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Comprehensive characterization of posttranscriptional
impairment-related 3′-UTR mutations in 2413 whole genomes
of cancer patients
Wenqing Wei1,6, Wenyan Gao1,6, Qinglan Li2,3,6, Yuhao Liu1,4, Hongyan Chen 1, Yongping Cui5, Zhongsheng Sun 2✉ and
Zhihua Liu 1✉

The 3′ untranslated region (3′-UTR) is the vital element regulating gene expression, but most studies have focused on variations in
RNA-binding proteins (RBPs), miRNAs, alternative polyadenylation (APA) and RNA modifications. To explore the posttranscriptional
function of 3′-UTR somatic mutations in tumorigenesis, we collected whole-genome data from 2413 patients across 18 cancer
types. Our updated algorithm, PIVar, revealed 25,216 3′-UTR posttranscriptional impairment-related SNVs (3′-UTR piSNVs) spanning
2930 genes; 24 related RBPs were significantly enriched. The somatic 3′-UTR piSNV ratio was markedly increased across all 18 cancer
types, which was associated with worse survival for four cancer types. Several cancer-related genes appeared to facilitate
tumorigenesis at the protein and posttranscriptional regulation levels, whereas some 3′-UTR piSNV-affected genes functioned
mainly via posttranscriptional mechanisms. Moreover, we assessed immune cell and checkpoint characteristics between the high/
low 3′-UTR piSNV ratio groups and predicted 80 compounds associated with the 3′-UTR piSNV-affected gene expression signature.
In summary, our study revealed the prevalence and clinical relevance of 3′-UTR piSNVs in cancers, and also demonstrates that in
addition to affecting miRNAs, 3′-UTR piSNVs perturb RBPs binding, APA and m6A RNA modification, which emphasized the
importance of considering 3′-UTR piSNVs in cancer biology.
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INTRODUCTION
The 3′ untranslated region (3′-UTR) is a posttranscriptional
regulatory region that crucially controls gene regulation, and
contains many regulatory elements that regulate a variety of
mRNA-fate-related processes, such as mRNA processing, mRNA
stabilization, translation initiation, and localization1,2. In recent
decades, most cancer studies have mainly focused on the
variations in miRNA, RNA-binding proteins (RBPs), alternative
polyadenylation (APA), and m6A RNA modification on the 3′-UTR
of mRNA, but 3′-UTR mutations could also result in mRNA
expression changes, and recurrent 3′-UTR mutations in cancer
genes have been identified by whole-genome sequencing (WGS)
to play vital roles in tumorigenesis2. Therefore, it is crucial to
explore the effect of 3′-UTR mutations on pathological processes
at the posttranscriptional level.
RBPs are involved in all aspects of RNA regulation, including

splicing, modification, mRNA stabilization, translation, subcellular
localization, and decay3–5, while the dysregulation of RBPs could
systematically disrupt the stable cellular environment6. Aberrant
expression of RBPs such as RBM387, HuR8, and eIF2B3,9 is
associated with neurodegenerative disorders and cancer progres-
sion. Abnormal expression of cancer-related RBPs has been
approved to destroy the posttranscriptional regulation network
and contributes to tumorigenesis and cancer progression. For
example, EZH2 is an immune-related and prognosis-associated

RBP in liver cancer10, and LARP1 promotes ovarian cancer
tumorigenesis, progression, and chemotherapy resistance11,12.
RBPs regulate gene expression and function by binding to

sequence-specific binding motifs in RNA13,14. In cancer cells, there
are many accumulated genetic variants that destroy the protein-
RNA interactions binding motifs that prevent RBPs from recognizing
RNA substrates15. For instance, mutant R521C stabilizes FUS in
amyotrophic lateral sclerosis (ALS) patients, facilitating its interaction
with RBM45, and decreases the recruitment of HDAC1 to contribute
to the pathogenesis of ALS16. In particular, RBPs can bind to 3′-UTR
cis-elements to regulate gene expression2. However, it remains
unclear how 3′-UTR single nucleotide variants (SNVs) affect RBP-
mediated posttranscriptional regulation in human cancers6.
In this study, we comprehensively characterized posttranscrip-

tional regulation by somatic 3′-UTR mutations, which could
contribute to tumorigenesis. In total, we characterized over
twenty thousand posttranscriptionally impairment-related SNVs
(piSNVs) from whole-genome sequencing data (WGS) of 2413
patients across 18 cancer types, via our updated algorithm PIVar.
Moreover, we found that somatic 3′-UTR piSNV ratio could be
used as a potential prognostic biomarker in various cancers and
could assess immune cell and checkpoint characteristics. These 3′-
UTR piSNVs could affect genes by mechanisms of posttranscrip-
tional regulation via RBPs, miRNA, APA, and m6A modification,
which are involved in many tumor-related pathways to contribute
to cancer development3.
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RESULTS
Identification and distribution of 3′-UTR piSNVs across cancers
RBPs play vital roles in regulating the mRNA life cycle by binding 3′-
UTRs2,3. To evaluate the potential impact of 3′-UTR mutations on
posttranscriptional regulation in tumorigenesis, we downloaded
somatic mutations derived from WGS data of 2413 patients across
18 cancer types in the PCAWG project17, including biliary
adenocarcinoma (Biliary-AdenoCA), osteosarcoma (Bone-Osteosarc),
breast adenocarcinoma (Breast-AdenoCa), medulloblastoma (CNS-
Medullo), pilocytic astrocytoma (CNS-PiloAstro), esophagus adeno-
carcinoma (Eso-AdenoCa), kidney renal cell carcinoma (Kidney-RCC),
liver hepatocellular carcinoma (Liver-HCC), lymphoid mature B-cell
lymphoma (Lymph-BNHL), lymphoid chronic lymphocytic leukemia
(Lymph-CLL), myeloid myeloproliferative neoplasm (Myeloid-MPN),
ovarian adenocarcinoma (Ovary-AdenoCA), pancreatic adenocarci-
noma (Panc-AdenoCA), pancreatic neuroendocrine tumor (Panc-
Endocrine), prostate adenocarcinoma (Prost-AdenoCA), skin mela-
noma (Skin-Melanoma) and stomach adenocarcinoma (Stomach-
AdenoCA), as well as our in-house esophageal squamous cell
carcinoma (ESCC) WGS samples (663 patients)18, then we employed
an updated PIVAR algorithm6 that could identify the variants that
disrupt protein-RNA interaction via the alteration of RNA secondary
structure and the regulation of gene expression; we identified
25,216 3′-UTR piSNVs among 50,435 piSNVs from 1750 samples of
the PCAWG project17 and 663 samples from our in-house ESCC
WGS data18 across 18 cancer types (Fig. 1a).
By comparing the genome-wide gene density distribution of

