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Tumor collagens predict genetic features and patient outcomes
Kevin S. Guo 1 and Alexander S. Brodsky1✉

The extracellular matrix (ECM) is a critical determinant of tumor fate that reflects the output from myriad cell types in the tumor.
Collagens constitute the principal components of the tumor ECM. The changing collagen composition in tumors along with their
impact on patient outcomes and possible biomarkers remains largely unknown. The RNA expression of the 43 collagen genes from
solid tumors in The Cancer Genome Atlas (TCGA) was clustered to classify tumors. PanCancer analysis revealed how collagens by
themselves can identify the tissue of origin. Clustering by collagens in each cancer type demonstrated strong associations with
survival, specific immunoenvironments, somatic gene mutations, copy number variations, and aneuploidy. We developed a
machine learning classifier that predicts aneuploidy, and chromosome arm copy number alteration (CNA) status based on collagen
expression alone with high accuracy in many cancer types with somatic mutations, suggesting a strong relationship between the
collagen ECM context and specific molecular alterations. These findings have broad implications in defining the relationship
between cancer-related genetic defects and the tumor microenvironment to improve prognosis and therapeutic targeting for
patient care, opening new avenues of investigation to define tumor ecosystems.
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INTRODUCTION
Successful personalized medicine requires tumor classification
that predicts patient responses with high accuracy1. Molecular
targeting has not typically considered the tumor extracellular
matrix (ECM) when considering therapy options. The ECM is a
collection of structural proteins and enzymes that provides a
cohesive scaffold for cells and tissues. Identifying ECM composi-
tion and the functional roles of constituent proteins in healthy and
diseased states is at a relatively early stage of characterization.
ECM environments in malignant neoplasias can influence tumor
growth, metastasis, and overall disease outcomes, in part through
regulation of known cancer hallmarks2. The tumor microenviron-
ment is increasingly being shown to impact cell states, responses
to therapy, patient outcomes, and potential for novel biomarkers3.
Collagens constitute up to 30% of the total protein in the body

and are the major components of the ECM. High expression of
collagens in tumors has long been associated with poor outcomes
as part of stromal expression signatures in many, but not all,
malignancies4,5. These stroma, or mesenchymal, groups are
enriched for collagens, yet the expression of collagens in tumors
of various cancer types has not been evaluated.
Other studies have evaluated aspects of the matrisome in TCGA

suggesting that an organized transcription factor network
specifies the ECM6. Proteomics is revealing the complexity of
the matrisome originating from multiple cell types7,8. Individual
collagens such as collagen types IV9, collagen type X10, and XI11

have been proposed as biomarkers. Together, these findings
underscore the importance of the matrisome and collagens in
forming the tumor ecosystem. Because collagens and the
matrisome proteins are secreted from multiple cell types, the
composition of a site-specific ECM reflects the output of myriad
cell types and pathways acting in concert to influence disease
progression.
Collagens are a large complex family of proteins with a wide

range of structures and tissue-specific expression (Supplemental
Table 1). Minor collagens are informally defined as any collagen at

lower expression levels compared to the major structural
collagens, Types I, II, and III, found in high abundance in many
tissues. Fibrillar collagens constitute a subgroup of collagens and
include type I and many of the collagens that interact with type I
including types V, XI, XII, XIV, and XVII (Supplemental Table 1)12,13.
Dysregulation leads to expression of many tissue-specific col-
lagens in a range of cancer types.
Cellular pathways and molecular alterations impart context-

dependent impacts, complicating therapeutic decision-making
and incurring variable treatment responses. We hypothesized that
tumors can be classified by ECM composition, revealing connec-
tions among functional pathways and the microenvironment. We
find that classifying tumors solely based on expression of the 43
human collagen genes captures discriminating features between
cancer types, compared to results from hundreds of genes
representing the matrisome, and simplifies analysis to demon-
strate specificity. Collagen-defined classification in multiple cancer
types identified strong associations with overall survival, path-
ways, molecular alterations, histology, and tissue of origin.
Collagen clustering classified tumors with high aneuploidy into
distinct groups associated with survival in multiple cancer types.
We developed a machine-learning model to predict aneuploidy
and CNAs from collagen expression alone.
Enrichment of specific somatic mutations in tumor groups

classified by collagen expression implies that the combination of
genetics and constituent collagens present in the tumor micro-
environment may be exploited to improve therapeutic targeting.
Due to the pan-cancer nature of this study, the following sections
will report patterns across tumor types and highlight specific
findings made possible by classifying samples by collagen
expression. Many detailed results are summarized in the supple-
mental data and in the supplementary information describing the
findings for each cancer type. Together, these observations
highlight the importance of tumor ECM composition in mediating
the impact of molecular alterations and the immunoenvironment
to guide cancer therapies.
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RESULTS
Collagen clustering identifies tissue of origin
Individual collagens have been utilized as biomarkers for specific
cell types and cell states including COL17A1 marking skin stem
cells14,15, COL10A1 as a hypertrophic chondrocyte differentiation
marker16, and COL22A1 as a chondrocyte differentiation marker17.
These findings suggested that collagens could distinguish cancer
types by their tissues of origin. We hypothesized that considering
all collagens together would define specific cancer types and
associations with molecular features. Figure 1a summarizes the
analysis approach to test collagen defining tumor groups
including the key feature: evaluation of the relationship between
collagen-defined tumor groups with cell state and cell genetics. To
test this idea, we started by evaluating collagen clusters across the
TCGA RNAseq data from 9029 solid tumors all together (Fig. 1b).
The available data used from TCGA for each cancer type is
summarized in Supplemental Table 2. The abbreviations for each
cancer type from TCGA are listed in Supplemental Table 2. 15
PanCancer collagen-defined k-means clusters, named PanColClus-
ters, was optimal using gap statistics18. 7 PanColClusters were
homogeneous while the other 8 were relatively heterogeneous
(Fig. 1c). The PanColClusters were highly concordant with the 28

iClusters defined by multi-omics by Hoadley et al. (Fig. 1d)19. The
cluster for each tumor ID is recorded in Supplemental Table 3.
These observations suggest that collagen expression classified
cancer types by their tissues of origin resulting in the same
seminal observations as other approaches. These findings suggest
that the collagen centered ECM characteristics of tumors
maintains the features of the tissue of the origin.

