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Integrating somatic CNV and gene expression in breast cancers
from women with PTEN hamartoma tumor syndrome
Takae Brewer1,2, Lamis Yehia 1, Peter Bazeley3 and Charis Eng 1,2,4,5,6✉

Women with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS) have up to 85% lifetime risk of female breast cancer
(BC). We previously showed that PHTS-derived BCs are distinct from sporadic BCs both at the clinical and genomic levels. In this
study, we examined somatic copy number variations (CNV) and transcriptome data to further characterize the somatic landscape of
PHTS-derived BCs. We analyzed exome sequencing data from 44 BCs from women with PHTS for CNV. The control group comprised
of 558 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. Here, we found that PHTS-derived BCs have
several distinct CNV peaks compared to TCGA. Furthermore, RNA sequencing data revealed that PHTS-derived BCs have a distinct
immunologic cell type signature, which points toward cancer immune evasion. Transcriptomic data also revealed PHTS-derived BCs
with pathogenic germline PTEN variants appear to have vitamin E degradation as a key pathway associated with tumorigenesis. In
conclusion, our study revealed distinct CNV x transcript features in PHTS-derived BCs, which further facilitate understanding of BC
biology arising in the setting of germline PTEN mutations.
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INTRODUCTION
Phosphatase and tensin homolog (PTEN), a tumor suppressor
gene1, is one of the most frequently somatically altered genes in
different malignancies including breast cancer (BC)2. PTEN
hamartoma tumor syndrome (PHTS) encompasses individuals
harboring a germline PTEN variant, which causes heritable
predisposition to specific cancers including breast, thyroid, kidney,
endometrial and colon cancers, and melanoma3. PHTS-derived
BCs have distinct clinical characteristics compared to sporadic
counterparts. Women with PHTS have up to 85% lifetime risk of
breast cancer (BC), which is notably higher than that in the general
population (12.9% lifetime risk)3. Furthermore, women with PHTS
have a much younger onset of BC diagnosis, as well as a
significantly higher incidence of second primary BC4.
PHTS-derived BCs are distinct not only at the clinical but also at

the molecular and genomic levels. Recently, we found that BCs
arising in the setting of PHTS had a distinct somatic mutational
landscape compared to that of their sporadic counterparts5. We
demonstrated that PHTS-derived BCs had a high frequency of
somatic second hits to the PTEN gene (where the underlining
germline PTEN variants represent the first hit), which appeared to
be driving carcinogenesis. Furthermore, BCs from PHTS patients
with germline pathogenic or likely pathogenic PTEN variants (Tier-
1 variants), had much fewer somatic mutations in PIK3CA
compared to those in TCGA and in PHTS-Tier 2 (variant of
unknown significance or likely benign variants) BCs. Our findings
were consistent with the observation that the nature of the
underlying germline mutations in cancer tissues influences
somatic phenotypes6.
BC biology and its genomic landscape are complex and need to

be understood in the context of large genomic and functional
genomic changes such as somatic copy number variation (CNV)

and gene expression differences7,8. In this study, we further
characterized the somatic landscape of PHTS-derived BCs by
examining somatic CNVs and the transcriptome.

RESULTS
Somatic CNV analysis of PHTS and TCGA BC
We identified seven significant amplification peaks and 46
significant deletion peaks in PHTS-derived BCs (Fig.1a, Supple-
mentary Table 2, Supplementary Table 3). In TCGA BCs, there were
37 amplification peaks and 63 deletion peaks. Four out of seven
CNV amplifications (3p26.1, 6p22.2, 10q21.2, 11q13.1) are present
in PHTS-derived BC samples but not in sporadic BC samples from
TCGA. The most significant peak in this group is at 6p22.2 (Fig. 1b),
which was absent in TCGA. This region contains multiple histone-
related genes including HIST1H1, HIST1H2, HIST1H3, and HIST1H4
families (Supplementary Table 4). Nine out of 36 samples (25.0%)
with significant amplifications at 6p22.2 had somatic PTEN variants
which were distinct from their respective germline PTEN variants,
while only one out of eight samples (12.5%) without a 6p22.2 CNV
amplification peak had a somatic PTEN hit. This difference did not
reach significance (odds ratio [OR] 2.33, 95% CI 0.29–28.9,
p= 0.66).
For deletion peaks, 28 out of 46 regions were present in PHTS

BCs but absent in TCGA BCs (Supplementary Table 3). No
amplification or deletion peaks in PHTS-derived BCs contained
any of the 82 BC-associated genes (Supplementary Table 1)
including ERBB2, EGFR, PTEN, and TP53 (Supplementary Table 4). In
contrast, amplification peaks containing CCND3 (6p21.1), CCND1
(11q13.3), AKT1 (14q32.33), and ERBB2 (17q12), and deletion peaks
containing NOTCH1 (9q34.3) and STK11 (19p13.3) were identified
in TCGA BCs.
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Overall, there were three common peaks between PHTS-derived
and TCGA BCs (Fig. 2a), while there were 14 common deletion
peaks shared by the two groups (Fig. 2b).