identified piSNVs and 3′-UTR piSNVs (orange peaks) in each
chromosome, we observed that piSNVs and 3′-UTR piSNVs were
clustered in some specific chromosome regions, while there were
certain desert regions for piSNVs and 3′-UTR piSNVs (Fig. 1b).
Among the genomic regions, 3′-UTR piSNVs were generally more
significantly enriched in the 3′-UTR and exon regions in all 18
cancer types (Supplementary Fig. 1a, b), which suggested the
SNVs in the 3′-UTR and exon regions have more regulatory
functions. We further calculated the ratio of 3′-UTR piSNVs to total
3′-UTR SNVs in each sample across cancer types and found a
significantly higher ratio of 3′-UTR piSNVs in pan-cancer samples
compared with that of the control samples from the Database of
Somatic Mutations in Normal Cells (DSMNC)19 (Fig. 1c). The
significant distinction between cancer samples and normal
controls revealed the prevalence of posttranscriptionally
impairment-related 3′-UTR mutations in cancer genomes, imply-
ing their contribution to cancer development.
To further explore the association between 3′-UTR piSNVs and

cancers, we downloaded GWAS SNPs data from GWAS Catalog
database20 and CCGD-ESCC database21, and we found that there
were two 3′-UTR piSNVs, rs63629260 and rs3767, overlapping with
GWAS SNPs from GWAS Catalog database; rs63629260 is the 3′-
UTR mutation in SPTBN1 and has association with bone mineral
density, osteoporosis and fracture22; and rs3767 is the 3′-UTR
mutation in ZNF664 and has relation with morphogenesis,
organogenesis, adrenal cell renewal, and cancer23. Moreover,
there were 121 3′-UTR piSNVs existing in ESCC GWAS data of
CCGD-ESCC database (Supplementary Table 1), which suggested
that posttranscriptional regulation by somatic 3′-UTR mutations
could contribute to tumorigenesis.

Clinical relevance and immune effect of an elevated 3′-UTR
piSNV ratio
To assess the correlation between the 3′-UTR piSNV ratio and clinical
phenomena, we classified tumor samples according to the 3′-UTR
piSNV ratio and performed survival analysis. We found that the
overall survival (OS) of patients with four cancer types, including
ESCC (Fig. 2a, b), Biliary-AdenoCA (Fig. 2c), Ovary-AdenoCA (Fig. 2d,
e), and Stomach-AdenoCA (Fig. 2f), had a significant correlation with
the 3′-UTR piSNV ratio. Moreover, the patients with a high 3′-UTR

piSNV ratio in each cancer type had a worse survival situation than
the patients with a low 3′-UTR piSNV ratio. These results further
showed that an increased 3′-UTR piSNV ratio is related to poor
clinical outcomes and implied that the 3′-UTR piSNV ratio could
function as a potential prognostic index in several types of cancers.
We speculated whether immune microenvironment changes

could contribute to survival outcomes. Then, we used the
CIBERSORT24 algorithm to compute the relative abundance of 22
types of immune cells (Supplementary Fig. 2a–d). Since the
samples for WGS and RNA-seq were unpaired, we finally selected
ESCC and Liver-HCC datasets, which had enough samples in both
the high and low 3′-UTR piSNV groups, to calculate immune cell
abundance. Overall, there was an obvious difference in immune
cell enrichment between the high- and low-3′-UTR piSNV ratio
groups. Notably, the level of resting NK cells was significantly
higher in the high-3′-UTR piSNV ratio group in ESCC (Supplemen-
tary Fig. 2a, b); however, the low-3′-UTR piSNV ratio group of the
Liver-HCC cohort showed significantly higher levels of resting NK
cells (Supplementary Fig. 2c, d). Moreover, type 2 macrophages
[M2], as immunoinhibitory cells, were more enriched in the high-
3′-UTR piSNV ratio group (Supplementary Fig. 2c, d).
Immune checkpoints are essential for the immune response and