Collagen expression classifies tumors
We used k-means clustering to classify each of the 25 TCGA solid
tumor cancer types, plus the combination of COADREAD, with
≥100 cases independently (Fig. 2a). Silhouette and gap statistic
analysis identified the optimal number of clusters for each tumor
type (Supplemental Fig. 1). Between 3–6 well-defined clusters
were identified for each cancer type. We named these k-means
defined clusters, collagen clusters (ColClusters). The ColCluster for
each tumor ID is recorded in Supplemental Table 3. The stroma
fraction estimates the non-tumor cellular component from
calculations done by Thorsson et al.20.
Because of the relationship with stroma fraction for COL1A1 and

fibrillar collagens, ColClusters were ordered by stroma fraction
with ColCluster 1 having the highest median stroma fraction in
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Fig. 1 PanCan clustering of 9029 TCGA solid tumors by collagen mRNA expression. a Flow chart showing the analysis workflow and data
used in this study. b Heat map of collagen expression across all TCGA cancer types clustered into 15 groups via k-means with Pearson
correlation distance defines PanColClusters. c The homogeneity and heterogeneity of the PanColClusters. The number of tumors from each
cancer type in each PanColCluster is plotted. d Sankey diagram showing correspondence between PanColClusters (left) and Hoadley et. al.
PanCan iClusters19 (right).
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Fig. 2 Clustering of each tumor in each cancer type in TCGA by collagen mRNA expression creating the ColClusters. a Heat map of median
collagen expression in each ColCluster. Z-scored in each tumor type. b Heat map showing the median stromal fraction for each ColCluster. *’s
indicate p value by Kolmogorov-Smirnov (KS) test relative to ColCluster-1 for each cancer type. c Representative Kaplan–Meier curves for
stomach adenocarcinoma (STAD) and renal papillary cell carcinoma (KIRP) with accompanying log-rank p values and relative Hazard Ratio (HR)
in each ColCluster. Kaplan–Meir curves for each cancer type are in Supplemental Fig. 4. d Bubble plot of the negative log−10 Hazard Ratios
(HRs) for each ColCluster. *’s indicate poor model fit. Numbers for each cancer type from the univariate and multivariate Cox proportional
hazards model are listed in Tables S4 and S5. e Heat map highlighted proportion of tumors in each ColCluster represented in each
PanColCluster.
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each tumor type (Fig. 2b). The difference in stroma fraction across
ColClusters was not significant between ColClusters 1 and 2 in 14/
26 cancer types examined (Fig. 2b), with 8/26 cancer types having
a similar stroma fraction in ColCluster-2 compared to ColCluster 1,
and only 3/26 ColCluster 3’s had similar stroma fraction compared
to their respective ColCluster 1’s. ColClusters with similar levels of
high fibrillar collagen expression were defined by distinct and
strong differences in specific collagens, often minor collagens
(Fig. 2a, Supplemental Fig. 3). ColCluster 1’s with high stroma
fraction were not always the cluster with the highest expression of
fibrillar collagens (Fig. 2a). For example, the Esophageal Carcinoma
(ESCA), ColCluster-C4 (ESCA-C4) had highly expressed fibrillar
collagens and yet had similar stroma fraction compared to the
other ColClusters.
Collagen mRNA expression in bulk tumor samples is a result of a

complicated contribution from multiple cell types including
fibroblasts, macrophages, and tumor cells7,21. We evaluated the
relationship between the stroma fraction, the ColClusters, and
collagen expression to test if collagen composition was correlated
with stroma fraction. The relationship between collagens and
stroma fraction varies in each tumor setting. As collagen type I is
the dominant collagen, often highly secreted by fibroblasts and
stroma cells, COL1A1 is positively correlated with the stroma
fraction in all but 3 of the cancer types (Supplemental Fig. 2).
Stroma and collagen expression were also strongly positively
correlated for many of the other fibrillar collagens including types
III, V, XI, and XIV, regulators of collagen type I fiber width and
structure (Supplemental Table 1)12. However, it is notable that
even in ColClusters with similar stroma fraction (Fig. 2b),
significant collagen expression differences were observed sug-
gesting that the total collagen composition and stroma fraction
are distinct characteristics. Moreover, many of the non-fibrillar
collagens including collagen types VII, VIII, IX, COL4A5, COL4A6,
and others, were only modestly correlated with stroma fraction
(Supplemental Fig. 2). This observation, along with the other
findings in this study, highlights the distinct features of collagen
composition differing from stroma fraction in characterizing
tumors.
Many collagens have ≥10 fold dynamic range across the

ColClusters and cancer types, suggesting clear definition of the
ColClusters (Supplemental Fig. 3). In particular, minor collagens
such as COL7A1, COL10A1, COL17A1, and collagen type IX have
large dynamic ranges. These collagens have very specific
expression in normal tissue, and yet exhibited dysregulated
expression in many cancer types, though often in only a fraction
of tumors in each cancer type (Fig. 2a) and (Supplemental Fig. 3).
Notably, COL25A1 is dysregulated and expressed in KIRC, LUAD,
SARC, THCA, and UCEC cancer types (Supplemental Fig. 3). Other
high dynamic range collagens including collagen type IX and
COL4A5/6 marked many specific ColClusters (Fig. 2a). Some brain
specific collagens help define ColClusters. The brain specific
collagen, COL20A1, was only significantly expressed in neuronal
lineage tumors (GBM, LGG, PCPG, and TGCT) (Supplemental Fig. 3).
COL25A1 is a transmembrane collagen normally expressed in
brain tissue and developing myoblasts22.
6 genes express collagen type IV which is the major component

of the basement membrane23. Each pair of collagen type IV’s
(COL4A1/A2, COL4A3/A4, and COL4A5/A6) are co-regulated from
shared divergent promoters24,25. Collagen type IV shows a large
dynamic range of expression both across and within cancer types
(Supplemental Fig. 3), defining both PanColClustersand in the
ColClusters. 26 of the 104 ColClusters were defined by high
expression of one of the COL4 pairs, including all cancer types
except Prostate Adenocarcinoma (PRAD). Mutations in COL4A1/A2
and COL4A3/A4 generate distinct mice phenotypes26 and these
observations suggest differential functions in these tumors. The
roles and relationships among these COL4 genes in tumors

remains poorly defined. These observations suggest a complex
relationship among the dysregulated expressed COL4 genes.

Overall survival
Individual collagens and the ECM have been linked with overall
survival in many cancers10. Survival associations of the groups
defined by ColClusters were evaluated, and many distinct patterns
were identified. In 13/26 of the cancer types, ColClusters were
significantly associated with overall survival with p values ≤0.05 by
Kaplan–Meier analysis. Kaplan–Meier curves for all the cancer
types are shown in Supplemental Fig. 4. Univariate Cox Propor-
tional Hazards derived hazard ratios in each cluster are
summarized in (Fig. 2c) (Supplemental Table 4). Representative
Kaplan–Meier curves are shown for KIRP and STAD highlighting
the significant separation of high and low risk patients (Fig. 2d).
ColClusters with relatively high stroma fractions were often biased
to lower overall survival in the Kaplan–Meier Analysis (Supple-
mental Fig. 4). Of the 13 cancer types with significant ColCluster
separation, C1 was the highest, or among the highest, risk in 10
cancer types. Notably, COL1A1 was expressed the most highly in
C1 of the ColClusters in 19/26 cancer types (Supplemental Fig. 3
and Supplemental Fig. 2). Multivariate cox proportional hazards
analysis showed that ColClusters were independent of stroma
fraction and staging in many cancer types (Supplemental Table 5).
All together, these observations suggest that the specific
composition of collagen-defined tumor ECM was associated with
overall survival in multiple cancer types, independent from the
total stroma fraction and staging.