CNV and expression correlational analysis
In order to examine if any of the genes present within the
identified CNV peaks are transcriptionally overexpressed for
amplification peaks (7 peaks) or underexpressed for deletion
peaks (46 peaks), we performed correlational studies between the
height intensity of each peak and log2-fold expression changes
(presence vs absence of the peak) for each gene in the peak
regions. For significant peaks in PHTS-derived BCs, we found some
genes are correlationally expressed and remained statistically
significant after Bonferroni correction. For the amplification peak
at 1q21.3, for instance, ENSA was correlationally over-expressed.
There were no genes identified in the amplification peak at
14q11.2, but the closest gene by distance called DAD1 was found
to be correlationally overexpressed with this peak. For deletion
peaks, the following genes were found to be correlationally
underexpressed at the corresponding regions: POLR2J4 at 7p13;

ANKRD20A1 at 9p21.11; CNTNAP3B at 9p11.2; MUC5B at 11p15.5;
CHEK2P2 at 15q11.1; MYH1 at 17p13.1; and OR7G1 at 19p13.2.
(Supplementary Table 3). Among genes tested in the 6p22.2
region, HIST1H2BI was correlationally overexpressed by indepen-
dent Fisher’s exact test (p= 0.0043). However, this finding did not
remain statistically significant after Bonferroni correction (Supple-
mentary Table 2).

Difference in CNV between Tier-1 and Tier-2 PHTS-BCs
In our previous work, we studied two groups of tumors classified
by the pathogenicity of the underlying germline PTEN variants.
Tier-1 germline PTEN variants (n= 31) are classified as pathogenic
or likely pathogenic, while Tier-2 germline PTEN variants (n= 13)
as variants of unknown significance (VUS, n= 8) or likely benign
(n= 5). To further characterize the differences between these two
types of tumors, we examined which CNV peaks are more
significantly amplified or deleted using Fisher’s exact test. Tier-1
BCs had three more significant deletion peaks compared to Tier-2
BCs, namely at 15p15.33, 19q13.33, and 21q22.3 (Fig. 3). None of
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Fig. 1 Recurrent CNV peaks and altered cytobands in PHTS-derived BCs and sporadic BCs from TCGA. a Genome plots showing recurrent
CNV peaks identified by gistic2 in samples from TCGA (top) and from PHTS-derived BCs (bottom). Red peaks represent recurrent amplification
and blue, deletion peaks. Genes contained in some of the significant peak regions are shown. Positions of BC-associated genes are shown at
the bottom of each plot, shown in red if an amplification is present and in blue if a deletion is observed. b Gistic bubble plots showing
significantly altered cytobands in BC samples from TCGA (left panel) and in PHTS-derived BCs (right panel). The X-axis represent the number of
samples which had CNV alterations and the Y-axis, the number of genes each bubble contains. The bubble size is according to −log10
transformed q values.
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the genes identified in these peaks have correlationally expressed
transcripts.

Differentially expressed genes between Tier-1 and Tier-2
PHTS-BCs
We further examined the differences between Tier-1 and Tier-2
derived BCs at the transcriptome level by performing differential
gene expression analysis. A hierarchical clustering heatmap
showed Tier-1 and Tier-2 derived BCs clustered into two distinct
patterns of differentially expressed genes (Fig. 4a). We identified a
total of 18 differentially expressed genes with 10 overexpressed
(MUC6, PRAME, RP11_788H181, PRSS33, COX6B2, AC0053364,
RBM24, IGFN1, mir-4477, and CYP4F12) and 8 underexpressed
(RP11_53O192, BEX1, mir-3156, ANKRD30B, FAR2P1, PENK, GLYATL2,
and ANKRD30BP1; Fig.4b and Table 1). There were two Tier-2
derived BC samples which clustered among Tier-1 derived BC
samples. Overall, we found no clear association between gene
expression differences and BC subtypes or the presence of
somatic PTEN or PIK3CA variants (Fig. 4b). The samples analyzed
were also classified into intrinsic subtypes based on PAM50 to
compare with clinical subtypes determined by immunohisto-
chemistry (IHC) (Supplementary Table 5). The difference between
Tier-1 and Tier-2 by intrinsic subtype was not statistically
significant by chi-square test (p= 0.43).