can result in cancer cell immune escape, and immune checkpoint
inhibitors, in the form of blocking antibodies, are applied to
facilitate an immune response in cancers25–28. We further explored
the expression difference in immune checkpoint genes between
the high- and low-3′-UTR piSNV ratio groups in tumor samples
(Fig. 2g), and we found that IDO1 and CD274 were inhibitory
immune checkpoints with significantly higher expression in high-
3′-UTR piSNV ratio groups of ESCC and Liver-HCC (Supplementary
Fig. 2e, f). IDO1 is a target for cancer immunotherapy and encodes
a heme enzyme that acts on multiple tryptophan substrates and
plays a crucial role in pathophysiological processes such as
immunoregulation, antitumor defense, and antioxidant activ-
ity29,30. CD274 (PD-L1) is a well-known ligand that binds with
the receptor PD1 in T cells, which can block T-cell activation in
cancer31. In addition to the immune inhibitors, we also observed
that the immune stimulator IL2 was significantly decreased in the
high-3′-UTR piSNV ratio group of ESCC (Supplementary Fig. 2e).
IL2 is a primary cytokine for T and NK cell proliferation and
activation and affects immune homeostasis by regulating
regulatory T (Treg) cells, which play a crucial role in immune
cancer therapy32,33. These results suggested that 3′-UTR piSNVs
are involved in immune microenvironment heterogeneity and
induce the dysregulation of several core immune regulators,
which contributes to worse clinical outcome.

Functional effect of 3′-UTR piSNVs on RBP binding
Genetic mutations on RNA substrates can destroy the
protein–RNA interactions binding motifs to prevent RBPs from
recognizing RNA substrates in cancer cells15. To access the
experimental effect of these 3′-UTR piSNVs on RBP binding, we
performed electrophoresis mobility shift assays (EMSA) on four
randomly selected 3′-UTR piSNVs who predicted to alter the
binding of PTBP1 (Fig. 3a, b; Supplementary Fig. 3a, b). As shown
in Fig. 3a, there was the strong binding between PTBP1 and
unmutated RNA probe of TRIM38 that is associated with Fanconi
renotubular syndrome34, while it had visible differences in the
probe with the 3′-UTR piSNV of TRIM38 in their binding to PTBP1.
There were similar observations existing in 3′-UTR piSNV of
KIAA1919, CNTLN, and MOB3B on binding of PTBP1 (Fig. 3b;
Supplementary Fig. 3a, b).
We further examined the effect of 3′-UTR piSNVs on RBP

binding with the PRIdictor35 webtool, which can predict the
binding changes between mutual binding sites in RNA and
protein, and we found that 3′-UTR piSNVs could destroy the
PTBP1-RNA (Fig. 3c, PDB ID: 2AD9) and SRSF1-RNA (Fig. 3d, PDB ID:
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6HPJ) binding complex. In detail, PTBP1 can bind to 5′-CUCUCU-3′
RNA oligonucleotides36. By screening the identified 3′-UTR piSNVs,
we found that 21 genes had a mutation from C to T at the fifth
position of the above motif mainly in Skin-Melanoma and ESCC
(Fig. 3a, Supplementary Fig. 3c, and Supplementary Table 2).
Another RBP affected by a 3′-UTR piSNV is SRSF1, which plays an
important role in the regulation of alternative splicing events.
Since SRSF1 can bind to the 5′-AACAAA-3′ RNA oligonucleotide
(PDB ID: 6HPJ)37, we speculated that 3’-UTR piSNVs in the AACAAA
sequence motif residing in CHRM3 mRNA could disrupt the
binding between SRSF1 and their corresponding RNAs (Fig. 3b,
Supplementary Fig. 3d, and Supplementary Table 3).
To determine the effect of these 3′-UTR piSNVs on RBP binding,

we integrated RBP motif and CLIP-seq-derived RBP binding

data38,39 for all identified 3’-UTR piSNVs, which revealed 24 sig-
nificantly enriched RBPs. Abnormal expression of RBPs leads to
tumorigenesis3, so we detected the differentially expressed RBPs
between tumor and corresponding normal tissues in different
cancer types (Fig. 3e). The results proved that dysregulation of
these RBPs occurs broadly in seven cancer types. Consistent with
previous studies40,41, the RBPs PTBP1 and SRSF1 were differentially
upregulated in 6 and 3 cancer types, respectively. Moreover,
LIN28A/LIN28B and IGF2BP1/2/3 were the most differentially
upregulated RBPs in over 5 cancer types. Moreover, IGF2BP1/2
were significantly downregulated in Kidney-RCC and Prost-
AdenoCA. LIN28A/LIN28B are LIN-28 family members that are
associated with the developmental timing and self-renewal of
embryonic stem cells, and their aberrant expression is related to

Fig. 1 3′-UTR post-transcriptional impaired SNVs (3′-UTR piSNVs) identified in PCAWG project and ESCC cohorts. a General workflow for
identifying 3′-UTR post-transcriptional impaired SNVs. b Genome-wide gene density distribution of identified piSNVs (blue lines in
chromosome body) and 3′-UTR piSNVs (orange peaks) in each chromosome. c Compared to controls in the DSMNC database, the proportion
of somatic 3′-UTR piSNVs was significantly elevated in the PCAWG project and ESCC cohorts (*P < 0.05, **P < 0.01, ***P < 0.001). We calculated
the ratio of piSNV to SNV in 3′-UTR for each sample, and used wilcoxon rank-sum test to evaluate the distribution differences of 3′-UTR piSNV
ratio between cancer samples in each cancer type and control samples. Boxplots elements represent: center line = median, upper and lower
hinges = 25 and 75% percentiles, upper and lower whisker=mean ± 1.5*IQR.
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cancer progression42. IGF2BP1/2/3 encode members of the
insulin-like growth factor 2 mRNA-binding protein family, such
as insulin-like growth factor 2 (IGF2), and bind to the mRNAs of
several vital genes, and regulate translation. The dysregulation of
IGF2BP1/2/3 was found to be associated with skin squamous cell
carcinoma43 and pancreatic cancer44. Thus, these results sug-
gested that the identified 3′-UTR piSNVs affect the binding of
some cancer-associated RBPs in cancer development.

