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T-cell priming transcriptomic markers: implications of
immunome heterogeneity for precision immunotherapy
Hirotaka Miyashita 1,11✉, Razelle Kurzrock 2,3,11, Nicholas J. Bevins4, Kartheeswaran Thangathurai 5,6, Suzanna Lee7,
Sarabjot Pabla8, Mary Nesline8, Sean T. Glenn9, Jeffrey M. Conroy8, Paul DePietro8, Eitan Rubin5, Jason K. Sicklick10 and Shumei Kato7✉

Immune checkpoint blockade is effective for only a subset of cancers. Targeting T-cell priming markers (TPMs) may enhance
activity, but proper application of these agents in the clinic is challenging due to immune complexity and heterogeneity. We
interrogated transcriptomics of 15 TPMs (CD137, CD27, CD28, CD80, CD86, CD40, CD40LG, GITR, ICOS, ICOSLG, OX40, OX40LG,
GZMB, IFNG, and TBX21) in a pan-cancer cohort (N= 514 patients, 30 types of cancer). TPM expression was analyzed for correlation
with histological type, microsatellite instability high (MSI-H), tumor mutational burden (TMB), and programmed death-ligand 1 (PD-
L1) expression. Among 514 patients, the most common histological types were colorectal (27%), pancreatic (11%), and breast
cancer (10%). No statistically significant association between histological type and TPM expression was seen. In contrast, expression
of GZMB (granzyme B, a serine protease stored in activated T and NK cells that induces cancer cell apoptosis) and IFNG (activates
cytotoxic T cells) were significantly higher in tumors with MSI-H, TMB ≥ 10 mutations/mb and PD-L1 ≥ 1%. PD-L1 ≥ 1% was also
associated with significantly higher CD137, GITR, and ICOS expression. Patients’ tumors were classified into “Hot”, “Mixed”, or “Cold”
clusters based on TPM expression using hierarchical clustering. The cold cluster showed a significantly lower proportion of tumors
with PD-L1 ≥ 1%. Overall, 502 patients (98%) had individually distinct patterns of TPM expression. Diverse expression patterns of
TPMs independent of histological type but correlating with other immunotherapy biomarkers (PD-L1 ≥ 1%, MSI-H and TMB ≥ 10
mutations/mb) were observed. Individualized selection of patients based on TPM immunomic profiles may potentially help with
immunotherapy optimization.
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INTRODUCTION
Immune interventions by cytokines, vaccines, checkpoint block-
ade, CAR T cells and other agents have been studied as
approaches to treat cancer. These endeavors have led to multiple
approvals of immunotherapeutics by the Food and Drug
Administration (FDA), starting with immune-stimulatory agents
such as interferons and interleukins1,2. More recently, a better
understanding of the molecular mechanisms of suppressed
immune response in the tumor microenvironment has enabled
the discovery of more potent immunotherapy agents. In 2011,
FDA approved the first immune checkpoint blockade (ICB)—
ipilimumab—a monoclonal antibody targeting cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), which gained author-
ization for advanced melanoma3. Subsequently, pembrolizumab, a
programmed death 1 (PD-1) inhibitor, was approved as a
treatment for advanced melanoma by FDA in 20144, followed by
approval of atezolizumab, a programmed death-ligand 1 (PD-L1)
inhibitor, for advanced urothelial carcinoma in 20165. As of 2021,
one CTLA-4 inhibitor, four PD-1 inhibitors, and three PD-L1
inhibitors have been approved. These potent immunotherapies
have impacted the treatment strategies of a large number of
malignancies6–8.
Despite the success of ICB in the management of advanced

cancers, only a portion of patients will respond. For instance, a

result from an early phase trial of pembrolizumab for advanced
non-small cell lung cancer showed an objective response rate of
19.4%9. To overcome this challenge, several response markers and
comprehensive immune signatures have been exploited to select
patients who would benefit from ICB, including PD-L1 expression
status10–13, microsatellite instability (MSI)14 and tumor mutational
burden (TMB)15–17. More recently, it was shown that other
genomic abnormalities, such as ARID1A mutations and specific
genomic signatures, are associated with favorable outcomes after
ICB18–21.
Even with the best available response markers, the response

rate is still only about 40–50% in biomarker-selected popula-
tions22. To improve the response rate, combination regimens such
as ICB with chemotherapy23, targeted therapy24, or another type
of ICB25 have been investigated. Another potential approach to
improving immunotherapy outcomes involves performing clinical
trials that are centered on stimulating cancer immunity through
T cells. T cell priming refers to the process of the T cell activation
following a primary recognition of specific peptide–major
histocompatibility complexes (MHC), and leading to expansion
of clones of differentiated effector cells26,27.
The genes associated with T cell priming are called T-cell

priming markers; they include, but are not limited to, CD137,
CD27, CD28, CD40, CD40LG, CD80, CD86, GITR, GZMB, ICOS,
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ICOSLG, IFNG, OX40, OX40LG, and TBX21 (Supplementary Table 1).
The preliminary results from clinical trials of T cell priming to date
are, for the most part, not very promising despite the strong
scientific rationale; the response rate is ~0–20% in most of the
trials with immune-stimulating factors. (Supplementary Table 2)
One possible explanation for the limited response rate is the
heterogeneity of cancer immunity. For instance, PD-L1 expression
may vary widely in solid tumors, ranging from 0 to 100% even
among the same histological type of cancer11. Moreover,
immunogram complexity and heterogeneity, reflected by compli-
cated and distinct RNA expression patterns of cancer immunity
markers has been reported for other checkpoints as well28.
Although some recent clinical trials have been designed based on
each patient’s molecular features29, most of the clinical trials with
immune-stimulating factors do not select the patients based on
their immunogram.