Pathway analysis
We then examined which biological pathways are characteristic of
Tier-1 BCs compared to Tier-2 BCs. Using the transcriptomic data
from RNA sequencing as input, Ingenuity Pathway Analysis (IPA)
revealed three enriched canonical pathways by Fisher’s exact test
for Tier-1: (1) alpha-Tocopherol Degradation, (2) BEX2 Signaling
Pathway, and (3) Oxidative Phosphorylation. After Benjamini-
Hochberg correction, the first pathway, alpha-Tocopherol Degra-
dation, remained statistically significant (P= 0.037).

Immune cell population characterization and immunotherapy
target gene abundance
In order to characterize patterns of immune cell populations
infiltrating or surrounding breast carcinomas, we used CIBERSORT9

to impute immune cell compositions in PHTS-derived and TCGA-
derived BCs. Beta-clustering based on fractions of each cell
population showed that the PHTS BC group is distinct from the
sporadic TCGA BC counterparts (Fig. 5a). We identified certain
immune cell populations whose proportions are significantly
increased in PHTS-derived BCs (t-test p < 0.05), namely naïve B

cells, M0 macrophages, M2 macrophages, resting mast cells,
monocytes, activated NK cells, and regulatory T cells (Supplemen-
tary Table 6, Supplementary Fig. 1). In contrast, the TCGA BCs had
significantly greater predicted proportions of cell populations
including dendritic cells (resting), eosinophils, M1 macrophages,
mast cells, CD4 memory activated T cells, CD8 T cells, follicular
helper T cells, and gamma delta T cells (Supplementary Table 6).
Relatedly, we compared the gene abundance between PHTS-
derived BCs and TCGA BCs for PD-L1 (CD274), CTLA4, and PD-1
(PDCD1). The TCGA BCs had significantly increased (Fisher’s exact
test p < 0.05) abundance in these genes (CD274, p= 0.014; CTLA4,
p= 0.003; PDCD1, p= 0.001; Fig. 5b).

DISCUSSION
In this study, we identified distinct somatic CNVs in PHTS-derived
BCs compared to sporadic BCs. Overall, we observed notable
heterogeneity across PHTS BC samples, which is consistent with
the nature of BC biology in general. Our data point to several key
findings, which help further characterize PHTS-derived BCs and
offer insights into the biology of BCs arising in the setting of
germline PTEN variants.
Our data revealed somatic CNVs in PHTS-BC which are distinct

from those in sporadic BCs from TCGA. The most significant
amplification peak was at 6p22.2, which was not observed in
TCGA. This peak contains several histone-related genes, including
HIST1H2BI, which was found to be correlationally expressed with
the copy number change. The lack of statistical significance in
correlational expression of the other histone genes may be due to
the limited sample size. Furthermore, although not statistically
significant, there was a higher proportion of somatic PTEN variants
in the samples which exhibited significant amplification at 6p22.2.
The PTEN protein is known to interact with histone H1 to maintain
chromatin organization and integrity10. Importantly, we previously
demonstrated that the tumor mutational burden is increased in
PHTS-derived BCs compared to sporadic BCs, which supports
genomic instability as an important component of BC biology in
PHTS5. When PTEN dysfunction negatively affects chromatin
stability, this leads to dysregulated gene expression10. We
therefore speculate that the significant 6p22.2 amplification peak
may represent a feedback loop to compensate for the compro-
mised genome integrity and increased instability. In such a case
where PTEN is severely dysfunctional, leading to genomic
instability, therapeutic agents targeting DNA damage may be
useful, including DNA intercalating agents such as doxorubicin
and poly(ADP-ribose) polymerase (PARP) inhibitors11.

Fig. 2 CNV peak comparison between PHTS-derived and TCGA BCs showing common and unique peaks. a Venn diagram showing three
common amplification peaks between PHTS-derived BCs and TCGA BCs. b Venn diagram showing 14 common deletion peaks between PHTS-
derived BCs and TCGA BCs.
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We found that for the amplification peak at 1q21.3, the cis-gene
alpha-endosulfine gene (ENSA) was found to be correlationally
over-expressed in PHTS relative to TCGA BCs. This peak was also
present in BC samples from TCGA and is known to be a recurrent
amplification in BC. ENSA has been found to be highly expressed
in triple negative breast cancer (TNBC) and associated with poor
survival in this group12. Upregulation of ENSA has been shown to
promote tumor growth by regulating cholesterol biosynthesis12.
This may be one of the common biological mechanisms for
carcinogenesis shared by PHTS-derived and sporadic BCs.
For deletion peaks, it is unknown how altered gene expression