Effect of 3′-UTR piSNVs on miRNA binding
At the posttranscriptional level, miRNAs play an irreplaceable role in
regulating mRNA expression and controlling many biological
processes12,45. Moreover, 3′-UTR piSNVs may also influence post-
transcriptional regulation by affecting miRNA binding. By using
TargetScan46, miRNASNP47, starBase48, and miRDB45 software to
predict the binding miRNA of 3′-UTR piSNVs, we identified a total of
1737 miRNAs that could bind to 1035 3′-UTR piSNV-affected genes.
Most recurrent miRNAs are miR-3163 (21), miR-340-5p (19) and miR-
186-5p (18), regulating over 18 targeted 3′-UTR piSNV-affected genes.

Network illumination of miRNA and the top 50 differential
expressed miRNAs showed that several 3′-UTR piSNV-affected
genes are regulated by multiple miRNAs (Fig. 4a and Supplemen-
tary Table 4). These genes included PTEN, CRIM1, SMARCA5, VCAN,
SRGAP1, and RBM27, which may be regulated by over 10 kinds of
miRNAs. For example, PTEN is a tumor suppressor gene that is
commonly lost in human cancer, and is associated with prostate
cancer, glioblastoma, endometrial cancer, lung cancer and breast
cancer to varying degrees49,50. We also observed that the majority
of recurrent miRNAs have abnormal expression in cancers. Briefly,
5 miRNAs were significantly differentially upregulated in six kinds
of cancers, while 6 miRNAs were downregulated in over five kinds
of cancers (Fig. 4b). Our results suggested that several miRNAs
show the same dysregulated expression patterns in cancers.

Predicted APA and RNA modification change of 3′-UTR piSNV
sites
The 3′-UTR is a unique area of each gene that bind many functional
elements, affect transcript isoform generation, and contain RNA

Fig. 2 Overall survival and expression of immune checkpoint genes related to the 3′-UTR piSNV ratio across cancer types. Kaplan–Meier
curves displayed overall survival of patients with high- (red) and low- (red) 3′-UTR piSNV ratio in ESCC (a), Biliary-AdenoCA (c), Ovary-AdenoCA
(d), and Stomach-AdenoCA (f). Multivariate Cox regression analysis of the 3′-UTR piSNV ratio in ESCC (b) and Ovary-AdenoCA (e), which
included the factors of age, gender, and TNM stage of patients. g Tumor expression difference of immune checkpoint genes between the
high- and low-3′-UTR piSNV ratio groups in ESCC and Liver-HCC, fold changes were the ratios of the tumor sample in high-3′-UTR piSNV ratio
group to low-3′-UTR piSNV ratio group.
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modifications, such as APA and m6A RNA modification. To further
explore the effect of 3′-UTR piSNVs on APA changes and m6A
modification of transcripts, we annotated 3′-UTR piSNVs with RNA
modification and APA changes by RMVar51 and APADB52. The results
showed that 2.8% (628) and 2.3% (515) of 3′-UTR piSNVs had m6A
RNA modification and APA changes, respectively (Fig. 4c), occurring
mainly in the SLC16A10, LPGAT1, PRKCB, and USP38 genes.
We further considered the effect of m6A regulators on the m6A

RNA modification of transcripts, and we found that IGF2BP1/2/3, as
m6A readers, had significant differential expression in seven cancer
types. IGF2BP1/2/3 are IGF2 mRNA-binding proteins that enhance
mRNA transcript stability by recognizing m6A featured sequences53,
and are associated with many cancers, including skin squamous cell
carcinoma, testicular cancer, and enchondroma. IGF2BP2 functions
as a well-known tumor suppressor gene in lymphoma54. We also
paid attention to APA regulator expression changes due to 3′-UTR
piSNVs and observed widespread dysregulated expression of APA
regulators. Most of these APA regulators were specifically upregu-
lated in seven cancer types, while PPP1CB, PCF11, and PABPC1 were
significantly downregulated in ESCC (Supplementary Fig. 4). These
results suggested that variants of 3′-UTR piSNVs and the dysregula-
tion of m6A RNA modification and APA regulators could cause
posttranscriptional impairment in mRNA transcripts to contribute to
cancer pathogenesis.

The cooccurrence of 3′-UTR piSNV-affected genes across 18
cancer types
To investigate the influence of genes affected by 3′-UTR piSNVs,
we reviewed the somatic 3′-UTR piSNVs in each cancer type and
observed many tumor-specific genes in 2930 nonredundant 3′-
UTR piSNV-affected genes. The top 3′-UTR piSNV-affected genes
were RNF217, HDAC9, GPATCH2L, DNAJC10, EGFR, PROX1, OGFRL1,

and HHIP, and variations in these genes arisen in at least 10 cancer
types (Fig. 5a). The 3′-UTR piSNVs in gene RNF217 occurred in 63
patients across 10 cancer types. The RNF217 protein is a member
of RING1-IBR-RING24 (RBR) ubiquitin protein ligase family, which
contains a transmembrane domain and regulates apoptosis
signaling by interacting with HAX1 to promote leukemia
development55. In total, 70 and 33 patients (among 2413 total
patients) had 3′-UTR piSNVs of HDAC9 and EGFR, respectively. The
HDAC9 protein is a member of the histone deacetylase family that
can repress transcriptional regulation by catalyzing acetyl group
removal from lysine residues and is associated with cutaneous T
cell lymphoma and maxillary cancer56,57. Epidermal growth factor
receptor (EGFR) is a receptor tyrosine kinase that contains an
extracellular ligand-binding domain and binds to epidermal
growth factor, thus inducing receptor dimerization and tyrosine
autophosphorylation leading to motility, growth, cell proliferation,
and the development of many types of cancer58,59. EGFR is an
oncogene that is widely amplified and mutated in several cancer
types, including non-small cell lung cancer, glioblastoma, and
basal-like breast cancers60. The T790M EGFR variant has been
shown to confer resistance to several drugs, such as gefitinib and
erlotinib, and acts as a resistance marker61,62. Our data indicated
that 3′-UTR variations in HDAC9 and EGFR may promote cancer
development through posttranscriptional regulation.
The transcriptome data from the PCAWG project and our in-

