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Clinical pharmacogenetic analysis in 5,001 individuals with
diagnostic Exome Sequencing data
Javier Lanillos 1, Marta Carcajona2, Paolo Maietta2✉, Sara Alvarez2 and Cristina Rodriguez-Antona 1,3✉

Exome sequencing is utilized in routine clinical genetic diagnosis. The technical robustness of repurposing large-scale next-
generation sequencing data for pharmacogenetics has been demonstrated, supporting the implementation of preemptive
pharmacogenetic strategies based on adding clinical pharmacogenetic interpretation to exomes. However, a comprehensive study
analyzing all actionable pharmacogenetic alleles contained in international guidelines and applied to diagnostic exome data has
not been performed. Here, we carried out a systematic analysis based on 5001 Spanish or Latin American individuals with
diagnostic exome data, either Whole Exome Sequencing (80%), or the so-called Clinical Exome Sequencing (20%) (60 Mb and
17Mb, respectively), to provide with global and gene-specific clinical pharmacogenetic utility data. 788 pharmacogenetic alleles,
distributed through 19 genes included in Clinical Pharmacogenetics Implementation Consortium guidelines were analyzed. We
established that Whole Exome and Clinical Exome Sequencing performed similarly, and 280 alleles in 11 genes (CACNA1S, CYP2B6,
CYP2C9, CYP4F2, DPYD, G6PD, NUDT15, RYR1, SLCO1B1, TPMT, and UGT1A1) could be used to inform of pharmacogenetic phenotypes
that change drug prescription. Each individual carried in average 2.2 alleles and overall 95% (n= 4646) of the cohort could be
informed of at least one actionable pharmacogenetic phenotype. Differences in variant allele frequency were observed among the
populations studied and the corresponding gnomAD population for 7.9% of the variants. In addition, in the 11 selected genes we
uncovered 197 novel variants, among which 27 were loss-of-function. In conclusion, we provide with the landscape of actionable
pharmacogenetic information contained in diagnostic exomes, that can be used preemptively in the clinics.
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INTRODUCTION
Adverse Reactions to Drugs (ADRs) and therapeutic failure are
major public health care problems1,2. Over 200 genes have been
associated with therapy response and are recognized as
pharmacogenetic genes3 and between 80 and 99% of individuals
are estimated to carry genetic variants that modify drug
response4,5. Pharmacogenomic information is included in drug
labels and several clinical guidelines have been elaborated to
adjust drug prescription to the genetic background of the
individual (e.g. by the Clinical Pharmacogenetics Implementation
Consortium-CPIC or by the Dutch Pharmacogenetics Working
Group-DPWG)6–9. However, the implementation of pharmacoge-
netics in the clinics is still low.
Genotyping-based technologies are useful strategies for reac-

tive pharmacogenetics, by guiding the use of particular medica-
tions or explaining specific ADRs10–13. They also promote
preemptive pharmacogenetics4, but the recent explosion of
next-generation sequencing (NGS) techniques creates a unique
opportunity to accelerate this field14. Whole exome sequencing
(WES) or whole-genome sequencing (WGS) are suitable approx-
imations for repurposing available sequencing data and report
pharmacogenetic actionable alleles4,10,14–17, while they can also
uncover novel potentially relevant variants18,19. The accuracy of
NGS for detection of pharmacogenetic variants is elevated,
showing high concordance with genotyping techniques10,14,17,
and customized pharmacogenetic NGS panels and WGS can
resolve the full set of actionable pharmacogenetic alleles17,20,21,
including copy number variations (CNVs) in important pharmaco-
genes such as CYP2D614,18,21–26. Exome sequencing is limited by

design (i.e. lack of non-coding regions, low resolution for CNVs,
and incomplete HLA-typing accuracy), but at the moment, the
large-scale NGS techniques most commonly used for diagnosis are
WES together with the so-called Clinical Exome Sequencing (CES),
which are smaller designs targeting disease-causing genes
(typically, 12–17 Mb compared to 50–60 Mb of WES)27–29. Diag-
nostic WES and CES provide an extraordinary opportunity to
repurpose this data to recover actionable pharmacogenetic
information and boost preemptive pharmacogenomic testing.
After some pioneer studies with small sample sizes and/or