due to copy number deletion may contribute to carcinogenesis in
BC. RNA Polymerase II Subunit J4, Pseudogene (POLR2J4) at 7p13
and Olfactory Receptor Family 7 Subfamily G Member 1 (OR7G1) at
19p13.2 are reported to be associated with non-breast can-
cers13,14. Contactin Associated Protein Family Member 3B
(CNTNAP3B) at 9p11.2 has been reported to be overexpressed in
atypical hyperplasia of the breast15. Mucin 5B, Oligomeric Mucus/
Gel-Forming (MUC5B) at 11p15.5 was also found to be correla-
tionally expressed with the peak at 11p15.5. This peak was also
identified in the TCGA group. Previous studies have shown MUC5B
expression was increased in BCs compared to normal breast
epithelium16, and that MUC5B expression is associated with
aggressive behavior of BC cell lines17. There is currently little
evidence in the literature describing checkpoint kinase 2
pseudogene 2 (CHEK2P2) at 15q11.1, Myosin Heavy Chain 1
(MYH1) at 17p13.1 or Ankryn Repeat Domain 20 Family Member
A1 (ANKRD20A1) at 9q21.11 as significant genes in BC. Whether
and how these copy number deletions and gene expression
differences play a role in breast carcinogenesis in PHTS warrants
further investigation.
There are two biologically distinct groups of PHTS-derived BCs

based on the pathogenicity of the underlining germline PTEN
variants: (1) Tier-1 variants are classified as pathogenic or likely
pathogenic; and (2) Tier-2 variants, as variants of unknown

significance (VUS) or likely benign5. Our previous exome sequen-
cing data revealed that Tier-1 and Tier-2 derived BCs are different
at the genomic level. This finding was further supported by
transcriptomic analysis data, where Tier-1 and Tier-2 BCs clustered
separately. Some genes overexpressed in Tier-1 BCs relative to
Tier-2 BCs may contribute to BC tumorigenesis and progression.
For instance, some members of the mucin protein family, have
been shown to be highly expressed in mucinous BC and
associated with negative estrogen receptor (ER) status18. Expres-
sion of PReferentially expressed Antigen of Melanoma (PRAME)
was previously shown to correlate with poorer clinical prognosis,
including higher rates of distant metastases and decreased overall
survival in BC19. Additionally, the PRAME protein has been
investigated as a potential immunotherapy target20,21. Serine
Protease 33 (PRSS33) and Cytochrome C oxidase subunit 6B2
(COX6B2) are not well-characterized in BC but their expression is
associated with other types of cancer22,23. Similarly, other over-
expressed genes including RNA binding motif protein 24 (RBM24),
Immunoglobulin-like and fibronectin type III domain containing 1
(IGFN1), and Cytochrome P450 family 4 subfamily F member 12
(CYP4F12) may have biological contributions to tumorigenesis in
Tier-1 PHTS BC but their exact roles are unclear24–28. Additional
investigation of their association with BC is warranted.
The contribution of Tier-1 underexpressed genes to tumorigen-

esis and disease progression is even less clear. Little is known
about the molecular functions of brain expressed X-linked 1 (BEX1)
and its exact role in tumorigenesis is still under debate29,30.
Proenkephalin (PENK) is one of the genes encoding for
endogenous opioid precursors31. Interestingly, downregulation
of PENK is reported to be associated with defects in cell motility
and abnormal adhesion in brain metastasis from BC32. Glycine-N-
acyltransferase like 2 (GLYATL2) is a glycine conjugating enzyme
with functions implicated in barrier function and immune
response33. Very little is known about any association between
ankyrin repeat domain 30B (ANKRD30B) and any type of cancer.
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Although some of the identified differentially expressed genes
have been implicated in BC development and progression, we do
not think one or just a few genes drive tumorigenesis in PHTS-
derived BCs. Thus, we performed pathway analysis, which
revealed ᾳ-tocopherol degradation to be a significantly impacted
canonical pathway in Tier-1 vs Tier-2 BCs. Also known as vitamin E,
ᾳ-tocophenol is an antioxidant34, and an animal and cell-based
study has shown that vitamin E may increase PTEN and p53 levels
in the rat prostate35. Furthermore, in a subtype of Cowden
syndrome with no germline PTEN mutations but with germline
Succinate dehydrogenase (SDHx) variants, vitamin E appears to

protect from oxidative stress and potentially suppresses tumor-
igenesis36. We hypothesize that vitamin E plays an important role
in suppressing the development of cancer in cells with dysfunc-
tional PTEN-related pathways. Being a key pathway in Tier-1 BCs,
vitamin E degradation may explain the more penetrant nature of
pathogenic germline PTEN variants including within the Tier-1 BCs
due to enhanced elimination of vitamin E, which is supposed to
protect cells from carcinogenic oxidative damage. This hypothesis
is worth experimentally testing, including in relevant Pten animal
models.
The immune landscape infiltrating or surrounding the breast