house ESCC cohort were analyzed to estimate the differential
expression of these 3′-UTR piSNV-affected genes between tumor
and corresponding normal tissues in seven cancer types. We
found that the majority of the top 5% (58) most frequent 3′-UTR
piSNV-affected genes were differentially expressed in at least one
cancer type (Fig. 5b). For example, MAPK8IP2, ADAMTS12, and

Fig. 3 The functional effects of 3′-UTR piSNVs on RBP binding. Electrophoretic mobility shift assays (EMSA) results show the binding impact
of 3’-UTR piSNVs of TRIM38 (a) and KIAA1919 (b) on the recognition of PTBP1 to their RNA targets. Crystal structure of the PTBP1 (c; PDB ID:
2AD9) or SRSF1 (d; PDB ID: 6HPJ) in complex with specific RNA motifs, red region on RNA oligo presented the mutated sites. e Expression of 24
enriched RBP motifs of 3′-UTR piSNVs in different cancer types.
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CHAF1B were upregulated in over five cancer types, while HHIP,
PROX1, and PLCG2 were downregulated in over five cancer types.
Then, we investigated the 3′-UTR-length corrected frequency of

3’-UTR piSNV occurrence in 859 genes at the protein function and/or
posttranscriptional regulation levels. We found that PREX2,
ADAMTS12, and PLXDC2 were the genes most frequently affected
by 3′-UTR piSNVs genes in terms of both posttranscriptional changes
and functional damage (Fig. 5c). PREX2 is a member of the
phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac
exchanger (PREX) family. The domain of PREX2 interacts with the
phosphatase and tensin homolog (PTEN) gene product to inhibit
PTEN phosphatase activity, thus activating the phosphoinositide-3
kinase (PI3K) signaling pathway, which plays a role in insulin
signaling pathways. PREX2 mutation or overexpression has been
observed in some cancers63,64. And we found there were both
missense mutations and 3′-UTR piSNVs of PREX2 from the same
sample in 5 samples of Skin-Melanoma and 1 sample of Panc-
AdenoCA. Interestingly, there was one Skin-Melanoma sample
having four different missense mutations and 2 different 3′-UTR

piSNVs of PREX2, who had higher levels of malignancy (IV, AJCC 7th
Edition 2010), while other samples normally had simply one
missense mutation or 3′-UTR piSNV. Thus, we inferred that PREX2,
ADAMTS12, and PLXDC2 mutations lead to cancer development at
both the protein function and posttranscriptional regulation levels.
And some identified 3′-UTR piSNV-affected genes, such as SLC6A11,
NUDCD2, CTNNA3, RAB3C, and AJAP1, are well-studied cancer/
disease related genes with a high deleterious mutation rate.
Intriguingly, we found that some 3′-UTR piSNV-affected genes, such
as RNF217, PGAM2, RBBP4, PIK3CA, CDYL2, EGFR, and PIK3R2, involved
in carcinogenesis mainly via posttranscriptional regulation. The
clarification of the features of these 3′-UTR piSNV-affected genes
greatly broadened our understanding of cancer biology.

Functional enrichment and pathological network/pathway
analysis of 3′-UTR piSNV-affected genes
To explore the systematic function of 3′-UTR piSNV-affected
genes, we used the ‘clusterProfiler’ R package65 to perform

Fig. 4 The effect of post-transcriptional regulation on miRNA/m6A/APA. a Interaction network between top 50 recurrent binding miRNAs
and 3’-UTR piSNV genes, blue lines are the edges of top 3 recurrent binding miRNAs (miR-3163, miR-340-5p and miR-186-5p), and red lines are
the edges of the major targeted 3′-UTR piSNV genes (PTEN, CRIM1, SMARCA5, VCAN, SRGAP1, and RBM27). b Expression of top 50 recurrent
binding miRNAs in different cancer types. c The quantitatively distribution of 3′-UTR piSNV in APA, m6A, and miRNA binding sites.
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Fig. 5 Top 3′-UTR piSNV-affected genes in PCAWG and ESCC cohorts. The cooccurrence (a) and expression (b) of the top 2% (58) 3′-UTR-
length corrected frequently occurred 3′-UTR piSNV-affected genes in cancers. c The scatter plot displayed the 3′-UTR-length corrected
occurrence frequency of genes at protein and post-transcriptional regulation levels.
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functional enrichment analysis and found that 3′-UTR piSNV-
affected genes were enriched in some canonical cancer pathways
and metabolism-related pathways, such as the Notch/Wnt/PI3K-
Akt/MAPK/Ras/Hippo/EGFR/ERBB signaling pathways and insulin/
thyroid hormone/estrogen pathways (Fig. 6a, b). Then, we applied
the Hotnet266 and activePathway67 workflows to identify patho-
logical networks and pathways in the HINT+ HI201268,69, iRefIn-
dex70, and Multinet71 protein-protein interaction networks, and
we identified 1 significantly altered network and 5 pathological
pathways based on the occurrence frequency of each 3′-UTR

piSNV gene. The network consisted of NOTCH1, NOTCH2, NOTCH3,
JAG1, JAG2, LFNG, MFNG, NUMB, FBXW7, and LINGO1 (Fig. 6c).
These genes are involved in the NOTCH signaling pathway, which
controls essential cellular processes, such as proliferation, differ-
entiation and branching morphogenesis72,73. Moreover, five
pathological pathways, including the PI3K/AKT/FGFR/MAPK signal-
ing, EGFR-related signaling, AMPA-related signaling, Notch signal-
ing and Wnt signaling pathways, had a high correlation with
tumor development (Fig. 6d). The above pathological networks
and pathways showed that 3′-UTR piSNV-affected genes were