lacking phenotype assignments14,15,17, two recent large biobank
studies used research-oriented data to compare the pharmaco-
genetic allele resolution of genotyping arrays, WES and WGS10,
and to investigate the frequency of pharmacogenetic alleles in the
WES of 50,000 individuals in the UK Biobank30. Regarding
diagnostic WES, a study in >1500 individuals investigated the
feasibility of extracting 42 selected variants in 11 pharmaco-
genes16, and two additional studies with >1000 individuals
explored the secondary use of WES for pharmacogenomics in
specific patient groups31,32. However, these studies have missed
some clinically relevant pharmacogenes (e.g. CACNA1S10,14–16,31,
CYP2B6 and UGT1A131,32, CYP4F2 and G6PD15,16, NUDT15 and
RYR114–16), they are population-specific10,30,32, and none has
investigated the potential utility of CES. Therefore, a systematic
analysis including all pharmacogenetic variants defined as
actionable by international consensus, within a routine clinical
diagnostic WES context, is still lacking.
In this study, we performed a comprehensive pharmacogenetic

analysis in 5001 individuals that underwent WES or CES for genetic
diagnosis in Spain and Latin American countries, by extracting and
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analyzing the 788 pharmacogenetic alleles defined in any of the
25 Clinical Pharmacogenetics Implementation Consortium (CPIC)
guidelines currently available. In addition, we investigated
differences in allele frequencies among populations and extracted
novel loss-of-function (LOF) variants to estimate their contribution
to the different pharmacogenetic phenotypes.

RESULTS
Study cohort
We retrospectively collected pharmacogenetic data from 5001
unrelated individuals that underwent routine WES or CES aimed at
medical diagnosis of diverse hereditary conditions (NIMGenetics,
Madrid, Spain; between July 2017 and May 2019) using two
frequently used commercial library kits (n= 4002 WES and n=
999 CES; see Methods section for platform details). 53.8% of the
cases were females (n= 2690), 44.6% males (n= 2231), and for
1.6% (n= 80) gender was unknown. Regarding the country of
origin, 2862 individuals (57.2%) were from Spain, 2016 (40.3%)
were from Latin America (1342 Colombia, 568 Brazil, 92 Mexico, 11
Ecuador, 1 Argentina, 1 Chile and 1 from an unknown location in
Latin America), 40 (0.01%) were from other diverse countries and
83 individuals (1.7%) were from an unknown location.

Selected pharmacogenetic alleles with clinical actionability
Figure 1 summarizes the workflow that was followed for allele
selection. All pharmacogenetic alleles described in any of the 25
available CPIC clinical guidelines (https://cpicpgx.org/guidelines/;
accessed in July 2021) were selected for the study (788 alleles
distributed in 19 genes). We filtered out those with no application
in the clinics (with normal function, with unclear/uncertain/
unknown impact in function or with a limited/inadequate strength
of evidence, when available; 345 alleles discarded and 443
retained), then we identified alleles defined by intronic, intergenic
or upstream regions variants not present in the exome data (5001
exomes analyzed; 33 alleles discarded and 410 retained). At this
filtering step, no differences were observed between WES and
CES. At this point, we reasoned that 8 genes (CYP2C19, CYP3A5,
IFNL3, VKORC1, CYP2D6, HLA-A, HLA-B, and CFTR) could not be fully
informed because (i) a major actionable allele was absent in
exome data (CYP2C19*17-promoter region, CYP3A5*3-deep intro-
nic, IFNL3 rs12979860-non-coding region and VKORC1 rs9923231-
promoter region) and this would lead to an incomplete
pharmacogenetic report with no associated clinical recommenda-
tion; (ii) an important actionable allele is a Copy Number Variant
(CYP2D6) or is a HLA allele (HLA-A and HLA-B) which cannot be
accurately resolved by exome data. Partial gene deletions in
CYP2B6 (CYP2B6*29 and CYP2B6*30 alleles) cannot be detected by
exome, but due to their rarity in tested populations (<1% in
African American and Asians individuals)33,34, this gene was not
excluded from the analysis13; and (iii) these were disease causative
alleles (CFTR) that are out of the objectives of preemptive
pharmacogenetics. Therefore, we filtered out all the alleles in
these 8 genes, and retained a total of 280 alleles distributed in 11
pharmacogenes (CACNA1S, CYP2B6, CYP2C9, CYP4F2, DPYD, G6PD,
NUDT15, RYR1, SLCO1B1, TPMT, and UGT1A1) that were considered
suitable to generate a comprehensive exome-based pharmaco-
genetic report and were kept for the analysis (Fig. 1).