PanCancer mapping to ColClusters
Combining PanColClusters and ColClusters helps define and
identify the tumors’ unique collagen features. For the tumor
types in a range of heterogeneous PanColClusters, specific
ColClusters were commonly associated with different tissue
origins highlighting a range of ECM, collagen and phenotypes
(Fig. 2e).
Squamous is a feature of many BLCA, ESCA, and LUSC tumors.

PanCan-C1 is the pan-squamous group (Fig. 1c). This group was
distinguished by expression of minor collagens including COL4A5/
COL4A6, COL7A1 and COL17A1. COL17A1 has been reported to be
a squamous marker27. Both COL17A1 and COL7A1 are involved in
Epidermolysis Bullosa. Although most LUSC tumors were in
PanCan-C1:Squamous, LUSC-C4 is a group of LUSC tumors,
characterized by high expression of COL4A3/COL4A4, that
resembles LUAD and mapped to the PanCan-C3:LUAD group.
Bladder Adenocarcinoma (BLCA) was distributed into both the
C1:Pan-squamous and the C10:mixed cluster. All tumors in the
BLCA-2 ColCluster were in PanCan-C1 while C10:mixed mapped to
BLCA-C3, C4, and C5. Thus, collagen expression distinguished
histology features in BLCA. C). These same tumors mapped to
different iClusters in Hoadley et al.19 (Supplemental Table 3).
Ovarian tumors (OV) were split into 2 PanColClusters, PanCan-

C4 and PanCan-C11. Although OV ColClusters were not associated
with overall survival, these findings suggest that the high collagen
type I, fibrillar collagen, and high stroma OV-C1 group is similar to
many Sarcoma (SARC) tumors that have relatively longer overall
survival,while OV-C2 and OV-C3, clustered with SARC-C4, the SARC
group with shorter overall survival, defined by minor collagens
COL2A2 and COL4A5/A6. Because the sarcomas in TCGA are a
diverse collection of tumors, we found that collagen clustering
identified the tissue of origin and histologies of the range of TCGA
sarcomas (Supplemental Fig. 16). Together, these findings high-
light how collagen expression identified tumors with similar
environments, even with different tissue origins. PanColCluster-C4
is also marked by relatively high expression of other fibrillar
collagens, similar to PanColCluster-C5. C4 and C5 are distinguished
by differences in a few minor collagens with C4 having lower
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expression of COL4A5/COL4A6 and COL12A1, with higher expres-
sion of COL18A1.

Collagen expression classified tumors similarly to the whole
matrisome gene set
Collagens are the most abundant component of the matrisome. A
number of groups have investigated classifications defined by
large sets of matrisome genes6,28. We compared how collagen
only clustering corresponded to classifications using 890 matri-
some genes (Supplemental Fig. 5). These observations suggest
that collagen expression alone captured the seminal features of
classifying tumors based on ECM features. Characterizing tumors
with smaller gene sets, such as the 43 collagens compared to all
the matrisome genes, improves the likelihood of biomarker utility
with patients.

Mutation Rate and MSI Status
We evaluated the relationship between overall mutation rates and
microsatellite instability (MSIH) with the ColClusters in stomach
adenocarcinoma (STAD), colon adenocarcinoma (COAD), and
uterine corpus endometrial carcinoma (UCEC). MSIH tumors were
localized to the high stroma fraction and fibrillar collagen clusters,
COAD-C1, STAD-C2, and UCEC-C1 (Supplemental Fig. 7). Notably, a
subset of STAD MSS tumors were placed in STAD-C2, with MSIH
tumors, because they had similar collagen composition, despite
vastly different mutation signatures (Fig. 3a), suggesting conver-
gence on ECM phenotypes originating from distinct genotypes.
A group of COAD MSS tumors was identified with similar

collagen composition to MSIH COAD tumors in COAD-C1 and

COADREAD-C1. The MSS and MSIH tumors in COAD-C1 and
COADREAD-C1 had similar phenotypic characteristics and yet very
different genotypes (Supplemental Fig. 14). Some MSIH tumors
were grouped into other COAD and COADREAD ColClusters with
MSS tumors based on their collagen composition.

Somatic Mutations
Targeting tumors based on molecular alterations is subject to
variable responses with often unclear reasons from patient to
patient1. We hypothesized that collagens could indicate con-
textual differences of the impact of molecular alterations on the
tumor. To test these ideas, we evaluated if ColClusters were
enriched for the top 50 most frequently mutated genes, as listed
in cBioPortal for the 26 cancer types in this study29. We also
included variants in ABL1, AKT1, AKT2, ALK1, BRCA1, EGFR, ERBB2,
FGFR1, FGFR3, FLT3, HRAS, JAK2, KIT, MET, NRAS, PDGFRA, and
RET, known critical drivers in some contexts. Figure 3b, c shows
many mutated genes significantly biased in ColClusters.
There were two general types of patterns observed with gene

variants: 1) One ColCluster with strong positive or negative
enrichment for a specific molecular alteration relative to the other
ColClusters, suggesting a link between a specific ECM and a
specific molecular alteration. 2) Multiple ColClusters had similar
genetic profiles of candidate drivers or suppressors suggesting
that the genotypes were associated with a diverse collagen
composition in these settings.
We describe enrichment in specific ColClusters for a few

representative examples. TP53 is the most frequently mutated
gene and has been linked to remodeling the ECM30. TP53 showed
distinct and significantly biased patterns across the ColClusters in

Fig. 3 Mutation rate and somatic mutations enriched in specific ColClusters. a Circular diagrams showing the distribution of molecular
alterations, mutation rate, and MSI status in colon adenocarcinoma (COAD) and endometrial carcinoma (UCEC) tumors. The molecular
alterations and ECM are distinguished in these tumors. The circular diagrams for the other cancer types are shown in Supplemental Fig. 17.
b Fraction of tumors in each ColCluster with the mutated gene with relative non-silent mutation rate as first row. c Heat map shows the log p
values to highlight the somatic mutations with significantly biased distribution in the ColClusters for each cancer type as determined by chi-
squared.
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Fig. 4 Copy number alterations (CNAs) at the gene and chromosome arm level were enriched in specific ColClusters. Some cancer types
are shown here and all others are in (Supplemental Fig. 8). a Fraction of tumors in each ColCluster with gene copy number amplifications
(orange) or deletions (green). b Gene copy number changes that were significantly biased across the ColClusters as determined by Chi-
squared tests. Heat map indicates negative log p values. c Fraction of tumors in each ColCluster with chromosome arm amplification (orange)
or deletion (green). All chromosome arm CNAs and cancer types tested are shown in (Supplemental Fig. 9). d Chromosome arm copy number
changes that were significantly biased across the ColClusters as determined by Chi-squared tests. Heat map indicates negative log p values.
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BLCA, BRCA, GBM, HNSC, LGG, LUAD, SARC, and UCEC (Fig. 3b).
These observations highlight how collagen composition can vary
greatly with similar or distinct molecular alterations. The specific
molecular alteration is distinguishable relative to collagen expres-
sion patterns.
We highlight examples of pattern 1, where specific molecular

alterations were localized to one or two ColClusters, except UCEC-
C4, which was enriched for P53 missense variants (Fig. 3 and
Supplemental Fig. 14). These patterns highlight the connections
between genetic features with specific collagen compositions.
PTEN truncations were enriched in all of the UCEC ColClusters