Fig. 6 Systematic functional effect of 3′-UTR piSNV genes. GO (a) and KEGG (b) functional enrichment of 2930 3′-UTR piSNV genes; the
significant pathological networks (c) and pathways (d, pink: 3′-UTR piSNVs; green: damaging mutations; orchid: 3’-UTR piSNVs and damaging
mutations; pink and green: 3′-UTR piSNVs or damaging mutations) of 3′-UTR piSNV genes were performed by Hotnet2 and activePathway
workflow, respectively. The major signaling pathways (PI3K/AKT/FGFR/MAPK signaling, EGFR-related signaling, AMPA-related signaling, Notch
signaling, and Wnt signaling pathways) were pointed out by light yellow circular backgrounds (d). e Potential clinical drugs identified
by CMAP.
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involved in vital tumorigenesis processes at the posttranscrip-
tional level.

Therapeutic implications of 3′-UTR piSNVs and 3′-UTR piSNV-
affected genes
To investigate the therapeutic implications of these identified 3′-
UTR piSNVs, we employed the Connectivity Map (CMAP) work-
flow74 to assess gene expression profiles for 1309 compounds to
identify clinical drugs based on the expression signature of these
3′-UTR piSNV-affected genes. Finally, we identified a total of 80
compounds, and the majority of them were found to have an
effect on a specific cancer type (Fig. 6e). 5155877 (HRF-3) was
identified as a highly ranked small molecule that affects gene
expression signatures associated with 3 cancer types (Fig. 6e).
Overall, these identified drugs and compounds might show
potential benefits in treating patients with specific types of cancer.

DISCUSSION
The 3′-UTR can drive or enhance cancer pathogenesis at the
posttranscriptional gene regulation level by disrupting regulatory
element binding and dysregulating oncogenic gene expression1.
Previous cancer genomics studies have mostly focused on genetic
aberrations of protein-coding regions. WGS of large tumor
samples in the PCAWG project and our in-house ESCC cohorts
provided an opportunity to explore the comprehensive effect of
somatic 3′-UTR mutations on posttranscriptional regulation in
cancer. In previous work, we had proved via experimental and
computational analyses that somatic mutations identified by PIVar
algorithm could disrupt the binding of the RBP-RNA complex6.
By employing updated PIVar, we identified 25,216 3′-UTR

piSNVs spanning 2930 genes across 18 cancer types and observed
the striking phenomenon that most SNVs were 3′-UTR piSNVs,
which implied that RBPs prefer to bind in 3′-UTR rather than other
regions to modulate posttranscriptional regulation. We compared
cancer and control samples from the DSMNC database, and
observed an elevated ratio of somatic 3′-UTR piSNVs in pan-
cancer, in addition, a high ratio of 3′-UTR piSNVs indicated poor
patient survival for four cancer types (ESCC, Ovary-AdenoCA,
Biliary-AdenoCA and Stomach-AdenoCA), and there was still an
association between the 3’-UTR piSNV ratio and clinical survival in
ESCC and Ovary-AdenoCA even when adjusting for other variables
by multivariate Cox regression. These results suggested that the
3′-UTR piSNV ratio could be a potential prognostic biomarker for
these four kinds of cancers. Notably, some identified 3′-UTR
piSNV-affected genes, such as PREX2, ADAMTS12, and PLXDC2,
were regarded as cancer-related genes with a high deleterious
mutation rate. For example, PREX2 is an oncogene that interacts
with PTEN gene product to inhibit PTEN phosphatase activity, thus
activating the PI3K signaling pathway, which plays a role in insulin
signaling pathways, and its mutations or overexpression have
been observed in some cancers. PREX2 had the second highest 3′-
UTR-length corrected frequency of 3’-UTR piSNV occurrence, and 9
of 2413 cancer patients were also identified to carry protein
damaging mutations of PREX2; Thus, the 3′-UTR piSNV-affected
genes were able to promote carcinogenesis at both the protein
function and posttranscriptional regulation levels. Thrillingly, we
found that some 3′-UTR piSNV-affected genes, such as URB1,
PIK3CA, ROBO1, and FAT4, might exert their function during
carcinogenesis mainly via posttranscriptional mechanisms. The
identification of these 3′-UTR piSNV-affected genes that were not
previously well characterized at the posttranscriptional level,
which greatly broadened our understanding of cancer biology. In
this study, we only focused on the impaired structure and
posttranscriptional regulation of 3′-UTR piSNV-affected genes,
while some genes may function as trans-acting factors or
epigenetic regulators and perform their function at the

transcriptional level; thus, future studies need to comprehensively
explore the functions of these identified 3′-UTR piSNV-
affected genes.
It is unclear how posttranscriptional regulation affects the