Sequencing depth of coverage data and quality control
We performed a sequencing coverage quality control (QC) of all
genetic loci required to resolve the 280 actionable alleles
(Supplementary Fig. 1A). All interrogated loci were covered by
both exome designs, despite we observed some differences
between WES and CES for some genes. In CES there was a lower
coverage in CACNA1S caused by the variant rs772226819 (40% of

samples covered <40x, although 99.5% had >20x). In WES there
was a lower coverage in TPMT at variant rs1142345, defining
TPMT*3C and TMPT*3A alleles (80% of samples <40x, although
90% had >20x). The gene with the lowest coverage was UGT1A1,
especially in CES, due to the indel variant rs34983651, which
defines the alleles UGT1A1*28, *36, and *37 (the percentage of
samples covered >20x were 93 and 34% for WES and CES,
respectively). Of note, CYP2B6 and CYP2C9, with the lowest level of
sequence uniqueness (Supplementary Fig. 1B), did not show lower
coverage nor evidence of potential calling errors in our analysis.
Overall, an average coverage >20x was observed for all loci
(except for rs34983651) in 99.3% of the samples, indicating
that repurposing of diagnostic WES and CES data for clinical
pharmacogenomics is a suitable approximation for the
selected genes.

Pharmacogenetic diplotypes
After variant genotype to allele diplotype conversion, 96.4% (n=
4823) of individuals harbored one or more actionable alleles (Fig.
2a). The average number of actionable alleles per individual was
2.2, with 6 individuals having 7 actionable alleles. Most individuals
(79.3%) had 2 or more pharmacogenetic alleles, which illustrates
the high pharmacogenetic heterogeneity (Supplementary Fig. 2),
and 55% of the cohort carried either one (n= 2735) or two (n=
11) alleles defined by indel variants (Fig. 2a). Regarding the
different genes involved, UGT1A1 and CYP2B6 were the two genes
that contributed the most to the total alleles called, followed by
CYP4F2, CYP2C9, and SLCO1B1, while a low number of alleles were
observed for TPMT, DPYD, NUDT15, G6PD, and RYR1, and no
individuals were found to carry any CACNA1S actionable allele
(Fig. 2b).
The most frequent alleles in each gene are shown in Fig. 2c, for

the whole cohort and for the largest populations analyzed (Spain,
Colombia, and Brazil), together with the frequency in which those
alleles are found in homozygosity or compound heterozygosity
(gray bars in Fig. 2c). In CYP4F2 and NUDT15 only one or two
actionable alleles were detected (CYP4F2*3, NUDT15*2, and
NUDT15*3, respectively). In SLCO1B1, UGT1A1, and CYP2B6, one
allele was far more frequent than the rest (SLCO1B1*15,
UGT1A1*28, and CYP2B6*6, respectively), with CYP2B6 having a
significant proportion of less frequent alleles. In TPMT, the most
common allele was TPMT*3A, followed by TPMT*2 in Spain or
TPMT*3C in Colombia. In CYP2C9, the dominating alleles were
CYP2C9*2 and CYP2C9*3, but additional minor alleles were
detected, especially in Latin American population (10.6% and
9.9% in Colombia and Brazil versus 4.2% in Spain). In DPYD, the
two most frequent alleles were DPYD HapB3 and DPYD c.2846A >
T across the populations studied, followed by DPYD*2A in Spain
and by c.557A > G in Colombia and Brazil. RYR1 and G6PD genes
were the more heterogenous genes, with diverse and low
prevalent alleles across populations, in the case of G6PD with
-202A-376G being the most common allele. The full list of alleles
per individual is provided in Supplementary Data 2.
We compared the frequency of variants found in Spain and

