic variability, the latter of which is
not commonly considered by studies into heritable factors of drug
response and safety.

DISCUSSION
SVs are important mutational forces that shape genomic
organization and biological functions32. Compared to SNVs, SVs
are substantially understudied, at least in part due to the
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difficulties associated with their identification via commonly used
short-read sequencing technologies. While over 500,000 SVs have
been described across the human genome19, only a small minority
of those are functionally understood. In ADME genes, information
about structural variability has long been limited to CNVs and
complex rearrangements in few selected loci, such as CYP2A6,
CYP2D6, SULT1A1, and various GSTs33. Even less information was
available about the structural variability in drug targets where
analyses were largely limited to the AMY1/2 locus34. While CNVs in
other drug target genes, such as PGA5, have been described in
genome-wide studies35,36, their precise architecture and func-
tional effects on drug response have not been analyzed. Building
on these findings, we here compiled an overview of the structural
pharmacogenomic variome across 908 ADME and drug target
genes based on publicly available SV data. These data provide a
comprehensive map of structural variability in human pharmaco-
genes and constitute the basis for the first functional interpreta-
tion of both coding and non-coding pharmacogenomic structural
variation.
Structural variability is of considerable importance for determin-

ing the molecular phenotype of cells with 18% of total detected
genetic variation in gene expression being attributed to CNVs37.
Of all pharmcogenomic SVs identified, 775 (5.2%) were annotated
as putatively causing functional consequences (Supplementary
Table 1). Examples include common SVs in multiple CYPs, GSTs and
UGTs, as well as in a few drug target genes, primarily those
encoding laminins and amylases (Table 1). Furthermore, our data
corroborated previous findings of SULT1A1 duplications38, which
can translate into enhanced phase II metabolism of multiple drugs
(e.g. acetaminophen and tamoxifen) and hormones (e.g. estro-
gen)39. However, the functional consequences of the remaining
14,209 SVs, consisting primarily of those that were located up- and
downstream of the gene or that affected UTRs or intronic regions,
had not been assigned using current annotation guidelines.
In non-coding regions of the genome, SVs can affect regulatory

sequences, such as TFBS, and such variation has been shown to
impact gene expression, biological functions and disease risk40–42.
However, associations of non-coding SVs with drug-related effects
have been lacking. We thus integrated structural genomics data
with transcription factor binding signatures and expression data
across key tissues involved in drug action and drug disposition to
pinpoint potential impacts of such non-coding structural varia-
bility on drug-related phenotypes. Our analyses identified 1276
SVs that impact experimentally validated TFBS in pharmacoge-
netic regulatory elements. In ADME genes, multiple common SVs
were identified that impact TFBS upstream of the SLC transporters
SLC7A5 (encoding LAT1), SLC16A1 (MCT1), SLC28A1 (CNT1), and
SLC29A1 (ENT1), implicated in the disposition of melphalan,
valproic acid, gemcitabine or ribavirin, respectively. Notably, while
genes encoding CYP enzymes or transporters of the SLC and ABC
superfamilies have previously been identified as highly variable at
the level of single nucleotide polymorphisms43–45, these results
show that, surprisingly, common structural variants affecting TFBS
are predominantly found in SLC genes.
Examples of non-coding SVs with putative relevance for drug

response include the deletion of a regulatory element upstream
of the drug target gene ABAT that is found in 1 in 20 individuals.
ABAT encodes GABA transaminase, one of the key pharmaco-
dynamic targets of valproic acid. While SNVs in ABAT had
previously been associated with valproic acid response46, the
impacts of structural variation in this gene have to our
knowledge not yet been addressed. Our results suggest that
structural variants alter the recruitment of HDAC2, a histone
deacetylase expressed in the CNS that controls chromatin
accessibility47, which in turn might impact ABAT1 gene
expression. Further examples are copy number variants of
binding sites for the lysine demethylase KDM1A in the locus
encoding the serotonin receptor HTR2A. Previous studiesTa
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Table 3. Tissue-specific drug response that might be affected by putatively functional non-coding SVs in drug target genes.