carcinomas appears distinct between PHTS and TCGA. Overall,
beta-clustering revealed these two groups to be significantly
different from one another in cell composition, with certain
immune cell populations predicted to be significantly increased in
proportion either in PHTS or TCGA BCs. More specifically, immune
cell populations which are either inactive or suppressive (naïve B
cells, M0 macrophages, M2 macrophages, resting mast cells,
monocytes, and regulatory T cells) are increased in PHTS BCs.
Furthermore, genes encoding immune checkpoint pathways,
including PD-L1 (CD274), CTLA4, and PD-1 (PDCD1), were found
less abundant in PHTS-derived BCs, suggesting that the PHTS-
derived BCs may be less responsive to immune checkpoint
inhibitors.
Consistent with our findings in PHTS BC, previous studies

focusing on sporadic BCs also showed that PTEN deficiency in
tumors is associated with an immunosuppressive tumor micro-
environment (TME) and resistance to immune checkpoint block-
ade37,38. Mechanistically, intrinsic PTEN deficiency in tumor cells
stimulates the activation of phosphoinositide 3-kinase (PI3K)
signaling and the secretion of VEGF, which lead to the recruitment
of immunosuppressive immune cells, abnormal angiogenesis, and
resistance to T cell-mediated killing38. In contrast, distinct from
sporadic cancers, PTEN deficiency in PHTS BCs occurs not only in
tumor cells, but also in the non-malignant normal cells (germline
effect), including immune and stromal cells, which could influence
the differentiation, expansion, activation, trafficking, and pheno-
types of immune and stromal cells in the TME as well. For
example, a previous study has found that genetic depletion of
PTEN enhances NK cell cytolytic function against malignant cells,
which is consistent with our data that increased proportion of
activated NK cells was found in PHTS BCs39. Accordingly, to design
strategies for immunotherapy in PHTS BCs, the influences of the
PTEN pathway in both tumor and non-tumor (especially immune)

Fig. 4 RNA-seq data showing two distinct groups in PHTS-derived BC samples, identifying alpha-tocopherol degradation as a significant
biological pathway in Tier-1 PHTS-BC. a Heatmap of hierarchical clustering based on 28 differentially expressed (DE) genes, showing the
PHTS-derived BC samples cluster into two groups, namely Tier-1 and Tier-2 (log2 fold change ± 1, p < 0.05). The X-axis lists the sample ID and
right Y-axis shows the DE gene IDs included in this analysis. b Enhanced volcano plot of RNAseq transcriptome data showing differentially
expressed genes in Tier-1 BCs compared to Tier-2 (log2 fold change ± 1, p < 0.05). The x-axis shows the magnitude of change (two fold change)
and the Y-axis, statistically significance in −log10P.

Table 1. Top differentially expressed genes detected by DESeq2 (Tier-
1 compared to Tier-2 BC).

Overexpressed genes Fold changes

MUC6 5.065

PRAME 4.318

RP11_788H181 4.178

PRSS33 4.092

COX6B2 3.071

AC0053364 2.648

RBM24 2.402

IGFN1 2.178

mir-4477 2.161

CYP4F12 2.096

Underexpressed genes Fold changes

RP11_53O192 −4.657

BEX1 −4.139

mir-3156 −2.975

ANKRD30B −2.910

FAR2P1 −2.338

PENK −2.227

GLYATL2 −2.204

ANKRD30BP1 −2.018

False discovery rate (FDR) threshold is 0.05 and log2 fold change threshold
is ±1.
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compartments need to be considered. Notably, mutational
signatures were also found to be associated with phenotypes of
the TME and responsiveness to immunotherapy. For example,
contrary to smoking associated signatures that show better
response to immunotherapy, age-related mutational signature
was found negatively associated with immune activity, survival
outcomes, and the response to immunotherapy in triple-negative
BC, melanoma, and/or NSCLC40,41. Our finding that PHTS BCs
contain enriched age-related mutational signature provides
another potential linkage between PTEN deficiency and defective
anti-tumor immune responses in PHTS BCs5.
In conclusion, this study reveals key genomic and transcrip-

tomic alterations in PHTS-derived BCs which are distinct from
those of the sporadic BC group from TCGA. We further revealed a
potential key pathway associated with BC biology in PHTS,
especially in the setting of pathogenic germline PTEN mutations.
The alterations we identified enable hypothesis-driven studies to
further characterize downstream functional effects contributing to
BC carcinogenesis in PHTS. PHTS will only rise in incidence as
clinical genetic testing becomes more widely accessible in the
clinic. Currently, there are no PHTS-specific treatment strategies
for any type of PHTS component cancers, including BC. More
extensive studies both at the clinical, translational and basic
science levels are warranted to develop PTEN-targeted and
personalized treatments, and perhaps preventatives, to effectively
manage PHTS-derived cancers.