Latin America and the corresponding gnomAD population
(Supplementary Fig. 3). Among high-frequency variants with
differences, SLCO1B1 rs2306283 (present in several SLCO1B1
alleles) had the highest frequency in Brazil, CYP4F2 rs2108622
(*3) in Spain and CYP2B6 rs3745274 and rs2279343 (*6) in
Colombians. Among medium and low-frequency variants, several
G6PD variants had a large variability among populations, TPMT
rs1800462 (*2) had the highest frequency in Spain and DPYD
rs115232898 (c.557A > G) had higher frequencies in our popula-
tions (i.e. 0.00087 versus 0.000053 for Spain and gnomAD NFE;
0.003 versus 0.00078 for Latin American countries and gnomAD
AMR) suggesting a contribution from Sub-Saharan Africa in our
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cohorts35. Differences with CPIC European and Latino allele
frequency data is presented in Supplementary Fig. 4.

Pharmacogenetic phenotype analysis
Allele diplotype to phenotype conversion revealed that 4646
individuals (95.1%) had a clinical actionable pharmacogenetic
phenotype that could be reported based on exome data
(Supplementary Fig. 5B). The proportion of individuals with an
actionable phenotype differed according to the gene, with the
highest numbers corresponding to UGT1A1, CYP2B6, and CYP4F2,
followed by CYP2C9 and SLCO1B1 (Table 1 and Supplementary Fig.
5B). When only the more extreme phenotypes were considered
(those in which an alternative drug is recommended due to an
increased risk of severe/fatal toxicity, i.e. CYP2C9 PM (Poor
Metabolizer), DPYD PM, G6PD deficient, NUDT15 PM, RYR1 MHS
(Malignant Hyperthermia Susceptibility) carriers, SLCO1B1 LF (Low
Function), and TPMT PM), these were present in 5.5% of the
individuals.
Comparing the phenotypes of Spanish and the Latin American

individuals, some statistically significant differences were

observed in four genes (Table 1 and Supplementary Fig. 5C). For
example, NUDT15 Intermediate Metabolizer (IM) phenotype was
higher in Latin America than in Spain (4.5% versus 1%, p <
0.00001; Supplementary Fig. 5C; and Table 1), while CPIC indicates
frequencies of 8% and 0.8% for Latino and in European
populations, respectively36. The combination of TPMT and NUDT15
phenotypes resulted in 15 individuals being IMs for both genes,
the majority being from Latin America (0.5% versus 0.1% in Spain).

Novel Loss-of-Function variants
In the eleven pharmacogenes analyzed in the exomes, we
retrieved a total of 1012 variants, 19.5% of which were novel
(167 missense, 11 frameshift, 7 canonical splice site, 8 stop gain,
and 4 inframe variants) (Fig. 3a, b and Supplementary Data 3). As
expected, the average allele frequency of the novel variants was
lower than that of the known variants (0.00025 and 0.028,
respectively, p value= 0.02) and 99% of the novel variants were
found in one single country (either Spain, Colombia or Brazil),
compared to 71% for known variants. Differently from the novel
missense variants, which have an unknown effect in protein

Fig. 1 Workflow diagram describing how actionable alleles and pharmacogenes were selected based on CPIC clinical guidelines.
*Evidence: “evidence level” is obtained from CPIC “allele functionality” tables. This information is only available for CYP2C19, CYP2C9, and
DPYD genes.
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activity, LOF variants are expected to lead to a non-functional
protein. The 26 novel LOF variants found were estimated to
increase in average 0.54% the total number of actionable alleles,
with a greatest impact on G6PD and DPYD and the lowest in
UGT1A1 and TPMT (3.4%, 1.1% and 0.04%, 0%, respectively; Fig.