(Fig. 3), except UCEC-C4, which was enriched for P53 missense
variants (Fig. 3 and Supplemental Fig. 14). Wnt signaling in liver
tumors is often activated by CNNTB1 mutations31. Tumors with
CTNNB1 mutations were significantly less frequent in LIHC-C1
compared to LIHC-C2 and LIHC-C3 (p<0.001), even with similar
overall mutation rates. LIHC-C1 is marked by higher fibrillar
collagen expression compared to LIHC-C2 and LIHC-C3.
The 7 IDH1 mutation tumors were in GBM-C3. LGG-C1 and LGG-

C2 were enriched for IDH1 wild-type tumors and associated with
shorter overall survival. These findings highlight connections
between the collagen environment and IDH1/2 mutation status in
brain tumors.
One of the striking differences between LGG and GBM is the

variation in collagen type IV composition, which is associated with
vessel formation in the brain environment32. LGG tumors had
lower COL4A1/2 expression compared to GBM. LGG tumors with
relatively higher COL4A1/2 expression compared to other LGG
tumors, and also enriched for mutant IDH1/2, may have a distinct
vasculature compared to wild-type IDH tumors with lower levels
of COL4A1/2 expression33,34. These findings link vasculature
diversity with collagen composition diversity.
Collagen clustering identified a set of tumors with FGFR3

mutations (Fig. 3). Collagen clustering in BLCA tumors exemplify
pattern 1 for FGFR3 mutations. Mutations in FGFR3 have been
associated with less aggressive bladder tumors35 and were
localized to BLCA-C5, marked by high expression of COL4A5/
COL4A6 and COL10A1, with relatively low expression of fibrillar
collagens, and the lowest HR among the 5 BLCA ColClusters
(Supplemental Fig. 4).
The distribution of variants in the BRCA ColClusters exemplifies

both patterns (Supplemental Figs. 14, 17). Collagen clustering
separated tumors into PIK3CA (BRCA-C1 and BRCA-C3), and TP53
mutation groups (BRCA-C2 and BRCA-C4). BRCA-C1, C3 and C5
were enriched for hormone positive tumors, while BRCA-C2 and
C4 were enriched for Triple Negative Breast Cancers (TNBC). BRCA-
C2 AND C4 have similar collagen type IV levels, but differential
expression of collagen type IX and COL2A1. This is an example of
Pattern 2, where similar molecular alterations have distinct tumor
ECM composition. Also noteworthy is that many TNBC tumors
were classified with hormone positive BRCA tumors because of
their common collagen environments (Supplemental Fig. 14 and
Supplemental Fig. 17).
Genes mutated at a high rate in specific cancer types were

distributed in distinct patterns across ColClusters exemplifying
pattern 2. ARID1A in UCEC, KRAS in COAD, and TP53 were
localized to multiple ColClusters (Fig. 3b). These ColClusters with
similar putative drivers have distinct collagen environments, and
different relationships with long and short overall survival (Fig. 2d).
Variants in tumor suppressors also showed significant bias.

Tumors with RB1 truncations were the majority of tumors or
biased towards BLCA-4, LUSC-C2/C3, and SARC-C3. RB1 loss in
these tumors was linked to distinctive collagen environments
relative to the other tumors in each cancer type. RB1 is reported to
mediatethe cell cycle, adhesion and the tumor
microenvironment36.
PAAD-C1 had a lower mutation rate, including lower fraction of

tumors with mutated KRAS, but this is likely because of the high

stroma fraction and lower overall tumor cell percentage in these
cases. Re-evaluation of the rate of KRAS mutation in TCGA showed
the expected high rate of KRAS mutations that were missed in
TCGA sequencing analysis37. It is of note that PAAD-C1, defined by
high fibrillar collagen expression, had only a modest difference in
stroma fraction compared to the other ColClusters (Fig. 2b and
Supplemental Fig. 6).

Gene copy number aberrations
We evaluated the most common gene Copy Number Aberrations
(CNAs) observed in the 26 cancer types for bias across the
ColClusters using the copy number calls provided by TCGA. We
chose the top 50 genes with the most CNAs according to
cBioPortal29. Gene level CNAs showed distinct distributions among
the ColClusters in all cancer types except COAD (Supplemental
Fig. 8). Figure 4 shows the gene CNAs for some cancer types
enriched in ColClusters.
Some examples are highlighted. Amplifications of Myc showed

a biased distribution in 10 cancer types. Notably, Myc amplifica-
tions were not enriched in most ColCluster-1’s, except for LIHC
and OV. In BRCA-C2 and BRCA-C4, amplification of MYC and
RAD21 were enriched. 86% of TGCT tumors showed copy gains for
KRAS, and yet, KRAS copy gain was negatively enriched in TGCT-
C1. EGFR copy gains were significantly biased in 9 cancer types
including GBM. OV tumors have high levels of CNAs with relatively
low mutation rates38. Notably, even though the three OV
ColClusters have similar overall aneuploidy (Supplemental Fig.
10). However, collagen classification of OV tumors identified
specific tumor groups linking CNAs with ECM context. Specific
CNAs were distinct in OV-C1 and OV-C2 compared to OV-C3. OV-
C3 was enriched for SOX2 copy gains, while OV-C1 was enriched
for AGO2, MYC and RAD21 copy gains. OV-C1 and OV-C2 were
significantly enriched for gains in MYC, while OV-C3 was enriched
for CDK4 and KRAS. Distinct CNAs in OV and other cancer types
highlight relationships between the local tumor microenviron-
ment and molecular genetics.
Tumor suppressors such as the cell cycle regulators, CDNK2A

and MTAP, showed copy number losses in specific ColClusters
including GBM-C1 and C4, ESCA-C2 and C4, and BLCA-C5. SARC-C1
was enriched for MDM2, CCNE1, and CDK4 gains. These findings
reveal connections between molecular alterations controlling the
cell cycle and the collagen environment.