Tissue Gene Type Carrier frequency Affected transcription factors Potential effect on PGx evidence

Brain GABRP INS 1 per individual MAFK Response to propofol

Brain GRIN2A DEL 1 in 3 individuals FOXK2 Ketamine exposure and response 65

Colon TOP1 DEL, INS 1 in 13 individuals GATA3 Irinotecan response 66

Adipose tissue PPARA DEL, INS, CPX 1 in 17 individuals POLR2A Fenofibrate response 67

Brain ABAT DEL 1 in 20 individuals HDAC2 Valproic acid response 46

Heart PDE3A DEL, INS, CPX 1 in 197 individuals RXRA Amrinone response

Brain HTR2A DEL, INS 1 in 1548 individuals KDM1A Response to antidepressents 48

Brain MTNR1B DEL 1 in 1706 individuals RAD21 Response to tasimelteon

Brain HTR1A DEL, INS 1 in 2717 individuals CTCF Response to antipsychotics 68

Heart PDE3A DUP 1 in 2717 individuals CTCF Amrinone response

Stomach ATP4A DUP 1 in 3623 individuals NR3C1 Omeprazole response

Brain MAOA DEL 1 in 3994 individuals FOS Isocarboxazid response

Brain MTNR1B DUP 1 in 5435 individuals RAD21 Response to tasimelteon

Brain GABRA1 DUP 1 in 10870 individuals RAD21 Response to GABA ligands 69

Brain GABRA1 INS 1 in 10870 individuals ATF2 Diazepam response 69

Note that not all transcription factors affected by the respective SVs are shown. For the comprehensive list, we refer to Supplementary Table 4.
CPX complex rearrangement, DEL deletion, DUP duplication, INS insertion.

Table 4. Common eQTL SVs located in ADME genes and drug targets.

Gene SV type SV Function Affected TFBSs Tissues with
eQTL

-log10(BH)
[range]

Beta value
[range]a

Matched
SVsb

GnomAD AF
[range]

AHRR DUP non-coding EGR1, NRF1, POLR2A, RNF2 2 1.48, 4.61 0.97, 1.48 0 NA

ALDH1A2 DUP coding 1 2.84 0.97 1 0.08

AMY2A MCNV coding 1 6.72 0.16 2 0.14–0.19

CYP2A6 MCNV coding 1 4.56 0.53 4 0.01–0.04

CYP2A7 MCNV coding 2 2.46, 2.81 −0.63, −0.53 3 0.01–0.04

CYP4F12 DEL non-coding MAX, EP300, SP1, POLR2A, REST,
JUND, NR3C1, CTCF, HNF4A, FOXA1,
HDAC2, FOXA2, RXRA, RAD21, ZNF24

2 2.36 −1.06, −0.84 1 0.02

CYP21A2 MCNV coding 10 2.56, 14.39 −0.44, −0.21 0 NA

GSTM1 MCNV coding 25 10.29, 102.8 0.52, 0.64 1 0.85

GSTM2 MCNV coding 15 2.02, 67.09 0.08, 0.41 1 0.85

GSTM3 MCNV coding 3 5.59, 28.48 0.39, 0.49 0 NA

GSTM4 MCNV coding 15 2.09, 34.44 0.14, 0.46 0 NA

GSTM5 MCNV coding 8 3.14, 19.03 0.17, 0.42 0 NA

GSTT1 MCNV coding 40 19.24, 149.8 0.55, 0.67 1 0.72

INSIG2 DEL non-coding ATF2, ATF7, CTCF, FOS, POLR2A, STAT3 3 3.13, 4.76 −1.08, −0.9 1 0.03

MIF DEL non-coding CTCF, HNF4A, RAD21, RXRA, SMC3,
TRIM22

1 23.9 0.82 0 NA

S1PR4 DEL coding 1 2.33 0.51 2 0.82

SCN5A INS non-coding 1 3.82 −0.38 1 0.31

SULT1A1 MCNV coding 26 2.8, 70.48 0.19, 0.49 1 0.48

SULT1A2 MCNV coding 3 5.8, 17.1 −0.51, −0.32 0 NA

SULT1A4 MCNV coding 1 1.92 0.18 0 NA

UGT2B17 DEL coding 5 3.87, 14.53 −1.2, −0.7 1 0.56

AF allele frequency, eQTL expression quantitative trait locus, DUP duplication, DEL deletion, INS insertion, MCNVmulti-copy number variation, TFBS Transcription
factor binding site, BH Benjamini–Hochberg value, SV structural variant.
aEffect size of the correlation between SV and gene expression. Values greater than 0 reflect increased expression levels.
bA matched eQTL variant is defined as a SV of the same type (e.g., DUP, DEL) that was identified in both gnomAD and GTEx.
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suggested that HTR2A activity associates with response to
antidepressive treatment and remission of depressive symp-
toms48. Moreover, genetic manipulation of lysine methyltrans-
ferases in mice was shown to alter Htr2a expression and histone
methylation has thus been proposed as an epigenetic drug
target for anxiety and depression49. Our findings thus suggest
that structural variability of the HTR2A locus might impact
epigenetic remodeling and gene expression, thus potentially
contributing to serotonergic signaling and response to selective
serotonin reuptake inhibitors (SSRIs).
Combined, our results provide the most comprehensive map of