tumor microenvironment, which determines the invasiveness of
cancers75. We found that in the worse clinical outcome samples
that had a high-3′-UTR piSNV ratio, there was distinct hetero-
geneity of immune cells in different cancer types, and type 2
macrophages [M2], as immunoinhibitory cells, were more
enriched in the high-3′-UTR piSNV ratio groups (Supplementary
Fig. 2c, d). Moreover, the inhibitory immune checkpoint IDO1/
CD274 (PD-L1) had significantly higher expression in the high-3′-
UTR piSNV ratio groups (Supplementary Fig. 2e, f). Many previous
studies have proved that immune checkpoint therapies (such as
anti-PD-1/PD-L1 therapies) have extraordinary therapeutic effects
in cancer patients and revolutionize the treatment standard for
multiple cancers76. However, more matched expression data of
different cancers are needed to illustrate the immune micro-
environment characteristics at the posttranscriptional regulation
level. Finally, we identified several potential therapeutic com-
pounds for patients with specific cancer types. Recent studies also
show that RBPs play a role in viral infections. The expression of
RBP RBM47 is upregulated by Dengue virus (DENV) infection and
has an inhibitory effect on DENV replication; RBM47 is an
Interferon-stimulated genes (ISG) that is upregulated by multiple
viral induction or interferon stimulation and has broad-spectrum
antiviral effects. rBM47 had no significant effect on IFN production,
but had a significant enhancing effect on the activation of the
Interferon (IFN) response element ISRE and the expression of ISGs.
In the RBP immunoprecipitation assay, RBM47 specifically bound
the 3′-UTR of type I IFN receptor IFNAR1 mRNA, stabilized the
mRNA, and subsequently increased the protein level of intracel-
lular IFNAR1, promoted viral infection or interferon-induced
phosphorylation of STAT1/2, enhanced interferon-stimulated
expression of gene ISGs and amplified the antiviral effect of the
host77.
Generally, our study revealed the comprehensive characteristics

and clinical relevance of 3′-UTR piSNVs across cancers, providing
new insight for investigating posttranscriptional regulation, which
contributes to tumor progression and may promote the develop-
ment of new strategies for cancer treatment.

METHODS
Identification of 3′-UTR piSNVs from somatic mutation WGS
data of 18 cancer types
We downloaded somatic mutations derived from WGS data of 2413
patients across 18 cancer types in the PCAWG (https://dcc.icgc.org/
releases/PCAWG/) project17, including Biliary-AdenoCA, Bone-Osteosarc,
Breast-AdenoCa, CNS-Medullo, CNS-PiloAstro, Eso-AdenoCa, Kidney-RCC,
Liver-HCC, Lymph-BNHL, Lymph-CLL, Myeloid-MPN, Ovary-AdenoCA, Panc-
AdenoCA, Panc-Endocrine, Prost-AdenoCA, Skin-Melanoma, and Stomach-
AdenoCA, as well as our in-house ESCC WGS samples (663 patients)18. We
used WGS samples from the DSMNC (https://dsmnc.big.ac.cn/) database
(Database of Somatic Mutations in Normal Cells)19 as a control, and we
obtained 0.77 million somatic SNVs occurring in over 579 human normal
cells from the DSMNC database.
PIVAR algorithm was our previously developed to evaluate the impact of

mutations on posttranscriptional regulation6. We updated PIVAR algorithm
to evaluate the impact of mutations on posttranscriptional regulation by
adding the latest 318 eCLIP-seq data from ENCODE (112 RBPs) to identify
3′-UTR piSNVs38,39, which could disrupt the binding between RNAs and
RBPs. We used the Wilcoxon rank-sum test to compare the distribution of
the 3′-UTR piSNV ratio (ratio of 3′-UTR piSNVs to 3′-UTR SNVs) between the
control samples and samples of each cancer type. In detail, we calculated
the ratio of piSNVs to SNVs in the 3′-UTR for each sample and used
Wilcoxon rank-sum test to evaluate the distribution differences of 3′-UTR
piSNV ratio between cancer samples in each cancer type and control
samples.

W. Wei et al.

9

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2022)    34 

https://dcc.icgc.org/releases/PCAWG/
https://dcc.icgc.org/releases/PCAWG/
https://dsmnc.big.ac.cn/


GWAS SNPs data was downloaded from GWAS Catalog database20

(https://www.ebi.ac.uk/gwas/downloads) and CCGD-ESCC database21

(http://db.cbi.pku.edu.cn/ccgd/ESCCdb).

Clinical survival analysis
Corresponding clinical data of each cancer type was collected from the
PCAWG (https://dcc.icgc.org/releases/PCAWG/) project and our in-house
ESCC cohort. Then, the ‘surv_cutpoint’ function in ‘survminer’ R package
was used to determine the optimal 3′-UTR piSNV ratio based on the OS
data of the patients. Overall survival analysis was performed with the
Kaplan–Meier method and p value was calculated with log-rank test. In the
multivariate cox proportional regression analysis, age, sex, tumor-node-
metastasis (TNM) stage, and the race of patients was assessed to analyze
the relationship between the 3′-UTR piSNV ratio and clinical outcomes.

Characteristics of immune cell types and immune regulators
between the high- and low-3′-UTR piSNV ratio groups
We employed the CIBERSORT24 algorithm to calculate the abundance
scores of 22 immune cell types to evaluate the cellular heterogeneity
landscape in ESCC and Liver-HCC by RNA-seq data. We obtained immune
checkpoint genes from previous studies76,78 and used the ‘DESeq2’ R
package79 to calculate the expression difference between the high-3’-UTR
piSNV ratio group and the low-3’-UTR piSNV ratio group. We compared the
abundance of each immune cell type and gene expression between the
high- and low-3’-UTR piSNV ratio groups by the Wilcoxon rank-sum test.