We hypothesized that T-cell priming markers may exhibit
heterogeneity between and within histologies.
Therefore, this study aimed to interrogate the transcriptomic

diversity of T-cell priming markers across and within advanced
cancer types, and to determine correlations with canonical
immunotherapy markers such as PD-L1 expression, TMB and/or
MSI status.

RESULTS
Patient demographics
We analyzed 514 samples from patients with a wide variety of
advanced/metastatic cancers as summarized in Fig. 1a and
Supplementary Table 3. The most common type of cancer was
colorectal cancer (27.2%) followed by pancreatic (10.7%), breast
(9.5%), ovarian (8.4%) and stomach cancer (4.9%). The median
(range) of the patients’ ages was 60.8 years (23.9–93.3 years old).
Sixty percent (N= 310) of the patients were women.

Overview of RNA expression of T-cell priming markers among
diverse cancers
Per the Methods, transcript abundance of the 15 T-cell priming
markers was normalized to internal housekeeping gene profiles
and ranked (0–100 percentile) to standardization by an internal
reference population of 735 tumors spanning 35 histologies as
follows: rank values “Low” (0–24), “Intermediate” (25–74), and
“High” (75–100).
The median rank values of T-cell priming markers RNA

expression ranged from 24.5 (IFNG) to 63 (ICOSLG). The ranges
of rank values of RNA expression for all T-cell priming markers
were 0–100 or 0–99. The proportions of patients with low
expression (RNA expression rank value: 0–24) of each T-cell
priming marker ranged from 14.7% (ICOSLG) to 50.0% (IFNG). The
proportions of those with intermediate expression (RNA expres-
sion rank value: 25–74) ranged from 40.1% (IFNG) to 55.6% (OX40).
The genes that showed high expression (RNA expression rank
value: 75–100) included ICOSLG (37.4% of patients), followed by
OX40 (23.7%) and OX40LG (23.2%). In contrast, IFNG, ICOS, and
CD137 less commonly showed high expression (9.9%, 13.6%, and
15.0% of patients, respectively) (Table 1, Fig. 1b).

97.7% of patients had distinct T cell priming expression
patterns
Among 514 patients, 502 (97.7%) had distinct patterns of
expression of the 15 different T-cell priming markers interrogated.
There were only six identical patterns of RNA expression shared by
more than one patient. (Each of the six patterns was shared by
only two patients: 12 patients in total).

T-cell priming marker expression patterns were not correlated
with cancer histology
Figure 2 summarize the relative risk of high expression of T-cell
priming markers in each histological type of cancer compared
with all other types. Variance in T-cell priming marker expression
depending on histological types was observed. For instance,
patients with colorectal cancer more commonly had high
expression of GZMB and ICOSLG (Relative risk [RR]: 1.87 and
1.46, respectively). In contrast, colorectal cancer patients rarely
had high expression in ICOS and CD40 (RR: 0.30 and 0.40,
respectively). Despite numeric difference seen in RR, after the
Bonferroni correction, no statistically significant difference was
observed in each T-cell priming marker expression based on
cancer types. Moreover, the heatmap showing expression profile
of T-cell priming markers did not show specific expression
patterns based on histological types. (Fig. 3).

Fig. 1 Baseline characteristics of the cohort (N= 514). a Pie chart
of cancer types in the cohort (N= 514). Others include: cervical
cancer (N= 5), bladder cancer (N= 4), gallbladder and extrahepatic
bile duct cancers (N= 4), prostate cancer (N= 4), brain and nervous
system cancers (N= 3), kidney and renal pelvis cancers (N= 3),
squamous cell carcinoma of the skin (N= 3), thyroid cancer (N= 3),
adrenal gland cancer (N= 3), lipomatous neoplasm (N= 2),
mesothelioma (N= 2), basal cell carcinoma of the skin (N= 1),
ocular melanoma (N= 1), primary peritoneal carcinoma (N= 1), and
thymic cancer (N= 1). b Frequency of patients with high expression
of T cell priming markers (N= 514). Horizontal axis represents the
percentage of patients with high expression of each T cell priming
marker. Transcript abundance was normalized to internal house-
keeping gene profiles and ranked (0–100) to standardized values by
comparing to a reference population of 735 tumors spanning 35
histologies. The expression profiles were stratified by rank values
into “Low” (0–24), “Intermediate” (25–74), and “High” (75–100). See
Methods as well.
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Patients with unstable MSI, high TMB and high PD-L1
expression had significantly higher expression of GZMB and
IFNG
The mean rank values of each T-cell priming marker RNA
expression depending on MSI, TMB and PD-L1 were investigated
to reveal their association. Patients with MSI-high (N= 15) showed
significantly higher RNA expression of GZMB and IFNG compared
to those with microsatellite stable status (N= 425). (Mean rank
value: 66.9 vs. 42.5 and 60.5 vs. 29.3, respectively, p value: 0.001
and <0.001, respectively, Table 2).
TMB ≥ 10 mutations/megabase (N= 33) was associated with

significantly higher RNA expression of GZMB and IFNG compared
to TMB < 10 mutations/megabase (N= 417). (Mean rank value:
55.5 vs. 39.9 and 44.0 vs. 27.4, respectively, p value: 0.002 and
<0.001, respectively, Table 2).
Patients with PD-L1 ≥ 1% (N= 146) demonstrated significantly

higher RNA expression of GZMB and IFNG relatively to those with
PD-L1 < 1% (N= 351) as well. (Mean rank value: 50.8 vs. 38.7 and
40.5 vs. 25.2, respectively, p value < 0.001 for both, Table 2). In
addition, PD-L1 ≥ 1% was associated with significantly higher
expression of CD137, GITR and ICOS. (Mean rank value: 49.4 vs.
37.5, 55.3 vs. 42.0 and 42.4 vs. 32.5, respectively, p value < 0.001 for
all, Table 2).