3c). It is important to note that for the calcium release channels
RYR1 and CACNA1S the nonsense variants found have unknown
significance, as only specific missense variants contribute to MHS.
The full list of known and novel variants found in the selected list
of pharmacogenes can be found in Supplementary Data 3.
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DISCUSSION
Repurposing diagnostic exome data for clinical pharmacoge-
nomics has the potential to globally change drug prescription.
WGS is taking the lead for genomics medicine37, but WES and CES
provide with an invaluable resource38–40 and a unique opportunity
to implement pharmacogenetics, since they represent a compe-
titive option among the large-scale NGS techniques used in the
clinic41,42. In this study, by performing a systematic analysis of all
pharmacogenetic alleles included in CPIC guidelines in 5001
exomes, we illustrate the pharmacogenetic actionable landscape
contained in routine diagnostic WES and CES data.
Analyzing the 19 pharmacogenes included in CPIC guidelines

revealed that 11 of these genes can be comprehensively informed
(CACNA1S, CYP2B6, CYP2C9, CYP4F2, DPYD, G6PD, NUDT15, RYR1,
SLCO1B1, TPMT, and UGT1A1) using WES or CES data. These genes
are included in eight guidelines that describe relevant changes in
therapeutic management of patients treated with volatile
anesthetic agents and succinylcholine, antiretroviral therapy with
efavirenz and atazavir, nonsteroidal anti-inflammatory drugs,
fluoropyrimidines and thiopurines, rasburicase, and statins (see
Supplementary Data 4). In addition, phenytoin and warfarin
guidelines are partially covered: in the first case, informing about
the recommended drug doses but missing the identification of
patients with increased risk of hypersensitivity reactions43,44 and
in the second case, missing VKORC1 genotype information
precludes comprehensive estimation of warfarin dose44. Thus,
the pharmacogenetic information that is easily retrieved from
exome data, is crucial to prevent drug adverse reactions (e.g. life-
threatening malignant hyperthermia when treated with inhalation
anesthetics or severe/fatal drug toxicity when treated with
fluoropyrimidine drugs) and to guide drug dosing adjustments
(e.g. to stabilize phenytoin plasma concentration within the
targeted therapeutic range). Although data for seven relevant
pharmacogenes (CYP2C19, CYP3A5, CYP2D6, HLA-A, HLA-B, IFNL3,
VKORC1) could not be retrieved from exome data, the implemen-
tation of pharmacogenetics in the clinics is still low and
repurposing routinely generated diagnostic WES/CES data to
provide, without laboratory testing, the actionable phenotypes of
11 crucial pharmacogenes, is a step forward in preemptive
pharmacogenetics.
Repurposing exome data for clinical preemptive pharmacoge-

nomics requires the same QC that applies to any other genetic
diagnostic test. To ensure this, first, we performed a depth of
coverage analysis for each pharmacogenetic actionable allele and
retrieved the genotype information in all loci. This step avoids
misleading genotype data derived from low coverage. In the
11 selected genes, 99.3% actionable variants were covered at a
standard diagnostic coverage threshold of 20x in both WES and
CES data45. The genetic loci of the variant rs34983651, which
informs UGT1A1*28, *36, and *37 alleles, was the only exception as
it achieved a lower coverage in the CES data, that would result in
UGT1A1 gene exclusion in a substantial number of cases (22%).
Some previous studies marked UGT1A1*2816 as a low-coverage
allele also in WES, but we and others21 have reported them with
high quality. Differences are probably due to technical reasons
related to the panel design. Furthermore, the performance of

other exome platforms for this position located outside the coding
region might differ, marking this indel as a complex variant that
requires specific analysis. Second, indel variants are an additional
bioinformatic challenge and they constitute 21 (7%) of the
actionable pharmacogenetic alleles interrogated. Thus, we manu-
ally reviewed them from the variant calling output, recovering
high frequency (e.g. UGT1A1*28, *37, and *36) and low-frequency
indels (e.g. CYP2C9*6 and DPYD*7). This step was necessary to
avoid missing indel variants that were called differently due to
reasons such as read sequence alignment30 (e.g. UGT1A1*28 can
be called as C > CAT or CAT > CATAT). Indel normalization or a
robust characterization of indel annotation by the variant callers
could be strategies to automate this process. Third, diplotype
translation according to CPIC definitions required manual curation
for ambiguous calls and haplotype phasing, notably in CYP2B6,
TPMT, and G6PD. These three highlighted issues are being
addressed by novel bioinformatic approaches30,46 to facilitate
automatization. In addition, although WGS and long-read
sequencing face their own technical problems (e.g. coverage
issues), repurposing their data for preemptive pharmacogenomics
may help to overcome some issues derived from exome
sequencing7,19,46–50.
Ancestry data is relevant for pharmacogenetic implementation,