RBP motif enrichment of 3′-UTR piSNV loci and their impact
on RBP binding
Many RBPs interact with mRNAs via a limited set of modular RNA-binding
domains, including the RNA recognition motif, heterogeneous nuclear
ribonucleoprotein K-homology domain, and zinc fingers80. The RNA-
binding domains of RBPs initially determine the specificity and preferences
of RNA binding with specific sequence motifs81. Therefore, we downloaded
247 positional weight matrices (PWMs) of the inferred RNA binding motif
from the AURA database82, which were used to call motif matches in the
transcriptome. RBP motif and CLIP-seq-derived RBP binding were
integrated to identify 3′-UTR piSNVs38,39; FDR and OR values were
calculated with Fisher’s exact tests to identify the significantly enriched
RBPs affected by 3′-UTR piSNVs (FDR < 0.05 and OR > 1).
To further estimate the influence of piSNVs on RBP binding, the crystal

structures of the PTBP1-RNA (PDB ID: 2AD9) and SRSF1-RNA (PDB ID: 6HPJ)
complexes were downloaded from the Protein Data Bank83 (https://www.
rcsb.org/); the binding strength was predicted with the PRIdictor35 webtool
(http://bclab.inha.ac.kr/pridictor), and the structures were visualized with
PyMOL software (https://pymol.org/).

Chemiluminescent electrophoresis mobility shift assays
To evaluate the functional effect of RNA mutation on binding of RBP, we
used LightShift Chemiluminescent RNA EMSA kit (Catalog # 20158; Thermo
Scientific, Rockford, USA) to performe electrophoresis mobility shift assays.
RBP PTBP1 kept on−80 °C was used in the assay. Then, 200 ng PTBP1 protein
was pre-incubated with 0.2 µL tRNA (10mg/mL) in 1× RNA EMSA binding
buffer containing 5% glycerol for 10min at room temperature to block
unspecific binding as much as possible. After that, 100 fmol synthesized 3′-
biotin-labeled wild-type or point-mutated RNA oligos (Supplementary Table
5) for each reaction were respectively added to the mixture to a final volume
of 20 µl and incubated for 20min at room temperature. Then, 1× loading
buffer was added to the RBP-RNA mixture and immediately loaded into the
pre-run 6% TBE polyacrylamide gel, and ran at 100 V for 45–60min in cooled
0.5× TBE buffer. Samples were then transferred to positively charged nylon
membrane (Catalog # FFN15, Beyotime, Shanghai, China), and crosslinked
with UV-light crosslinking instrument equipped with 254 nm bulbs for 5min.
The subsequent blocking, washing and detection were performed according
to the manufacturer’s instructions.

Predicted RNA modification and APA influence on 3′-UTR
piSNVs
We annotated RNA modifications and APA changes in 3′-UTR piSNVs with
RMVar51 and APADB52. We collected 22 kinds of APA regulators and 20
kinds of m6A RNA modification regulators, including 7 m6A writers, 2
erasers and 11 readers.

miRNA annotation of 3′-UTR piSNVs
We identified possible binding miRNAs of 3′-UTR piSNVs with TargetScan
v7.246, miRNASNP v347, starBase v3.048, and miRDB v6.045 software, and we
built a network of the top miRNAs related to 3′-UTR piSNV-affected genes.

Differential expression analysis
RNA-seq/miRNA raw read count data of seven types of cancer tissues and
corresponding normal tissues were collected from the PCAWG and our in-
house ESCC cohorts. The R package ‘DESeq2’79 was used to evaluate the
expression of 2930 3′-UTR piSNV-affected genes, 248 enriched RBPs,
miRNA and m6A/APA regulators identified in the previous steps, and genes
with fold-change >2 and FDR < 0.05 were considered to be significant
differentially expressed genes.

Identification of coexisting protein damage-related mutations
in 3′-UTR piSNV-affected genes
Functional consequences on proteins of identified 2930 3′-UTR piSNV-
affected genes were predicted with activeDriverWGS tool84. Then, the 3’-
UTR-length of each gene was applied to corrected occurrence frequency of
protein damaging mutations and 3’-UTR posttranscriptional impaired
mutations in these genes was analyzed in all 2413 cancer patients85.

Functional enrichment and pathological network/pathway
analysis
We performed functional enrichment analysis via the ‘clusterProfiler’ R
package65 with a Bonferroni correction test and identified significant
pathways with FDR values < 0.05. Then we used the HotNet266 and
activePathway67 workflows to mine significantly mutated subnetworks
and pathways according to HINT+ HI2012 (a combination of the HINT
network68 and the HI-201269), iRefIndex70 and Multinet71 protein–protein
interaction networks, and the sample frequency of 3′-UTR piSNVs and
damage score for the affected genes were taken as the network heat
score to identify significant subnetworks and pathways with default
parameters.

Potential clinical drug analysis
To further explore the therapeutic implications of 3′-UTR piSNV-affected
genes, drug response signatures assembled in CMAP build 02 (Broad
Institute)74 were downloaded to compare with the gene expression of
identified 3′-UTR piSNV-affected gene, which contains information on gene
expression profiles and the sensitivity to 1309 compounds.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The majority of the datasets analyzed in this study were downloaded from the Pan-
Cancer Analysis of Whole Genomes (PCAWG) study (https://dcc.icgc.org/releases/
PCAWG/); NGS and clinical data of ESCC samples are available in Genome Sequence
Archive (GSA) (https://ngdc.cncb.ac.cn/gsa-human/) under accession HRA000021;
Somatic mutations in normal cells were downloaded from the DSMNC database
(https://dsmnc.big.ac.cn/).

CODE AVAILABILITY
PIVar algorithm are available at GitHub (https://github.com/WeiWenqing/PIVar). All
computational tools used with default parameters in this study are available for
download as open-source software and are detailed in “Methods”.
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