Clustering of T-cell priming marker depending on RNA
expression pattern into hot, cold and mixed sub-groups
Before clustering, the correlations of each T-cell priming marker
expression were analyzed to anticipate the expression patterns
through hierarchical clustering. Significant positive correlations
in most T-cell priming markers were observed. (Supplementary

Fig. 1) According to the 30 different indices to determine the
best number of clusters, based on T-cell priming marker RNA
expression, the optimal number of clusters in this dataset was
three. (Supplementary Fig. 2) The samples were classified
into three clusters by Ward’s method30. (See Methods and
Fig. 4, visualized by principal component analysis) Each
cluster had characteristic expression patterns of T-cell priming
markers—“Hot” (cluster 1, with high expression of most T-cell
priming markers, N= 78), “Cold” (cluster 2, with low expression
of most T-cell priming markers, N= 210) and “Mixed” (cluster 3,
anything not classified into “Hot” or “Cold”, N= 137). (Fig. 4).

Hot clusters (high expression of most T-cell priming markers)
correlated with PD-L1 expression, but not with MSI, TMB or
histologic type
The clusters were associated with PD-L1 status. While the
proportion of patients with PD-L1 ≥ 1% was 41.0% and 42.3% in
hot and mixed cluster, respectively, only 26.7% of patients in Cold
were PD-L1 ≥ 1%. (p= 0.0043) Although it was not statistically
significant, patients in cold cluster rarely showed MSI unstable.
(1.5% vs. 6.6% in hot cluster) There was no statistically significant
difference among the clusters in terms of the proportion of high
TMB or histological types of cancer. (Table 3).

Tissue of origin of did not correlate with T-cell priming marker
expression
To test the value of tissue stratification for separating samples by
T-cell priming marker expression, we compared the silhouette
scores of clusters formed by histologies before and after
histologies are randomized. If histologies and T-cell priming
marker expression patterns are connected, we expect the
randomization of histologies to reduce the silhouette score of
clusters formed by histologies. Our results do not support this
hypothesis: a mean silhouette score of −0.0958 was obtained
when considering large clusters (i.e., larger than median cluster
size, N= 40, Supplementary Fig. 3). In comparison, 100,000
randomizations of histologies resulted in a silhouette score of
−0.105 ± 0.017 (mean and standard deviation). Our results thus
indicate that tissue of origin randomization resulted in improved,
not degraded, silhouette scores.

DISCUSSION
In this analysis, the diversity of 15 T-cell priming marker
transcriptomic patterns across multiple types of advanced cancers
in 514 patients was demonstrated. Overall, 97.7% of tumors had
unique expression patterns of the T-cell priming markers, not seen
in any other patient. Similarly, Derks et al., by evaluating histology
and RNA expression, previously reported heterogeneity of
immune phenotypes of gastroesophageal adenocarcinoma31.
They discussed that this heterogeneity may explain poor
responses to ICB in gastroesophageal adenocarcinoma32. Hetero-
geneity of the immune microenvironment has also been observed
in lung33, ovarian34, breast35, and nasopharyngeal cancer36, and it
may influence response to immunotherapy and prognosis. The
diversity of T-cell priming marker expression pattern that we
describe herein further supports the concept of immunogram
heterogeneity previously noted by other groups in individual
histologies and with other types of immune markers. In particular,
T-cell priming markers showed no clustering within histology/
organ of origin cancer type analysis.
Interestingly we found that GZMB was highly expressed in

patients with unstable MSI, high TMB, and high PD-L1 expression.
GZMB is one of the most abundant serine proteases stored in
secretion granules of activated T cells and NK cells. In the tumor
microenvironment, secreted GZMB enters cancer cells by a
perforin-dependent mechanism and activates cascades leading

Table 1. RNA expression of T-cell priming markers among diverse
cancers (N= 514) (see Supplemental Table 1 for functions).

T-cell
priming
markers

Mean RNA
expression
(range)a

Low RNA
expression
N (%)a

Intermediate
RNA expression
N (%)a

High RNA
expression
N (%)a

CD27 45.2 (0–99) 150 (29.1%) 266 (51.8%) 98 (19.1%)

CD28 43.4 (0–100) 154 (30.0%) 258 (50.2%) 102 (19.8%)

CD40 46.1 (0–100) 153 (29.8%) 247 (48.1%) 114 (22.2%)

CD40LG 43.4 (0–100) 164 (31.9%) 246 (47.9%) 104 (20.2%)

CD80 48.4 (0–99) 126 (24.5%) 273 (53.1%) 115 (22.4%)

CD86 43.0 (0–99) 154 (30.0%) 276 (53.7%) 84 (16.3%)

CD137 41.1 (0–99) 169 (32.9%) 268 (52.1%) 77 (15.0%)

GITR 45.9 (0–99) 147 (28.6%) 268 (52.1%) 99 (19.3%)

GZMB 42.2 (0–99) 178 (34.6%) 251 (48.8%) 85 (16.5%)

ICOS 35.4 (0–99) 226 (44.0%) 218 (42.4%) 70 (13.6%)

ICOSLG 59.7 (0–100) 76 (14.8%) 246 (47.9%) 192 (37.4%)

IFNG 29.9 (0–100) 257 (50.0%) 206 (40.1%) 51 (9.9%)

OX40 50.6 (0–100) 106 (20.6%) 286 (55.6%) 122 (23.7%)

OX40LG 44.4 (0–99) 170 (33.1%) 225 (43.8%) 119 (23.2%)

TBX21 41.7 (0–99) 183 (35.6%) 244 (47.5%) 87 (16.9%)