as several actionable alleles are subjected to important ethnic
differences51. International efforts are contributing to expand
country-based pharmacogenetics data10,16,30,32. However, in com-
parison to countries with national genomics medicine initiatives,
the access of Latin American countries to NGS is still limited11. In
this study, we compared variant frequencies in Spain, Colombia
and Brazil and evaluated deviations from their closest gnomAD
population, as this database is frequently used as reference in
genetic studies35. Relevant differences included the variants
defining CYP2B6*6, CYP4F2*3 and DPYD c.557 A > G alleles; which
had higher frequencies in our studied populations than in
reference populations previously reported35,52,53. Although our
study is limited by using the country for the diagnostic test rather
than ethnic group data in the analysis, from a healthcare point of
view it is the pharmacogenetic landscape in each country, with
current population admixture context, what will be most relevant
to design genetic testing.
We and others have previously estimated the contribution of

NGS to the detection of novel variants in pharmacogenes24,25,30. In
this study, we complement these studies analyzing diagnostic
exome data, since novel LOF variants detected by NGS will change
the pharmacogenetic phenotype classification of the individual.
For the 11 pharmacogenes that can be informed using exome
data, the novel LOF variants contributed in average 0.54% to the
total of known actionable alleles. However, most of the novel
variants detected were missense variants (87%; Fig. 3b), part of
which will affect protein activity and will contribute to the
variability in drug response. In silico protein activity predictions
are improving19, however, these evidences are still insufficient for
clinical application and, thus, these rare missense variants have to
be classified as of unknown significance. Beyond their importance
for pharmacogenetics implementation, the incremental use of
Electronics Health Records combined with prospective and

Fig. 2 Alleles distribution and population differences. a Colored stacked bar plots show the percentage of individuals which carry none,
one, or multiple alleles for SNVs and indel variants. b Pie chart showing the percentage of alleles found per gene out of the total number of
actionable alleles (n= 12,309) in the whole cohort (n= 5001 individuals). c For each actionable gene, a group of four stacked bar plots depicts
alleles distributions within all (n= 5001) individuals, the Spanish, Colombian, and Brazilian subgroups, respectively. Y-axis labels represent the
number of carriers in each specific group. For each allele depicted, the fraction of compound heterozygous (CH) and homozygous (Homoz)
individuals is represented in gray bars versus remaining individuals in white bars. “Other” indicates low prevalent alleles represented together.
The full list of alleles per gene can be found in Supplementary Data 1. Some allele names in G6PD gene (marked with an asterisk) have been
shortened: Seattle Lodi Modena FerraraII Athens-like: Seattle*, Mediterranean Dallas Panama‚Sassari Cagliari Birmingham: Mediterranean*,
Union Maewo Chinese-2 Kalo: Union*, G6PDA-968C-376G: A-968C-376G.
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retrospective genomics data and the development of novel
computations tools predicting variant consequences, will help to
elucidate the clinical impact of these variants and will reinforce
the use of NGS13,40.
In conclusion, the high number of actionable pharmacogene

alleles carried by the individuals and the urgent need for safer and
more efficient personalized treatments, support the implementa-
tion of pharmacogenetics in genomic medicine12. The exponential
growth in large-scale NGS diagnostics, with exomes being the
most widely used platforms, argue for repurposing these data for
clinical pharmacogenetics. The landscape of high-quality pharma-
cogenetic information that can be extracted from exomes and

used to adjust drug treatments according to international
guidelines, together with population-specific allele variations
and estimations of the contribution of novel variants identified
by NGS, all provided in this study, will aid in removing barriers and
facilitating the clinical implementation of pharmacogenetics.

METHODS
Study cohort and Whole Exome Sequencing/Clinical Exome
Sequencing
We retrospectively collected NGS data from 5001 unrelated individuals
who had undergone genetic testing aimed at medical diagnosis of diverse

Table 1. Pharmacogenetic phenotypes in the population.