METHODS
Research participants
Approved by the Cleveland Clinic’s Institutional Review Board
(IRB), written informed consents were obtained from all individuals
enrolled under the study protocol. Among 6934 research
participants prospectively accrued from September 1, 2005 to
September 10, 2020, we identified 3066 female participants with a
personal history of breast cancer (BC). Of these, 130 had germline
PTEN variants. We then identified 44 women with appropriate

consents for acquisition of biospecimens and whose tissues
representing BC were available for sequencing.
Original formalin-fixed paraffin-embedded (FFPE) samples

representing primary breast carcinoma were obtained from
healthcare institutions where the pathology specimens were
originally collected. DNA was extracted from the FFPE blocks using
QIAamp® DNA FFPE Tissue kit (Qiagen, Venlo, Netherlands).
Matched blood-derived DNA originating from lymphoblastoid cell
lines from the subjects were obtained from the Genomic Medicine
Biorepository at the Lerner Research Institute of the Cleveland
Clinic (Cleveland, OH, USA). Baseline patient characteristics
including histologic subtypes, BC-specific tumor markers, age of
diagnosis, staging, grade, germline PTEN variants and their
classifications, were extracted from the Cleveland Clinic Genomic
Medicine Institute’s relational database and as previously
described5.

DNA extraction
DNA was extracted from the FFPE samples using QIAamp® DNA
FFPE Tissue kit (Qiagen, Maryland, USA). Briefly, tissues from FFPE
blocks were deparaffinated with xylene and crude DNA was
precipitated with 100% ethanol. Following complete proteolysis of
the samples with Proteinase K at 56 degrees Celsius, DNA was
extracted and purified using the column method according to the
manufacturer’s protocol with slight reagent volume modifications.
For matched germline samples, we obtained blood-derived
genomic DNA originating from whole blood from the PHTS
individuals from the Genomic Medicine Biorepository of the
Genomic Medicine Institute at the Cleveland Clinic (Cleveland, OH,
USA) following standard procedures.

Processing of extracted DNA samples
Samples with sufficient DNA yields and quality were subjected to
exome sequencing. DNA concentration was measured with the
Qubit™ Fluorometer dsDNA HS (High Sensitivity) Assay kit (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). While the ideal
DNA concentration for sequencing library preparation was

Fig. 5 Immune cell population characterization and immunotherapy target gene abundance in PHTS-derived BCs vs sporadic BCs. a Beta-
clustering revealed that PHTS-derived BC samples had distinct immune cell populations compared to sporadic BC samples from TCGA. Box
plot showing beta-clustering based on fractions of each cell population, revealing that the PHTS BC group is distinct from the sporadic TCGA
BC counterparts. b Gene abundance analysis revealed PHTS-derived BC samples had decreased abundance in three immunotherapy target
genes. Box plot showing the gene abundance comparison between PHTS-derived BCs and TCGA BCs by Fisher’s exact test for PD-L1 (CD274),
CTLA4, and PD-1 (PDCD1). TCGA BCs had significantly increased abundance of these genes (CD274, p= 0.014; CTLA4, p= 0.003; PDCD1,
p= 0.001). For both (a and b): The bounds of each box represent the 25th and 75th percentiles (interquartile range [IQR]). The center line in
each box represents the median. The top and bottom whiskers extend to the 5th and 95th percentiles, respectively. Solid circles are
representing the possible outliers. Statistical significance between groups was tested using the Dunn method (P < 0.05). *P < 0.05, **P < 0.01,
***P < 0.001 and ns= non-significant.
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considered to be 30–40 ng/µL, the range of DNA concentrations of
submitted samples was 9.6–68.4 ng/µL and 19.0–98.4 ng/µL, and
the range of sample volumes submitted was 30–45 µL and
30–60 µL for tumor and normal samples, respectively.

Exome sequencing
Next generation sequencing (NGS) was performed on the tumor-
blood DNA pairs using the Illumina HiSeq platform at the Broad
Institute of MIT and Harvard University. The raw data were quality
controlled, aligned and sorted by the computational pipeline at
the Broad Institute to generate binary alignment map (BAM) files
for tumor and blood samples separately. The Broad Institute
created libraries from the submitted DNA samples and used the
Illumina HiSeq platform to generate NGS data. Of the 44 tumor-
normal samples, 28 were processed with the Illumina Somatic
Exome protocol and the remaining 16 with the TWIST Somatic
Exome protocol (pair-end sequencing with read length range of
67–140 bp). The Illumina Somatic Exome protocol had target
depths of 20× and 50× for the normal and tumor samples,
respectively. For the TWIST Somatic Exome protocol, the target
depth was ×100 for both normal and tumor samples. The raw data
were quality controlled, aligned and sorted through a standard
NGS pipeline at the Broad Institute. Reads were aligned to the
reference human genome GRCh37/hg19 using the BWA-ALN
aligner (version 0.5.9)42. Local realignment, duplicate removal and
base quality score recalibration were performed using the
Genome Analysis Toolkit and Picard per the Broad Institute
standard protocol43. The processed sequencing data, derived from
both tumor and blood samples, were delivered as binary
alignment map (BAM) files.