The expression profiles were stratified by rank values into “Low” (0–24),
“Intermediate” (25–74), and “High” (75–100) percentile.
Percentage indicates percent of patients with that rank, e.g., 29.1% of
patients showed low RNA expression of CD27 in their tumors
See Methods as well.
CD Cluster of differentiation, GITR Glucocorticoid-Induced TNFR-Related,
GZMB Granzyme B, ICOS Inducible T Cell Costimulator, IFNG Interferon-
gamma, LG ligand, TBX T-Box Transcription Factor.
aTranscript abundance was normalized to internal housekeeping gene
profiles and ranked (0–100) to standardized by internal a reference
population of 735 tumors spanning 35 histologies.
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to apoptosis37. Larimer et al. reported higher expression of GZMB
in melanoma patients who responded to ICB compared to non-
responders38. The correlation between higher expression of GZMB
and unstable MSI has also been observed in colorectal cancer39,
endometrial cancer40, and gastric cancer41. There has been no
prior study regarding the correlation between TMB and expression
of GZMB, but a retrospective analysis on lung adenocarcinoma
showed that both TMB and RNA expression of GZMB are
decreased substantially with age42. In high-grade serous ovarian
cancer, higher expression of PD-L1 is associated with higher
expression of GZMB RNA43, a result similar to that seen in our
dataset, albeit across tumor types. The result of the current study
therefore reinforces a cancer immunity role for GZMB in MSI, TMB
high or PD-L1 high tumors.
We also noted that RNA expression of IFNG was significantly

higher in patients with unstable MSI, high TMB, and high PD-L1
expression. IFNG is one of the cytokines secreted by NK cells,
activated T cells, and antigen-presenting cells (APCs). IFNG
demonstrates an anti-tumor effect by activating cytotoxic T cells
and inducing tumoricidal effect by APCs, but it also promotes a
state of adaptive resistance caused by the upregulation of
inhibitory molecules44. The correlation between high IFNG
expression and unstable MSI has been reported in colon cancer45.
As seen in GZMB, RNA expression of IFNG is higher in younger
patients, who have higher TMB than older patients, suggesting the
correlation between IFNG expression and TMB42. It has been
reported that PD-L1 expression is induced by IFNG, leading to
immune tolerance46,47. The finding of significantly higher IFNG
RNA expression in unstable MSI, high TMB, and high PD-L1
expression is compatible with previous reports and adds a pan-
cancer landscape.
We additionally found that CD137, GITR, and ICOS showed

significantly higher expression in patients with high PD-L1
expression. CD137 is mostly expressed on activated T cells or NK
cells and the binding of CD137 ligand to CD 137 activates T cells

leading to an anti-cancer effect48. It has been reported that
CD137 signaling induces the production of INFG in T cells, which
can lead to higher expression of PD-L149. GITR is expressed on
regulatory, naïve, and memory T cells and binding of GITR to its
ligand leads to immune-stimulatory signals50. In breast cancer,
significantly higher GITR expression on tumor-infiltrating lympho-
cytes is seen in patients with positive PD-L151. ICOS is expressed in
activated T cells, and its ligand is expressed by B cells and APCs.
ICOS signaling induces immune stimulation52. It has been
reported that ICOS expression is enhanced after anti-PD-1 therapy
in mice53. Since our dataset does not contain the information of
previous treatment, further assessment is required to investigate
the association between ICB and ICOS expression.
To understand overall patterns of T-cell priming marker

expression rather than analyzing each marker separately, we
conducted hierarchical clustering with Ward’s method30 and
classified the T-cell priming marker expression patterns into three
clusters. The clusters were significantly associated with PD-L1
status; in particular, the hot cluster (high expression patterns of
T-cell priming markers) associated with PD-L1 positivity. The
interaction between T-cell priming markers and PD-L1 is complex
and not clearly understood. One potential explanation is that a
relatively low concentration of inflammatory cytokines, including
IFNG, in patients in the cold cluster leads to lower PD-L1
expression and vice versa for the hot cluster47. Although it was
not statistically significant, patients in the cold cluster rarely had
unstable MSI (1.5% vs. 6.6% in the hot cluster). It was previously
reported that MSI status is correlated with the intratumoral
immune microenvironment, including the number of infiltrating
CD8 T cells in colon cancer54. The most common type of cancer
included in the current analysis was colorectal cancer, which may
explain this numerical difference in MSI unstable depending on
the clusters based on T-cell priming marker expression patterns
(though this did not reach statistical significance). However, there
was no significant association between clusters and histological

Fig. 2 Relative risk of having high RNA expression of T cell priming markers among different types of cancer (N= 514). Relative risk
compared with all other types of cancer is demonstrated. Red represents higher risk and blue represents lower risk of having high RNA
expression. After Bonferroni correction, no significant differences were detected between cancers. Significant p value was defined as 0.0002
(0.05/240 variables from T-cell priming markers) or less after Bonferroni correction. P values were calculated with chi square test. Others
include: cervical cancer (N= 5), bladder cancer (N= 4), gallbladder and extrahepatic bile duct cancers (N= 4), prostate cancer (N= 4), brain
and nervous system cancers (N= 3), kidney and renal pelvis cancers (N= 3), squamous cell carcinoma of the skin (N= 3), thyroid cancer
(N= 3), adrenal gland cancer (N= 3), lipomatous neoplasm (N= 2), mesothelioma (N= 2), basal cell carcinoma of the skin (N= 1), ocular
melanoma (N= 1), primary peritoneal carcinoma (N= 1), and thymic cancer (N= 1). CUP cancer of unknown primary, H&NC head and neck
cancer, LBC liver and bile duct cancer, NEC neuroendocrine cancer, SIC small intestine cancer.
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type of cancer, suggesting that histology is not a determinant
factor of the immune microenvironment of cancer.
There are several limitations to the described study. Unlike