Chromosome arm copy number aberrations
We evaluated chromosome arm CNAs with at least 10 CNAs in the
cancer type. The distribution of many chromosome arm CNAs was
significantly biased across ColClusters in many tumor settings
(Supplemental Fig. 9). Selection of cancer types are shown in
(Fig. 4c). ColClusters enriched for ≥3 copy number changes across
multiple chromosomes were observed in BRCA, ESCA, HNSC, KIRC,
KIRP, STAD, THYM, and UCEC (Fig. 4). Some ColClusters high levels
of both gains and losses including: COAD-C3, LIHC-C2, LUAD-C3,
STAD-C3, STAD-C5, THYM-C3, and UCEC-C4. Others were biased
towards gains or losses including BRCA-C2 and C4, KIRP-C3, and
PAAD-C4.
Chromosome arm level CNAs were localized to a specific

ColCluster in many cancer types including CESC (1q gain), COAD
(1p loss), GBM (9p loss), HNSC (11q loss), LGG (1q gain, 19q loss),
PAAD (17p, 18q gains), PCPG (3p loss) and SARC (10q loss). Some
chromosome arm-level CNAs were strongly biased across the
ColClusters 3p loss in multiple cancer types including BRCA, BLCA,
ESCA, HNSC, LUSC, and STAD. 90% of KIRC tumors have 3p loss,
but those that do not are almost all in KIRC-C3 (Fig. 4). ESCA-C2
was enriched for 8p gains, while ESCA-C1 and ESCA-C3 were
enriched for 18q losses.). 10p loss was enriched in LGG-C1 and
LGG-C2 while 19q loss was enriched only in LGG-C5. These
findings suggest the existence of specific relationships between
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collagen expression and chromosome arm CNAs linking the
cancer genome with the tumor ECM.

Collagen expression predicts CNAs
To test for specific relationships between chromosome arm copy
number aberrations and collagen expression, we implemented a

Support-Vector Machine (SVM) model to predict chromosome arm
CNA status based solely on collagen mRNA expression. Inclusion
of the stroma fraction in the model had only a modest
improvement in the model predictions. We tested the quality of
the model by 5-fold cross-validation in each cancer type with ≥10
cases with the chromosome arm CNA. We used the area under the

Fig. 5 Aneuploidy is predicted by collagen mRNA expression by support vector machine (SVM) models. a Heat map of AUROC scores from
SVM prediction of chromosome arm copy number from collagen expression. All predictions with mean AUC ≥0.75 are highlighted. White
indicates AUC ≤0.5, gray indicates not computed due to insufficient number of cases. b Bubble plot of median aneuploidy scores in each
collagen cluster normalized relative to ColCluster-1 (C1)for each cancer type. Colored bubbles indicate statistical significance at the <0.01 level
compared to C1 by a Kolmogorov-Smirnov test. Red indicates higher median aneuploidy score compared to the C1 for each cancer type, and
blue indicates lower median aneuploidy score compared to C1. c Representative ROC plots for tumor types with mean cross-validation AUC
≥0.80. d Relative importance of each collagen gene in the models with mean AUC ≥0.75 with ranking annotated for each weight. e Summary
of mean AUC scores from SVM model cross-validation for each tumor type. Error bars represent the standard deviation of the cross-
validation folds.
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curve (AUC) of the receiver operating characteristic (ROC) to
evaluate the model performance in each tumor setting (Fig. 5a). As
an example, the SVM model predicted 3p loss in 59% of the
cancer types with at least 10 cases with 3p loss (AUC>0.75). This
suggests that collagen composition is strongly linked to 3p loss in
multiple cancer settings. 5q and 9q losses were predicted very
well in multiple cancer types as well. These connections suggest
potential genetic adaptations required to thrive in specific
collagen-defined ECM environments.

Collagen clusters associated with aneuploidy
These observations of the CNAs suggest there may also be
associations between ploidy, genome doublings, and aneuploidy
in the ColClusters. Aneuploidy has been associated with a range of
treatment responses and patient survival risk depending on
contexts39,40. We evaluated the relationship between aneuploidy
and the collagen-defined clusters. 12 cancer types showed
significantly altered distributions across the ColClusters as
assessed by a Kolmogorov-Smirnov test (Fig. 5b). Some cancer
types including BLCA, COAD, LUAD, STAD, and UCEC showed very
strong biases with the majority of high or low aneuploid tumors
grouped into 1 or 2 ColClusters. Notably, many of these cancer
types had high aneuploid tumors in the ColCluster with relatively
lower expression of fibrillar collagens. To emphasize this finding,
ColCluster aneuploidy levels were normalized to ColCluster 1
(Fig. 5b).
Specific ColCluster aneuploidy distribution patterns are quite

striking in some cancer types. In STAD, two ColClusters, STAD-C3
and STAD-C5, with relatively high aneuploidy were identified, but
with strikingly different overall survival and collagen expression
patterns (Fig. 2e). The median overall survival for the high
aneuploidy tumors in STAD-C3 is 14.4 months compared to
37.5 months for the high aneuploidy tumors in STAD-C5. Similarly,

UCEC-C4, with the shortest overall survival (Supplemental Fig. 4), is
enriched for high aneuploidy tumors, yet many other high
aneuploidy tumors were distributed across the other 3 UCEC
ColClusters. These observations suggest that the high aneuploidy
tumors in UCEC-C4 are a distinct set of aggressive high aneuploidy
tumors with different collagen composition (Fig. 2d). These
observations suggest that the combination of aneuploid and
collagen composition may explain some of the confounding
observations where aneuploidy is not always associated with
worse outcomes41.

Collagen expression patterns predict aneuploidy levels
To explore the relationship between collagen expression and
aneuploidy further, we used a SVM model to test if collagen
expression can predict aneuploidy levels in tumors. We modeled
the aneuploidy scores with Gaussians to partition the scores into
high and low categories (Supplemental Table 3). The SVM
predicted the aneuploidy status of 9 of the cancer types with
area under the curves (AUC) ≥0.8 by Receive Operator Character-
istic (ROC) analysis (Fig. 5c). Many AUCs for other cancer types
were very close (Fig. 5e) and Supplemental Fig. 11). Evaluation of
the weights for each collagen reveal that each cancer type has
specific collagen expression patterns (Fig. 5d).
We compared the SVM predictions of aneuploid levels from

collagen expression to the ColCluster-aneuploidy enrichments.
Some cancer types, including ESCA, LIHC, and OV, did not show
biased distribution of aneuploidy scores in the ColClusters, and
yet, the SVM accurately predicted aneuploidy levels (Fig. 5e),
suggesting a relationship between collagen expression and
aneuploidy. Other cancer types such as SARC and UCEC showed
ColCluster enrichments with reasonable SVM predictions with
AUCs of 0.73 and 0.74, respectively (Fig. 5e and Supplemental
Fig. 11). Similar performance of SVM models were observed for
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Fig. 6 Immune environments and hallmarks characterizing the ColClusters. a Bubble plot showing bias in immune sub-types, as defined by
Thorsson et al.20, across ColClusters. The bubble color indicates the cancer type and the bubble size indicates the fraction of the ColCluster
with the designated immune subtype. b Heat map indicating relative enrichment of the 50 MsigDB hallmark gene sets between ColClusters as
computed via QuSAGE. Each cancer type was evaluated separately.
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related metrics, genome doublings and ploidy (Supplemental
Fig. 12).
Together, these observations strongly support a relationship

between the cancer genome and collagen expression. They
further imply that not all aneuploid tumors have similar features. It
is the combination of aneuploidy and the ECM that should be
considered to understand tumor progression and therapeutic
options.