Sporadic breast cancer cohort
The control cohort data were derived from The Cancer Genome
Atlas (TCGA) breast cancer dataset from the Genomic Data
Commons (GDC). BC cases with available exome sequencing data
were selected. Cases with germline mutations in known cancer
susceptibility genes were identified based on previously published
data44 and excluded. Pertinent clinical information of the selected
cases was obtained from Nationwide Children’s Hospital dataset,
which is publicly available from the GDC portal (universally unique
identifier [UUID] 8162d394-8b64-4da2-9f5b-d164c54b9608).The
original input files (BAMs) of tumor and matched normal samples,
aligned to reference human genome GRCh38/hg38, were down-
loaded from the GDC archive website for bioinformatics analyses.

Copy number variation analysis
With the WES data from 44 PHTS-derived BC samples and
558 sporadic BC samples from TCGA as input, the segmentation
and raw copy number data were obtained using FACETS (version
0.5.6), an open-source tool to analyze allele-specific copy number
variations45. The critical value (cval) was specified at 50 to create
an input for gistic2 (version 6.15.28)46, which identifies signifi-
cantly recurrent copy number alterations in the somatic genome.
We used the following setting: a confidence interval of 95%, q
value of 0.01, amplification threshold of 0.3, and deletion
threshold of −0.3. For other parameters, we used the default
setting specified by gistic2. We applied the same CNV algorithm to
the raw TCGA sporadic BC dataset to make a head-to-head
comparison with our PHTS series data.

Patients and RNA extraction
FFPE tissue samples were available from a subset of the PHTS BC
series (n= 29). RNA was extracted from the available FFPE blocks
using AllPrep® DNA/RNA FFPE kit or RNeasy FFPE kit (Qiagen). RNA
concentration was measured with the Qubit Fluorometer dsDNA
HS (High Sensitivity) Assay kit (Thermo Fisher Scientific, Waltham,

MA, USA). While the ideal RNA concentration for sequencing
library preparation was considered to be 30–40 ng/mL, the range
of RNA concentrations of submitted samples was 57.6–540 ng/mL.
The range of 280/260 ratio was 1.81 to 2.07. The extracted RNA
was sent to the Genomics Core of the Department of Genetics and
Genome Sciences at Case Western Reserve University (Cleveland,
OH, USA) for library construction. The constructed RNA libraries
were then sent to the Genomics Core at the Cleveland Clinic
Lerner Research Institute (Cleveland, OH, USA) for RNA
sequencing.

RNA-seq library preparation and sequencing
The SMARTer Stranded Total RNA-Seq Kit v2 Pico Input
Mammalian from Takara Bio USA (protocol 050619) was used to
prepare RNA-Seq libraries. The total RNA input was adjusted to
100 ng in 8 ul of nuclease-free water. Since FFPE samples
intrinsically have highly degraded RNA, cDNA synthesis was
performed without fragmentation. Subsequent PCR steps utilized
the indexes from the SMARTer RNA Unique Dual Index Kit – 24U
(634451). Ribosomal cDNA was depleted, and the final amplifica-
tion included 13 cycles of PCR. Samples were purified with
AMPure beads and eluted in 18 µl of 5 mM Tris Buffer. Final QC
included running samples (diluted 1:1 in water) on the HSD1000
tape on the Agilent TapeStation and obtaining a Qubit reading
(Thermo Fisher Scientific).
The constructed libraries were sequenced on an Illumina

NovaSeq 6000 using an S2 flow cell, where dual-indexed paired-
end 151 bp sequencing was accomplished. Sequencing data were
demultiplexed using bcl2fastq and FastQC reports were generated
to evaluate the sequence quality of each sample.

Differentially expressed gene analysis
Based on the FastQC report of the original FASTQ files generated
by RNA sequencing, we noted that the first three base pairs in
reverse reads (R2) consistently had low quality scores at the 5′
end. Thus, the first three base pairs at the 5′ end in R2 FASTQ files
were clipped using trimmomatic (version 0.39)47. Adaptor and
ribosomal sequences were trimmed off using BBmap (version
37.96)48. The optimized FASTQ files were then aligned to hg38
using STAR (version 2.7.8)49.
FastQC reports were again obtained on STAR aligned FASTQ

files. Five out of 29 samples had less than 50% uniquely mapped
reads, and were excluded from differentially expressed gene
analyses. We analyzed the 24 samples quality control using
DESeq2 (version 1.34.0) to identify differentially expressed genes
with statistical significance50, defined as a false discovery rate
(FDR) < 0.05 and a log2-fold change >+/− 1 (>2 for overexpres-
sion and less than −2 for underexpression).
The hierarchical clustering heatmap was created using pheat-

map (version 1.0.12)51 and the volcano plot was created using
EnhancedVolcano (version 1.12.0)52, using R (version 4.1.2).