single cell RNA sequencing or immunohistochemistry, bulk RNA
sequencing in this analysis does not allow assessment of which
cells produce each marker. For example, there are B cells secreting
GZMB in the tumor microenvironment in colorectal, breast,
prostate, and cervical cancer, and their role in anti-tumor
immunity is different from that of T cells55. We discussed the
potential explanation for the association between high GZMB
expression with unstable MSI, high TMB, and high PD-L1
expression based on the assumption that most GZMB expression
is from cytotoxic cells, but the influence from GZMB-secreting B
cells cannot be excluded. Therefore, further analysis specifying the
cell types responsible for each RNA expression is warranted. In
addition, various cancer types were analyzed in a combined
manner rather than separately so that a pan-cancer perspective is
incorporated into the anti-cancer immunome. However, there is a
histology-specific finding in cancer immunity as well. For instance,
the association between unstable MSI and increased number of
infiltrating CD8 T cells is only observed in colorectal cancer, but
not in endometrial carcinoma54. Detailed analysis focusing on
each histological type of cancer is also required for a better
understanding of anti-tumor immunity. The understanding of the
role of T-cell priming markers is still in early stages. It is thought
that CD80, one of the T-cell priming markers, binds to CD28 on
active T cells to activate immune-stimulating signals56, so the

agonist of CD28 was used in a clinical trial, which resulted in
severe cytokine storm in healthy participants57. It is also known
that CTLA-4 is upregulated through CD80/CD86 and CD28
interaction, causing peripheral immune tolerance58. Based on this
finding, galiximab, an anti-CD80 antibody, was studied as a
treatment of B cell lymphoma59. The fact that both agonist and
antagonist of the same signaling pathway were studied to treat
cancer suggests a limited understanding of the mechanism of
cancer immunity. It is also estimated that more genes than the 15
markers analyzed in this analysis play a role in T-cell priming. The
effort to integrate large multi-omics data has been promising to
detect genes involved in cancer immunity60,61. The finding of
heterogeneity in T-cell priming marker expression needs to be
interrogated when a new gene with T-cell priming role is
discovered through such effort. Future analyses should also
correlate TPM expression with that of additional immune markers.
In addition, validation of the finding in additional cohorts of
patients with advanced or metastatic disease will be necessary.
Another limitation of the study is that patients may have had a
variety of prior therapies. Our study does not include clinical
correlations, which will be important for future work. Further
research on the molecular biology regarding cancer immunity is
necessary for better design of future clinical trials targeting T-cell
priming markers. Future studies should try to establish the
individual contribution of TPMs, as well as other immune markers
to outcome.

Fig. 3 Expression profile of T-cell priming markers in various types of cancer (N= 514). Transcript abundance was normalized to internal
housekeeping gene profiles and ranked (0–100) to standardized values by comparing to a reference population of 735 tumors spanning 35
histologies. This figure shows no pattern of expression that can be differentiated by tumor type. The expression profiles were stratified by rank
values into “Low” (0–24), “Intermediate” (25–74), and “High” (75–100). See Methods as well. Colorectal (N= 140), pancreatic (N= 55), breast
(N= 49), ovarian (N= 43), stomach (N= 25), sarcoma (N= 24), uterine (N= 24), lung (N= 20), liver and bile Duct (N= 19), esophageal (N= 17),
neuroendocrine (N= 15), cancer of unknown primary (N= 13), head and neck (N= 12), small intentine cancer (N= 12), Melanoma (N= 6).
Others include: cervical cancer (N= 5), bladder cancer (N= 4), gallbladder and extrahepatic bile duct cancers (N= 4), prostate cancer (N= 4),
brain and nervous system cancers (N= 3), kidney and renal pelvis cancers (N= 3), squamous cell carcinoma of the skin (N= 3), thyroid cancer
(N= 3), adrenal gland cancer (N= 3), lipomatous neoplasm (N= 2), mesothelioma (N= 2), basal cell carcinoma of the skin (N= 1), ocular
melanoma (N= 1), primary peritoneal carcinoma (N= 1), and thymic cancer (N= 1). Each column represents a patient. red, green, and blue
means high, intermediate and low expression respectively. BC breast cancer, CRC colorectal cancer, CUP cancer of unknown primary, H&NC
head and neck cancer, LBC liver and bile duct cancer, LC lung cancer, NEC neuroendocrine cancer, OC ovarian cancer, PC pancreatic cancer, SC
stomach cancer, SIC small intestine cancer, UC uterine cancer.
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Despite several limitations, to the best of our knowledge, this is
one of the first pan-cancer transcriptome analyses of T-cell
priming markers. There are more studies analyzing signatures of
cancer immunity comprehensively using larger cohorts12,13, but
no other study has focused on T-cell priming marker as exclusively
as this study. The finding of the heterogeneity of T-cell priming
marker expression pattern unrelated to histological types of
cancer may explain the limited response rate in previous clinical
trials targeting T-cell priming markers. We may be in a similar
situation as the early developmental phase of targeted therapy for
cancer with a specific genomic mutation. For instance, gefitinib,
one of the EGFR inhibitors, was initially investigated in a clinical
trial for patients with advanced non-small cell lung cancer
regardless of EGFR mutation status, showing a response rate of
9–12%62. However, in a subsequent trial with an inclusion criterion
of EGFR mutation, the response rate was increased above 70%63.
Hence, we may need to select patients for specific immunothera-
pies based on the immunomic state in the tumor microenviron-
ment in order to maximize treatment effects in clinical trials
targeting T-cell priming markers, as a recent clinical trial
demonstrated a feasibility and efficacy of patient selection based
on tumor molecular subtypes in metastatic clear cell renal
carcinoma29.
In conclusion, the transcriptome of T-cell priming markers

showed immunomic heterogeneity across different histological
types of cancer. Furthermore, almost all tumors had a T-cell
priming immunogram that was complex and also distinct from
other tumors. Therefore, in order optimize efficacy of agents

targeting T cell priming, selection of the patients based on
immunomic state of the tumor microenvironment, rather than
histologic type of cancer or other factors may be needed.