Immune cell infiltration varies with collagen environment
The tumor ECM is a critical regulator of immune cell infiltration
through myriad mechanisms including mechanical blockage42,
angiogenesis by basement membrane collagens43, or stimulation
of specific signaling pathways42. Enrichment of immune cell
expression signatures derived from Tamborero et al.44 were
determined by QuSAGE to identify the ColClusters enriched for
each cell type compared to the other ColClusters (Supplemental
Fig. 13)45. Regulatory T cells and macrophages were enriched in
many of the high stroma ColCluster 1’s. 9/26 ColCluster 1’s were
highest for T-regs compared to the other ColClusters, suggesting
connections between these immunosuppressive cells and tumors
with high expression of fibrillar collagens. These observations
identify the tumor collagen composition to be a critical feature
linking immune cell infiltration with tumors and overall survival.
BLCA and STAD highlight the relationship between collagen

expression and immune cell infiltration. BLCA-C1 and BLCA-C2

have similar levels of stroma fraction, as well as expression of
many of the fibrillar collagens, and yet showed distinct immune
cell infiltration patterns. BLCA-C1 was enriched for activated CD8
T cells, B cells and regulatory T cells while BLCA-C2 was enriched
for aDC cells. These observations connect specific collagen-
defined tumor classes with immune cell infiltration patterns.
STAD-C1 and C2 have similar stroma fractions (Fig. 2b), but
significantly different immunoenvironments. STAD-C1 may be
more immunosuppressive with higher T-reg infiltration, while
STAD-C2 may be more immune activated with enrichment for
activated dendritic cells (aDCs) and higher expression of
inflammatory gene signatures (Supplemental Fig. 13), consistent
with STAD-C2 associated with longer overall survival (Fig. 2c).
To assess the global immunoenvironment in each ColCluster,

we identified significant biased distributions for the 6 immuno-
types defined by Thorsson et al. in all but 2 cancer settings (Fig. 6
and Supplemental Table 6) BRCA-C2 and C4 were enriched for the
“IGFN-γ" immune group, similar to all 3 OV ColClusters, and UCEC-
C4. These groups have high levels of structural variations with
high aneuploidy levels (Fig. 4). LGG-C2 had a more GBM-like
immunoenvironment as it is enriched for “C4-lymphocyte
depleted" compared to the large majority of tumors in the other
4 LGG ColClusters in immunotype-C5, “immunologically quiet".
LUAD-C3 and C4 were enriched for immunotype-C3, “Inflamma-
tory", while the other LUAD ColClusters were enriched for
immunotypes C1 and C2. LUSC-C4 was biased to immunotype
C2, while the others were divided between immunotypes C1 and

Low 
Aneuploidy

High 
Aneuploidy

BLCA

All Cases

C2

C4

Example 
ColCluster

COADREADaa b

Fig. 7 ColClusters combined with aneuploidy identify tumors associated with overall survival in collagen-defined environments. a Heat
map of negative log p values from Kaplan–Meier analysis for all cases comparing patients with high and low aneuploid tumors. Clusters (high)
is the −log10(p) of all the ColClusters for tumors with high aneuploidy while Clusters (low) indicates the p for the tumors with low aneuploidy.
Overall is the p for all considered cases. P values were computed with the log-rank test. b Representative Kaplan–Meier curves showing the
differences for high and low aneuploid tumors in ColClusters summarized in the heat map for two cancer types.
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C2. UCEC showed a distinct pattern with immunotype C2, “IFN-g
dominant", strongly enriched in the high aneuploidy UCEC
ColCluster-4, while the other 3 UCEC ColClusters were biased
towards immunotype-C1, “Wound Healing". ColClusters for LIHC
and SKCM had a distinct difference in immunotypes. In some
cancer types, the same immunotype was observed in multiple
ColClusters including COAD, COADREAD, GBM, LGG, PRAD, and
THCA. In other cancer types, including BLCA and BRCA, the
distribution of multiple immunotypes was similar across all the
ColClusters with only subtle biases observed. The high aneuploidy
ColClusters, including STAD-C3 and UCEC-C4 were enriched for
distinct immunotypes relative to the other STAD and UCEC
ColClusters. These observations suggest that collagen composition
was associated with specific immunoenvironments.

Collagen clusters associated with cancer hallmarks
To assess the biological features enriched in each ColCluster, the
50 Molecular Signature Database (MSigDB) cancer hallmark gene
sets were evaluated using Qusage (Fig. 6b)46. Qusage identified
the ColClusters where each gene set is most enriched relative to
the other ColClusters. Of the ColClusters with high expression of
fibrillar collagens, 19 were enriched for the highest number of
hallmark gene sets in their respective cancer type.
TGFβ and EMT, in particular, have been associated with

expression of fibrillar collagens and high stroma ColClusters. in
myriad models47. We examined the relationship between the high
stroma fraction ColCluster-1’s and these hallmarks. 13/26 ColClus-
ter-1’s were highest in TGFβ signaling. EMT was highest in
ColCluster-1’s including BLCA, CESC, COAD, COADREAD, GBM,
HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, OV, READ, STAD, THCA, and
UCEC. ESCA-C4, LGG-C2, PAAD-C2, PCPG-C2, SARC-C2, TCGT-C4,
THYM-C3, were relatively high in EMT and fibrillar collagen gene
expression in these cancer types (Fig. 6b). The angiogenesis
hallmark gene set was associated with the high collagen type I
and fibrillar collagen expression ColClusters in 19 cancer types.
Not all hallmark gene sets were associated with high fibrillar

collagen expression as many showed specific patterns across the
ColClusters and were enriched in other ColClusters. Bile acids may
decrease adhesion to collagens48. Bile acid metabolism with the
highest QuSAGE values in most cancer types was enriched in
ColClusters other than the high fibrillar collagen ColClusters,
except for BRCA-C3, KIRP-C1, and TGCT-C4. Another example is
Myc regulated expression. ColClusters including BRCA-C2, BRCA-
C4, STAD-C3 had relatively high expression of the Myc target gene
set, consistent with Myc amplification in these clusters. These
observations connect distinct pathways with lower fibrillar
collagen environment ColClusters.