Gene Phenotypea Activity score Total(n= 5001) Spain(n= 2862) Latin America(n= 2016) Colombia(n= 1342) Brazil(n= 568)

Percentage of the population

CACNA1S Non-MHS – 100 100 100 100 100

MHS 0 0 0 0 0

CYP2B6 NM – 44.7 48.8 38.75 36.5 44.4

IM 42.1 39.6 45.7 47.8 41.5

PM 8.9 7.2 11.1 12.1 8.6

RM 4.3 4.3 4.4 3.6 5.3

URM 0.08 0.10 0.05 0 0.18

CYP2C9 NM 2 77.7 74.5 82.8 84.1 79.0

IM 1.5 20.2 23.1 15.8 14.9 18.8

1 0.28 0.24 0.4 0.30 0.18

PM 0.5 1.5 1.7 0.9 0.6 1.8

0 0.3 0.4 0.1 0.07 0.18

CYP4F2b NM – 46.9 41.3 54.8 56.6 49.5

IM 43.1 46.1 38.9 37.7 42.2

PM 10.0 12.6 6.3 5.7 8.3

DPYD NM 2 96.4 95.9 96.9 97.2 96.5

IM 1.5 2.9 3.2 2.5 2.5 2.5

1 0.70 0.80 0.6 0.30 1.06

PM 0.5 0.02 0.04 0 0 0

0 0 0 0 0 0

G6PD Normal – 99.4 99.5 99.3 99.4 98.8

Deficient 0.6 0.5 0.7 0.6 1.2

Deficient (CNSHA) 0 0 0 0 0

NUDT15 NM – 97.5 99.0 95.5 95.2 97.0

IM 2.5 1.0 4.5 4.8 3.0

PM 0.02 0.03 0 0 0

RYR1 Non-MHS – 99.8 99.8 99.8 99.9 99.8

MHS 0.20 0.21 0.20 0.15 0.1

SLCO1B1 NF – 70.6 71.0 69.6 68.0 72.7

IF 26.8 26.5 27.5 28.9 24.6

LF 2.6 2.5 2.9 3.1 2.6

TPMT NM – 90.0 89.3 90.0 90.8 91.7

IM 9.7 10.4 8.8 8.9 8.3

PM 0.26 0.31 0.2 0.30 0

UGT1A1 EM – 45.2 45.6 1.1 43.4 48.4

IM 48.1 47.6 48.8 50.1 46.1

PM 6.7 6.8 6.2 6.5 5.5

MHS malignant hyperthermia syndrome, NM normal metabolizer, IM intermediate metabolizer, PM poor metabolizer, CNSHA congenital non-spherocytic
hemolytic anemia, NF normal function, IF intermediate function, LF low function, EM extensive metabolizer.
aPhenotypes according to CPIC guidelines: MHS, NM, IM, PM, CNSHA, NF, IF, LF, and EM.
bCYP4F2 phenotypes definitions (NM, IM, and PM) are not provided by CPIC guidelines.
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hereditary conditions at NIMGenetics´s genetic laboratory (28108 Madrid,
Spain; https://www.nimgenetics.com/). While per-sample NGS data and
sensitive information had been previously anonymized, cohort information
included gender, country of origin for NGS testing, and trio availability.
DNA samples were not available. The study was approved by the ethics
committee of the ISCIII (IRB nr. CEI PI 105_2020-v2). As the study was
performed on a retrospective set of anonymized samples, the approval
from the ethics committee was obtained without the requirement of a
specific consent inform from each patient for this study.
DNA libraries were prepared using a standard-size WES kit “SureSelect

Human All Exon v6 kit” 60Mb (Agilent, Santa Clara, CA, USA) for 4002
individuals, or with a CES kit “SureSelect Custom Constitutional Panel
17Mb kit” (Agilent, Santa Clara, CA, USA) for 999 individuals. Paired-end
sequencing was performed in a NovaSeq 6000 S2 Flow Cell (Illumina, San
Diego, CA, USA). Bioinformatics analysis for germline SNVs and indel
variant calling was performed following GATK Best Practices (Haplotype-
caller54) using the GRCh37 human reference genome. Minimum mapping
quality threshold was set to 20 (–minimum-mapping-quality 20). Variants
were annotated with an in-house pipeline to include information regarding
variant-specific predicted effect (impact, conservation), population-specific
variant frequencies (e.g. gnomAD), and clinical annotations from medical
databases (ClinVar, HGMD, disease-specific).