METHODS
Patients
The RNA expression levels of 15 T-cell priming markers in various
types of solid tumors from 514 patients seen at the University of
California San Diego (UCSD) Moores Cancer Center for Persona-
lized Therapy were analyzed at a Clinical Laboratory Improvement
Amendments (CLIA)-licensed and College of American Pathologist
(CAP)-accredited clinical laboratory, OmniSeq (https://
www.omniseq.com/). Normally, the patients with advanced cancer
who exhaust standard treatments are referred to the UCSD
Moores Cancer Center for Personalized Therapy. All patients in the
clinic who consented to participate in this observational study
were included, regardless of their age, sex, race, type and of
cancer, previous treatments, or comorbid conditions. In addition
to the expression data, the information on the patients’ age, sex,
histological types of primary cancer, microsatellite instability (MSI),
tumor mutational burden (TMB), and programmed death-ligand 1
(PD-L1) status were collected. If a patient had two or more
different samples that were analyzed in different days, the one
from earlier timepoint was used for the analysis, which may or
may not be a sample from initial diagnosis. The patients included
in this analysis provided written informed consent.

Table 2. Expression of T-cell priming markers based on microsatellite status (N= 440)a, tumor mutational burden (N= 450)b and programmed death
ligand 1 expression, (N= 513)c (See Supplementary Table 1 for functions of T-cell priming markers).

Microsatellite status Tumor mutational burden (mutations/
mb)

Programmed death ligand 1 expression

T-cell priming
markers

Stable
(N= 425)d

Unstable
(N= 15)d

P value <10 (N= 417)d ≥10
(N= 33)d

P value <1%
(N= 358)d

≥1%
(N= 155)d

P value

CD27 45.4 (0–99) 60.1 (12–87) 0.051 42.9 (0–99) 45.5 (0–91) 0.61 43.1 (0–99) 50.3 (0–99) 0.008

CD28 43.9 (0–100) 39.7 (13–87) 0.58 41.4 (0–98) 33.9 (0–88) 0.13 44.6 (0–100) 40.8 (0–98) 0.16

CD40 46.3 (0–100) 44.1 (6–82) 0.77 45.1 (0–100) 33.0 (0–86) 0.019 44.2 (0–99) 50.4 (0–100) 0.022

CD40LG 44.3 (0–100) 45.1 (0–78) 0.92 41.2 (0–99) 35.6 (0–88) 0.28 45.1 (0–100) 40.0 (0–99) 0.076

CD80 48.5 (0–99) 62.3 (29–82) 0.057 46.2 (0–99) 50.2 (3–91) 0.42 46.4 (0–98) 53.2 (0–99) 0.010

CD86 42.6 (0–99) 57.5 (12–90) 0.042 40.8 (0–99) 43.2 (0–90) 0.63 41.2 (0–99) 47.3 (0–98) 0.021

CD137 40.8 (0–99) 56.7 (26–79) 0.031 38.4 (0–99) 45.2 (0–95) 0.17 37.5 (0–99) 49.4 (0–99) <0.001e

GITR 46.3 (0–99) 54.1 (27–75) 0.29 45.3 (0–99) 46.2 (0–99) 0.86 42.0 (0–99) 55.3 (0–99) <0.001e

GZMB 42.5 (0–99) 66.9 (6–98) 0.001e 39.9 (0–99) 55.5 (1–98) 0.002e 38.7 (0–98) 50.8 (0–99) <0.001e

ICOS 36.2 (0–99) 43.9 (0–84) 0.32 33.2 (0–99) 36.5 (0–90) 0.53 32.5 (0–99) 42.4 (0–99) <0.001e

ICOSLG 60.3 (0–99) 58.9 (21–96) 0.85 59.3 (0–100) 57.2 (0–98) 0.69 61.5 (0–100) 55.8 (0–99) 0.072

IFNG 29.3 (0–99) 60.5 (16–93) <0.001e 27.4 (0–100) 44.0 (0–93) <0.001e 25.2 (0–100) 40.5 (0–99) <0.001e