Aneuploidy tumors in context
Aneuploidy is reported to have context-dependent impacts on
tumors including unclear associations with overall survival40. The
ColClusters associated with aneuploidy levels along with the SVM
model identified relationships between aneuploidy and the
collagen composition (Fig. 5). Evaluation of high and low
aneuploid tumors in many ColClusters revealed associations with
overall survival (Fig. 7), suggesting that collagen provides some
context for patients’ outcomes with relatively high or low
aneuploid levels .
For example, Bladder Urothelial Carcinoma (BLCA) tumors with

high aneuploidy were separated by overall survival by collagen
composition, while the low aneuploid BLCA tumors were not
separated by overall survival. A large difference in overall survival
between high and low aneuploid tumors was observed for BLCA-
C4, the lowest overall survival BLCA ColCluster (Fig. 2). BLCA-C4 is
marked by a combination of COL2A1, COL4A3, and COL11A2
among others. Similar observations were made for Liver
Hepatocellular Carcinoma (LIHC), driven by the large difference

in overall survival in LIHC-C3 between high and low aneuploid
tumors. These observations identify contexts that distinguish high
and low aneuploid tumors. Some collagen contexts did not have
significant impacts on overall survival, maintaining a similar
pattern compared to all tumors in the cancer type.
Other cancer types reveal different patterns of separation when

combining aneuploidy and collagen composition. LUSC exempli-
fies how overall survival of high aneuploidy tumors is collagen
composition dependent. High aneuploid tumors in LUSC-C4 have
relatively lower risk while patients with high aneuploid tumors in
LUSC-C5 have higher risk (Fig. 7). High aneuploid UCEC tumors
have lower overall survival, however, UCEC-C4 strongly separates
the high and low aneuploid tumors. All of the small number of low
aneuploid tumors in UCEC-C4 remain alive (Fig. 7). These findings
highlight how collagen composition influences tumors with high
and low aneuploidy .

Integrating the data
Considering the ColClusters with similar collagen composition as
highlighted by being grouped into the same PanColClusters
across cancer types (Fig. 1c), reveals new insights into these
tumors. The range of molecular alterations and cell features in
these groups highlights possible similar features to consider
targeting across cancer types. For example, the high aneuploidy
ColClusters, with relatively short OS, SARC-C4, STAD-C3, UCEC-C4,
were grouped together in the Pan-Gyn, PanCan-C11 group, along
with BRCA-C2 characterized by many copy number gains.
Conversely, the longer OS STAD-C4 group mapped to the
heterogeneous PanCan-C10 group with BLCA-C3, BLCA-C5,
ESCA-C3, KIRP-C3, and OV-C2,C3; all with relatively lower levels
of aneuploidy, marked by collagen type IX expression with lower
fibrillar collagen expression. These findings suggest that classes of
tumors originating from a range of tissues had high aneuploidy
and similar collagen composition. A group of ColClusters in
gastrointestinal (GI) tumors were enriched for tumors with lower
levels of aneuploidy, high expression of fibrillar collagens
including COL1A1, and yet also had relatively short overall
survival, including COAD-C1, PAAD-C1, and STAD-C1.
We highlight a few ColClusters where combining the genetics,

environment, and collagen composition clustering reveals new
opportunities for therapeutic and biomarker development. STAD-
C5 included a mixture of tumors with high and low aneuploidy
classified together with similar collagen expression profiles. These
tumors were enriched for Wnt Beta Catenin signaling hallmarks
(Fig. 6). STAD-C5 had longer overall survival compared to the other
STAD ColClusters.
BLCA-C1 and BLCA-C2 have similar expression of the fibrillar

collagens and stroma fraction. BLCA-C2 is marked by COL17A1
expression and includes many squamous tumors. BLCA-C1 is
enriched for EMT and angiogenesis hallmark gene sets while
BLCA-C2 was enriched for 27 hallmark gene sets compared to 4
gene sets in BLCA-C1 as well as 5 gene sets with similar Qusage
scores. BLCA-C5 is enriched for FGFR3 mutations and is highest for
Notch hallmark gene sets. Notch may be a tumor suppressor
pathway and is consistent with patients in BLCA-C5 having the
longest overall survival. BLCA-C3 and BLCA-C4 are distinguished
by a number of minor collagens and lower levels of fibrillar
collagen expression. BLCA-C3 was enriched for bile acid metabo-
lism, while BLCA-C4 was enriched for cell cycle regulation and had
the shortest overall survival among the BLCA ColClusters. High
aneuploidy tumors were significantly dispersed across many UCEC
ColClusters. The high aneuploidy UCEC-C4 ColCluster is enriched
for Notch signaling along with DNA repair and proliferation gene
sets suggesting possibilities for therapeutic development in this
class of tumor with a distinct combination of genetics, collagen
composition, and tumor phenotypes.
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DISCUSSION
In this study, we examined the impact of collagen expression to
define tumor states. Clustering by collagen expression identified
groups based on tissue specificity, cell states, immune environ-
ment, molecular alterations and overall survival. Collagen expres-
sion is strongly correlated with many molecular alterations
including aneuploidy. Machine learning predicted these with high
accuracy, particularly aneuploidy and chromosome copy numbers,
based solely on collagen expression. Understanding the impact of
genomic alterations on survival remains a major challenge for
many cancer types. We found that combining collagen expression
with molecular alterations improves predictions and tumor type
definition. Features such as cell states are also critical for therapy
response, and this study highlights the connections between the
collagen content and specific cell states. Interestingly, ColClusters
were marked by high COL1A1 and fibrillar collagen expression, or
expression of minor collagens with relatively low COL1A1
expression. ColClusters defined by the expression of rare collagens
improved associations with overall survival, molecular alterations,
and were linked to specific pathways. Connections between
collagen expression and molecular alterations helped identify
tumors that are most impactful to patients. Many specific somatic
mutations and aneuploidy are associated with either prolonged or
diminished survival in various cancer types. Combining these
molecular alterations with ColClusters defined by collagen
expression improved associations with overall survival in TCGA
(Fig. 7). Because of the large number of fascinating observations
connecting collagens, molecular alterations and cell states, more
detailed descriptions of some of the findings in each cancer type
are summarized in the supplemental information.
Many collagens are known to be expressed in specific tissues.