Intrinsic subtype determination
We used genefu, an R package, to classify 26 PHTS-BC derived RNA
samples into the basal, Her2, luminal A, luminal B, and normal-like
intrinsic subtypes based on PAM50. Genefu is available at its
Bioconductor site (http://www.bioconductor.org/packages/
release/bioc/html/genefu.html).

CNV and transcriptome correlational analysis
We performed correlational studies to examine which cis-genes
are correlationally expressed with the chromosomal peaks
detected by gistic2. For each sample, the log2 fold change raw
values from DESeq2 were tested for the actual copy change values
from gistic2. Pearson correlation analysis53 was used for genes
with normally distributed log2 fold changes, and Spearman
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correlation54 for those with non-normal distributions. Normal-
ization test was performed using D’Agostino-Pearson omnibus
normality test, Anderson-Darling test, Shapiro–Wilk normality test
and Kolmogrov-Smirnov normality test with the default setting
with alpha of 0.05 on GraphPad Prism version 9.0 (GraphPad
Software, San Diego, CA, USA). Bonferroni correction was
performed to identify statistically significant genes associated
with the peak regions containing multiple genes.

Breast cancer-associated genes
For targeted analysis, we aggregated lists of genes associated with
BC5. The selected genes were chosen from the TCGA BC
publication55, NCCN Genetic/Familial High-Risk Assessment: Breast
and Ovarian guidelines (version 1.2022-August 11, 2021), 22
previously reported gold standard (GS) genes for BC56, preliminary
BC susceptibility genes and targetable BC-associated genes from
the literature56–75. A total of 84 BC-associated genes were included
in the final list (Supplementary Table 1).

Pathway analysis
Output from DESeq2, including HUGO Gene Nomenclature
Committee (HGNC) gene ID, log2 fold changes and adjusted p
values, was uploaded into the Ingenuity Pathway Analysis (IPA)
software (QIAGEN, Venlo, Netherlands). The data were then
subjected to functional annotations and canonical pathway
analyses. The IPA’s Core Analysis workflow was performed using
default parameters. For Benjamini-Hochberg (B-H) correction, the
score cut off (A-log or B-H p value) of >1.3 was used.

CIBERSORT and diversity analyses
The TCGA Breast Invasive Carcinoma (BRCA) RNA-Seq dataset was
downloaded using TCGAbiolinks package76. Data retrieval was
performed by the three main TCGAbiolinks functions: GDCquery,
GDCdownload and GDCprepare. The raw feature count matrix was
converted to transcripts per million (TPM) and merged with PHTS
data. The merged TPM matrix was processed for differential
abundance analysis using the random-forest algorithm, imple-
mented in the DAtest package (https://github.com/Russel88/
DAtest/wiki/usage#typical-workflow). Briefly, the performance of
differential abundance methods was compared with False
Discovery Rate (FDR), Area Under the (Receiver Operator) Curve
(AUC), Empirical power (Power), and False Positive Rate (FPR).
Based on the DAtest’s benchmarking, we selected random forest
as the method of choice to perform differential abundance
analysis. We assessed the statistical significance (P < 0.05)
throughout, and whenever necessary, we adjusted p values for
multiple comparisons according to the Benjamini-Hochberg
method to control false discovery rate while performing multiple
testing on gene abundance according to sample categories. We
used CIBERSORT9 to perform RNA-Seq deconvolution analysis and
estimate immune cell fractions in our bulk RNA-Seq data. We used
SVASeq to perform the batch correction77.

Statistical analysis
Statistical analyses were performed with GraphPad Prism version 9.0
(GraphPad Software, San Diego, CA, USA), except for statistical
analyses incorporated in maftools (version 2.10.0)78. P values < 0.05
were considered statistically significant unless otherwise stated.
Two-sided tests were used unless otherwise stated.

Sample size estimation
We performed sample size calculations to determine the
minimum number of cases we need to be powered to identify
statistically significant genomic differences between the PHTS and
TCGA sporadic BC groups. In order to detect characteristic

differences at the variant level, we used the two proportions
derived from the somatic PTEN mutation rate in the preliminary
PHTS group with 29 samples (21.0%) and that of sporadic luminal
subtypes in the literature (4.0%)55,79. We estimated that 30 samples
from PHTS and 250 samples from TCGA should be sufficient to
achieve a power of 81.0% with an alpha of 0.05 (two-sided) to
detect a significant difference. RNA was extracted from samples
with sufficient tissue materials.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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