OX40 50.5 (0–100) 59.9 (18–93) 0.18 48.7 (0–100) 51.2 (0–93) 0.60 49.2 (0–100) 53.8 (0–100) 0.10

OX40LG 44.4 (0–99) 44.8 (5–97) 0.96 44.0 (0–99) 35.1 (0–97) 0.11 45.5 (0–99) 41.9 (0–96) 0.22

TBX21 41.7 (0–99) 57.2 (15–80) 0.042 39.1 (0–99) 42.4 (0–99) 0.52 40.6 (0–98) 44.6 (0–99) 0.14

CD Cluster of differentiation, GITR Glucocorticoid-Induced TNFR-Related, GZMB Granzyme B, ICOS Inducible T Cell Costimulator, IFNG Interferon-gamma, LG
ligand, TBX T-Box Transcription Factor.
a440 patients were evaluable for both T-cell priming marker expression and microsatellite status. 74 patients were not evaluated for microsatellite status.
b450 patients were evaluable for both T-cell priming marker expression and tumor mutational burden. 64 patients were not evaluated for tumor mutational
burden.
c513 patients were evaluable for both T-cell priming marker expression and PD-L1 status. One patient had insufficient quality of PD-L1 testing.
dMean and range of rank value of each gene expression are demonstrated. For instance, for patients with microsatellite stable, there are 425 patients and their
mean rank value for CD27 expression was 45.4 and the range was 0–99. The rank value is based on the percentile.
eSignificant p value (two-sided t-test) was defined as ≤0.003 (0.05/15 variables from T-cell priming markers) after Bonferroni correction. Transcript abundance
was normalized to internal housekeeping gene profiles and ranked (0–100), standardized by internal reference population of 735 tumors spanning 35
histologies. See the Methods as well.
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Fig. 4 Cluster plot based on T-cell priming marker expression by Ward’s method30 (N= 514). Principal component analysis was performed
and the data points according to the first two principal components that explain the majority of the variance was plotted. Briefly, dimension 1
(Dim 1) represents the value on the vector in the 15-dimensional field, which accounts for the largest possible variance, and it accounts for
45.8% of all variance of the 15 different T-cell priming gene expression in 514 samples. Dimension 2 (Dim 2) is the value on the vector that
accounts the second largest possible variance. Dim 2 explains 9% of total variance in the dataset. Ward’s method is a hierarchical clustering
method to assign the data points to preset number of clusters to minimize the within-cluster variance. In this analysis, patients were clustered
into three clusters. Orange, purple and dark green dots represent the patients classified into cluster 1, 2, and 3, respectively. Hot cluster is one
of the three clusters identified by Ward’s hierarchical clustering, which has characteristics of generally high expressions of T-cell priming
markers. Cold cluster is one of the three clusters identified by Ward’s hierarchical clustering, which has characteristics of generally low
expressions of T-cell priming markers. Mixed cluster is one of the three clusters identified by Ward’s hierarchical clustering, which has
characteristics of mixed expression levels of T-cell priming markers. Transcript abundance was normalized to internal housekeeping gene
profiles and ranked (0–100) to standardization by an internal reference population of 735 tumors spanning 35 histologies. The expression
profiles were stratified by rank values into “Low” (0–24), “Intermediate” (25–74), and “High” (75–100). See Methods as well. Each column
represents each patient. Red, green, and blue means high, intermediate, and low expression respectively. According to the silhouette method
based on T-cell priming marker RNA expression, the optimal number of clusters in this dataset was three: Hot” (cluster 1, with high expression
of most T-cell priming markers, N= 78), “Cold” (cluster 2, with low expression of most T-cell priming markers, N= 210) and “Mixed” (cluster 3,
anything not classified into “Hot” or “Cold”, N= 137).
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Sampling of tissue and analysis of cancer immunity markers
After the collection, tumors were provided as formalin-fixed,
paraffin-embedded (FFPE) samples, and evaluated by RNA
sequence at OmniSeq laboratory. All RNA was extracted from
FFPE using truXTRAC FFPE extraction kit (Covaris, Inc., Woburn,

MA), with some modification to the instruction by the
manufacturer. After purification, RNA was dissolved in 50 µL
water and the yield was measured through Quant-iT RNA HS
assay (Thermo Fisher Scientific, Waltham, MA), as per the
manufacturer’s recommendation. For appropriate library pre-
paration, the pre-defined titer of 10 ng RNA was referred to as
acceptance criteria. Torrent Suite’s plugin immuneResponseRNA
(v5.2.0.0) 34 was used for the absolute reading of the RNA
sequence. The RNA expression of 397 different genes was
measured. Among them, we focused on 15 genes that are
related to T cell priming related cancer immunity, including
CD27, CD28, CD80, CD86, CD40, CD40LG, CD137, GITR, GZMB,
ICOS, ICOSLG, IFNG, OX40, OX40LG, and TBX21. (T-cell priming
markers, Supplementary Table 1 and Table 2).
Transcript abundance was normalized to internal housekeeping

gene profiles and ranked (0–100 percentile) in a standardized
manner to a reference population of 735 tumors spanning 35
histologies. The expression profiles were stratified by rank values
into “Low” (0–24), “Intermediate” (25–74), and “High” (75–100) to
categorize expression level of each marker and analyze the
similarities of T-cell priming marker expression patterns among
patients in a clear-cut manner64.

Definitions and measurements of MSI, TMB and PD-L1
expression
As for MSI, genomic DNA was extracted from qualified FFPE tumors
(>20% neoplastic nuclei) by means of the truXTRAC FFPE extraction
kit (Covaris). The MSI-NGS assay evaluates 29 homopolymer loci,
including BAT-25 and BAT-26, by sequencing tumor DNA (20 ng) on
an Illumina MiSeq Sequencer. The assay has a computational tool,
MSI-NGS Caller, which compares the tumor homopolymer repeat
profile of a sample to a normal allele distribution predefined at each
locus, to make MSI calls (Unstable, Stable or Inconclusive) without
the need for a matched normal DNA65.
For TMB, genomic DNA was extracted from qualified FFPE

tumors (>30% neoplastic nuclei) by means of the truXTRAC FFPE
extraction kit (Covaris) with 10 ng DNA input for library prepara-
tion. DNA Libraries were prepared with Ion AmpliSeq targeted
sequencing chemistry using the Comprehensive Cancer Panel,
followed by enrichment and template preparation using the Ion
Chef system, and sequencing on the Ion S5XL 540 chip (Thermo
Fisher Scientific). Following removal of germline variants, synon-
ymous variants, indels and SNVs with <5% VAF, TMB is reported as
eligible mutations per qualified panel size (Mutations/Mega-
base)64. TMB ≥ 10 was set as a cut off since FDA has approved
pembrolizumab for advanced cancer with high TMB, based on the
finding of KEYNOTE-158 trial, which used TMB ≥ 10 as a cutoff66.
The measurement of PD-L1 was conducted by three different

immunohistochemistry (IHC) assays; Dako PD-L1 IHC 22C3 pharmDx
assay, Dako PD-L1 IHC 28-8 pharmDx assay (Dako North America, Inc.,
Carpinteria, California, USA, N= 474, 6, respectively), and VENTANA
PD-L1 (SP142) assay (Ventana Medical Systems, Inc., Tuscon, Arizona,
USA, N= 33). The cutoff of 1% was used in the analysis since 1% is
the minimal expression of PD-L1 with clinical significance67.