coding and non-coding structural variations in the human
pharmacogenome published to date. Furthermore, we provide
the first functional interpretation of this structural variability,
highlight a multitude of structural variants with putative tissue-
specific impacts on drug response or toxicity due to deletion or
insertion of regulatory elements for further experimental and
epidemiological validations. Our data indicate that non-coding
structural variants might present an understudied, but important
class of variation, which might account for 22% of genetically
encoded pharmacogenomic variability. As such, the presented
findings constitute an important resource for variant prioritization
and incentivize the incorporation of both coding and non-coding
pharmacogenomic variability into personalized drug response
predictions.

METHODS
Structural variant analysis
Structural genomic data for 908 pharmacogenes (344 ADME genes
and 564 drug targets) from 10,847 unrelated individuals was
extracted from gnomAD19,50. The ADME genes were selected based
on previous work describing a targeted sequencing panel for ADME
sequencing51. As drug target genes, we considered all genes that
encode a target of an FDA-approved drug that was encoded in the
nuclear genome10. In total 387,477 SVs were identified of which
variants with filter status other than “PASS” or “MULTIALLELIC” and
type of “unresolved non-reference breakpoint junction” & “reciprocal
translocation” were excluded (n= 305,149 after this exclusion). SVs
with neighboring intervals were aggregated by gene and SV type
using the bed_cluster function from the R package valr52. Specifically,
we used max_dist= 0 to merge of overlapping and directly adjacent
intervals, resulting in 256,429 unique SVs genome-wide. Subse-
quently, we filtered for overlap with the 908 pharmacogenes
(Gencode v19), yielding a total of 14,984 SVs across the human
pharmacogenome (Supplementary Table 1). SVs spanning more than
one pharmacogene were counted for each gene individually. SVs
were annotated as coding when they impacted at least one
pharmacogenomic exon or as non-coding when the SV affected
only intergenic or intronic regions. Non-coding variants were
furthermore analyzed for the presence of transcription factor binding
sites (TFBS) using the Transcription Factor ChIP-seq Cluster data (338
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transcription factors [TFs], 130 cell types) from ENCODE 353. After
exclusion of TFBS with peak scores <200 and single study
observations (1/1264), 224 TFs were analyzed. SV categories were
extracted from the original study19 and translated into putative
functional consequences according to Supplementary Table 2.
Information about 440 olfactory-related genes was extracted from
the KEGG pathway “hsa04740”. Tissue-dependent expression levels
of candidate genes and TFs were evaluated using median gene-level
RNA-Seq data from GTEx26. Information about significant associations
between SVs and RNA-seq expression was obtained from a multi-
tissue eQTL study54. The data was filtered for SV-eQTLs, and gene
information was added using biomart. The overlap between the
breakpoints of SV-eQTLs and gnomAD-SVs was assessed using the
bed_closest function from valr52. Furthermore, SV-eQTLs that over-
lapped >99% with gnomAD-SVs were included in the analyses. The
carrier frequency or number of total SVs associated with mRNA
expression was assessed by simulating 100,000 individual using
reported allele frequencies in gnomAD.

Calculation of the functional impact of non-coding structural
variations
The relative functional importance of non-coding SVs was
calculated according to Eq. (1) as follows:

funcncSV ¼ nncSV
nncSV þ nSNV þ ncSV

(1)

with nncSV defined as the number of functional non-coding SVs in
ADME genes and drug targets per individual, ncSV defined as the
number of functional exonic SVs in ADME genes and drug targets
per individual and nSNV defined as the combined number of
functional SNVs in ADME genes and drug targets per individual.
The number of SNVs in ADME genes per individual was obtained
from ref. 31, while the number of SNVs in drug target genes was
calculated from ref. 10 by aggregating all drug target variants with
putative functional impacts weighted with the respective fre-
quencies in the entire cohort.

Statistical analyses
Common variations were defined as variants with a minor allele
frequency (MAF) ≥ 1%, while SVs with frequencies <1% were
considered as rare. All analyses including the filtering steps were
performed using R version 4.0.1 with the additional packages
tidyverse_1.3.055, valr_0.6.152, ggsignif_0.6.056. If not other stated,
we used Wilcoxon Rank Sum Tests to compare continuous data
between groups. All tests were two-sided and significance was
assumed at 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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SV data is available via gnomAD (https://gnomad.broadinstitute.org/), TFBS data is
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