Classifying all the TCGA samples in a single dataset by collagen
gene expression identified 15 tumor groups. These were often
defined by tissue of origin and mapped very well to the published
PanCancer groupings (Fig. 1). This is due in part to expression of
many collagens that were confined to specific tumor types. For
example, COL20A1 is highly expressed in neural systems and was
also only expressed in neuronal tumors (Supplemental Fig. 3).
Many minor collagens are only expressed in some cancer types
and in only some subsets. Similarly, COL17A1 is expressed in both
normal epithelial stomach cells and stomach adenocarcinoma.
However, unlike COL20A1, COL17A1 is found in subsets of tumors
in a number of cancers. Another possibility is that some collagens
become expressed in tumors even though the normal tissue is
distant from the tumor. For example, COL7A1 and COL10A1 are
only expressed in very specific locations such as skin49 or
developing cartilage50, respectively, and yet become dysregulated
in a number of tumors including stomach51 and breast tumors10.
These observations highlight how the combination of local
specific tissue collagen expression and dysregulation of collagens
in each tumor type defines unique tumor types and states.
Understanding collagen and ECM composition helps interpret the
features of tumors predicting therapy responses.
Fibroblasts, macrophages, cancer cells and other cell types all

secrete collagens to create the complex tumor tissue structure.
Because the ECM and collagen composition is the result of a
complicated mixture of cells both secreting and remodeling, an
ECM-collagen-based classifier may gain its power because it is the
sum of the output of the tumor ecosystem, reflecting both cell
composition and cell states. Many cells express and secrete the
most abundant collagen, collagen type I. COL1A1 is present in
every solid cancer type, but has >100 fold range in many
instances, reflecting the variability of cell composition in hetero-
geneous tumors (Supplemental Fig. 3). Presence of relatively high
levels of collagen type I have been associated with poor
outcomes, including even GBM and LGG where COL1A1 is lower
compared to most tumor types52 (Fig. 2) and (Supplemental Fig.

3). Tumors with high stroma fraction with expression of COL1A1
and related fibrillar collagens were often associated with shorter
survival. Also notable is that ColClusters with higher stroma
fraction and collagen type I, often C1 and C2 (Fig. 2) had distinct
molecular alterations (Fig. 3 and Supplemental Fig. 17), including
lower aneuploidy levels compared to other tumors in the same
tissue in many cancer types (Fig. 5). Targeting stroma and related
markers have become important to improve patient outcomes53.
Stroma fraction has also been marked by Cancer Associated
Fibroblasts (CAFs) in many tumors and associated with shorter
survival54. Classifying tumors by collagens, representative of
specific features of multiple cell types, is likely beneficial to
predict the fate of disease progression.
High aneuploidy and ploidy levels are common to many cancer

types, with a wide distribution across tumor specimens (Supple-
mental Fig. 10). A major complication is that these molecular
alterations have a range of associations with overall survival in
many cancer types (Fig. 7)39. The strongest association with
molecular alterations across multiple cancers were between
collagen expression and aneuploidy (Fig. 5). This observation
may be because aneuploidy is more common relative to other
somatic mutations in tumors in various cancer types. High and low
aneuploidy levels were associated with specific ColClusters (Fig. 5).
Combining aneuploidy with ColClusters refined interpretation of
the impact of aneuploidy on overall survival (Fig. 7). In many
cancer types aneuploidy was not associated with overall survival,
and yet, aneuploidy combined with collagen composition
identified tumor classes associated with survival that were not
apparent when considering aneuploidy alone (Fig. 7). Combining
aneuploidy with collagen composition defines tumor growth and
treatment responses and could be further developed as diagnostic
tool for patients.
Targeting the same pathway in multiple cancer types has been

challenged by poor responses to many treatments across tissues,
even when targeting the same molecular alteration1. This study
suggests that the collagen environment contributes to the
selection and survival of certain cancer cells defined by the same
molecular alterations. There are other likely features in the
collagen-based ECM that could further refine the tumor definition
including post-translational modifications of collagens and remo-
deling of the matrix, often by proteolytic cleavage of collagens.
Increased applications of scRNAseq and spatial transcriptome
profiling hold the promise of increasing specificity to define
tumors with even greater precision.
This study suggests that both highly expressed and dysregu-

lated minor collagens mark multiple facets of tumors and could be
useful biomarkers of the tumor ecosystem and disease progres-
sion. Attention should be paid to the collagen, and likely the full
ECM, composition in pre-clinical in vitro and animal models to
better represent the actual tumor microenvironment seen in
patients that impact the functional consequence of molecular
alterations, cell states, and probable responses to therapy. We
envision that all manner of intervention including immunother-
apy, targeted therapy, and chemotherapy can be better tailored to
patients by considering the collagen and ECM milieu. In sum, the
impact of the ECM and collagen has relationships with molecular
alterations and infiltrating immune cells that could be considered
to improve predictions of treatment outcomes. Taken together,
these findings indicate that cancer cell state is associated with
specific collagen-defined ECMs, implying that ECM state is a
critical factor in properly targeting tumors.

METHODS
Clustering and analysis
Only primary solid tumors were considered in this analysis. From a
total set of 43 collagen genes, genes with significant expression

K.S. Guo and A.S. Brodsky

12

npj Genomic Medicine (2023)    15 Published in partnership with CEGMR, King Abdulaziz University



(defined to be greater than 10 samples with an RSEM expression
value of 200 or greater in the tumor type) were selected as
features for clustering. Expression values were log2-transformed,
and cancer cases were sub-typed using k-means clustering with
Pearson’s correlation distance, for 3-6 clusters. Cluster number
selection was informed by silhouette analysis and gap statistic
comparison18. Colon (COAD) and rectal (READ) adenocarcinomas
were clustered both separately and together as a combined
colorectal adenocarcinoma tumor type (COADREAD). To charac-
terize the molecular-level characteristics of each cluster, gene sets
were selected from the Molecular Signatures Database (MsigDB),
and clusters were compared to each other using quantitative set
analysis for gene expression (QuSAGE)46. This analysis was
supplemented with single-sample gene set enrichment analysis
(ssGSEA)55.

Support vector machine models
To assess the relationship between collagen expression and
aneuploidy, we trained a linear support vector machine model for
each TCGA tumor type with the scikit-learn v0.24.2 machine
learning package for Python. Normalized collagen RSEM expres-
sion scores and stromal fraction were used as initial input features.
Feature selection was performed by removing insignificantly-
expressed collagens and lesser-contributing (as defined by low
relative SVM weight) collagens. Labels (high and low) for each
sample were generated by fitting each aneuploidy score distribu-
tion to a mixture of two Gaussian distributions. 5-fold cross-
validated models were evaluated with area under the receiver-
operator curve (AUROC) scores. The same pipeline was used to
separately predict chromosome arm copy number gains and
losses for copy number modifications with sufficient counts (>10
copy number modifications within the tumor type).

Statistical analysis
The majority of the data processing and statistical analyses were
performed in Python v3.11.0. Kaplan–Meier and Cox survival
analysis, based on clinical data from the PanCancer Atlas was used
to compare overall survival between clusters, using the Python
lifelines v0.26.0 and R survival v3.2-7 packages respectively56,57.
The log-rank test was performed on the resulting Kaplan–Meier
survival models to assess differences in overall survival within
tumors. Categorical variables were compared with Pearson’s Chi-
squared test. Unless otherwise stated, all comparisons for
continuous variables were performed with the two-sided Kolmo-
gorov-Smirnov test. Where applicable, *, **, *** denote p values of
<0.05, 0.01, and 0.001 respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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