Clustering and statistical methods
Statistical analysis was verified by our statistician/bioinformatician
(ER). Patient’s baseline characteristics and the frequency of T-cell
priming markers were summarized by descriptive statistics. All
statistical analyses were conducted with R 3.6.1 (R Foundation for
Statistical Computing, Vienna, Austria). Hierarchical clustering was
conducted to classify the samples into distinct groups based on
expression patterns of T-cell priming markers. The optimal number
of clusters was estimated by 30 different indices using R package
“NbClust”68. Ward’s minimum variance method was utilized for
cluster production30. The similarity of each sample’s T-cell priming
markers expression were visualized on the two-dimensional field

Table 3. Characteristics of hot, cold and mixed clusters (N= 514 for
T-cell priming marker expression; N= 388 for other variables including
histologies, MSI, TMB and PD-L1 status) (see Supplemental Table 1 for
T-cell priming marker functions)a.

T-cell priming
markers

Hot cluster
(N= 89)b

high expression
N (%)

Cold cluster
(N= 249)c

high expression
N (%)

Mixed cluster
(N= 176)d

high expression
N (%)

CD27 61 (68.5%) 8 (3.2%) 29 (16.5%)

CD28 58 (65.2%) 4 (1.6%) 40 (22.7%)

CD40 36 (40.4%) 21 (8.4%) 57 (32.4%)

CD40LG 53 (60.0%) 7 (2.8%) 44 (25.0%)

CD80 54 (60.7%) 10 (4.0%) 51 (29.0%)

CD86 47 (52.8%) 1 (0.4%) 36 (20.5%)

CD137 48 (53.9%) 5 (2.0%) 24 (13.6%)

GITR 46 (51.7%) 25 (10.0%) 28 (15.9%)

GZMB 45 (50.6%) 20 (8.0%) 20 (11.4%)

ICOS 50 (56.2%) 3 (1.2%) 17 (9.7%)

ICOSLG 44 (49.4%) 75 (30.1%) 73 (41.5%)

IFNG 34 (38.2%) 3 (1.2%) 14 (8.0%)

OX40 51 (57.3%) 20 (8.0%) 51 (29.0%)

OX40LG 32 (36.0%) 33 (13.3%) 54 (30.7%)

TBX21 52 (58.4%) 9 (3.6%) 26 (14.8%)

Other variables Hot cluster
(N= 61)
N (%)

Cold cluster
(N= 203)
N (%)

Mixed cluster
(N= 124)
N (%)

P value

MSI Unstable 4 (6.6%) 3 (1.5%) 7 (5.6%) 0.059

TMB ≥ 10
mutations/mb

6 (9.8%) 15 (7.4%) 10 (8.1%) 0.83

PD-L1 ≥ 1% 27 (44.3%) 44 (21.7%) 50 (40.3%) <0.001e

Colorectal
Cancer

15 (24.6%) 62 (30.5%) 34 (27.4%) 0.94

Pancreatic
Cancer

8 (13.1%) 14 (6.9%) 15 (12.1%) 0.17

Breast Cancer 9 (14.8%) 20 (9.9%) 11 (8.9%) 0.44

For the genes, the numbers and percent of patients in each cluster with
high expression are demonstrated. For other variables, the number and
percentages of patients in each cluster meeting each criterion are
demonstrated. For instance, 48 patients (53.9%) in Hot cluster have high
expression of CD137; high expression is defined as rank value ≥75th
percentile. 4 patients (6.6%) in Hot cluster had MSI unstable status.
CD Cluster of differentiation, GITR Glucocorticoid-Induced TNFR-Related,
GZMB Granzyme B, ICOS Inducible T Cell Costimulator, IFNG Interferon-
gamma, LG ligand, MSI microsatellite instability, PD-L1 programmed
death ligand 1, TBX T-Box Transcription Factor, TMB tumor mutational
burden.
a514 patients were evaluated for T-cell priming marker expression; 388/
514 had all data of T-cell priming marker expression, MSI status, TMB, and
PD-L1 status.
bHot cluster is one of the three clusters identified by Ward’s hierarchical
clustering, and has characteristics of generally high expression of T-cell
priming markers.
cCold cluster has characteristics of generally low expressions of T-cell
priming markers.
dMixed cluster has characteristics of mixed expression levels of T-cell
priming markers.
eSignificant p value (chi square test) was defined ≤0.008 (0.05/6 variables)
for other variables.
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using principal component analysis69. Briefly, dimension 1 (Dim 1)
represents the value on the vector which accounts for the largest
possible variance, and dimension 2 (Dim 2) is the value on the
vector that accounts the second largest possible variance. To
quantitively test the connection of histologies to T-cell priming
marker expression, the silhouette coefficient (also known as
silhouette score) was calculated assigning each sample to cluster
based on its histologically determined tissue of origin. Small
cluster (i.e., clusters smaller than the median cluster size) were
omitted, resulting in removal of 40 samples (of a total of 514). A
specialized code, which is available upon request, was developed
in the R language, that collects the mean score for 100,000
randomizations of tissue of origin.
R packages “tidyverse”, “cluster”, “factoextra” and “dendextend”

were used for these analyses. P values were calculated by chi-square
test for categorical values. For continuous values, two-sided t-test was
used to calculate p values. Statistical significance was determined by
p≤ 0.05 with Bonferroni correction for multiple comparisons.

Ethical approval and consent to participate
Every investigation was conducted following the guidelines of the
UCSD Institutional Review Board for data collection (Study of
Personalized Cancer Therapy to Determine Response and Toxicity,
UCSD_PREDICT, NCT02478931) and any investigational therapies
for which patients consented.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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