Selection of pharmacogenes and alleles
First, we selected all pharmacogenes included in CPIC guidelines (https://
cpicpgx.org/guidelines/; July 2021; n= 788 alleles) and compiled only
those alleles annotated with no function, decreased function, and
increased function in the “Allele Clinical Functional Status” column within
the “Allele Functionality table”. Alleles annotated as normal function,
uncertain function, unclear function, not reported or unknown function,
were not considered further. Of note, CACNA1S alleles (c.520 C > T and
c.3257 G > A) were considered as actionable despite having “uncertain”
allele functional status due to their link to MHS; G6PD functional alleles
were defined by I-III /Deficient status; despite the absence of a CYP4F2 CPIC
Allele Functionality Table in CPIC guideline for warfarin, based on this
guideline, CYP4F2*3 allele was considered for the analysis, while CYP4F2*2
was filtered out43. Second, we filtered out alleles supported by a limited/
inadequate level of evidence (this information was only available for
CYP2C9, CYP2C19, and DPYD at the “Strength of Evidence” column located
in their “Allele Functionality tables”). Third, we identified the alleles that
could not be resolved using Exome data (e.g. those defined by intronic or
promoter variants, CNVs or HLA alleles). If a high impact allele, critical for
pharmacogenetic phenotype group definition, was not available in Exome
data (e.g. CYP3A5*3, CYP2C19*17, VKORC1-rs9923231, CYP2D6*5), the gene
was deemed as not interpretative by exome sequencing and all alleles of
this gene discarded for the analysis. Fourth, CFTR was removed from the

analysis because the alleles included in its guideline are disease-causing
and thus not within the objectives of preemptive pharmacogenetics.
Supplementary Data 1 contains the full list of pharmacogenetic alleles and
variants in the 11 genes included in the analysis, as well as a link and
accession dates to CPIC “allele/ functionality” tables.

Quality control analysis
All actionable pharmacogenetics alleles defined by SNVs were subjected to
QC analysis ensuring a correct homozygous-reference genotype calling
using GATK v4 Haplotypecaller54 in “-ERC BP_RESOLUTION” mode. This
strategy forces genotyping all relevant genomic loci, regardless of the
nucleotide in the reference sequence (reference or alternative variant).
Coverage values were extracted from the “depth” (DP) field to assess the
fraction of samples that failed to inform at these sites. Alleles containing
indel variation were manually curated to prevent genomic coordinate
mismatches between called indels and their description. We reviewed all
insertions and deletions flanking the described genomic coordinates of
clinically actionable indels by searching within reported coordinates plus
padded (upstream and downstream) genomic intervals with the length of
the actionable indel. Also, QC analysis at the positions for the indels was
performed. We extracted mappability scores (24, 36, 40, 50, 75, and 100-
mer window sizes) from UCSC Alignability Tracks (http://genome.ucsc.edu/
cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability) for all genomic loci
included in this study.

Haplotype and phenotype assignment
We obtained the pharmacogenetic information of the 280 CPIC actionable
alleles (Supplementary Data 1) by leveraging genotype information
obtained after the QC method described in the previous section. We
calculated all possible actionable alleles according to the genetic variation
and following the “Allele Definition Tables” provided in the CPIC
guidelines. Similarly to the procedure described by McInnes et al30, if the
defining genetic variation for one star allele was a proper subset of those
for another star allele, the matching star allele with the greatest number of
variants was reported. This situation was necessary for some alleles in
SLCO1B1 (*5 and *15), CYP2B6 (*4, *6, *7, *8, *9, *13, *18, *20, *22, *26, *34
and *36), TPMT (*3A, *3B, *3C), and G6PD (Asahi and A-202A-376G). Python
scripts for haplotype and diplotype assignment were used (see “Code
availability” section, below). When available, we used parental variation
data for phasing (i.e. TPMT *1/*3A or *3B/*3C haplotypes in 22 individuals
heterozygous for rs1800460 and rs1142345; all found to be TPMT *1/*3A).
For G6PD, located in the X-chromosome, the gender of the individual
enabled to differentiate hemizygous males, homozygous females, and
compound heterozygous females.

Fig. 3 Discovery of novel variants. a Two stacked bar plots showing the number of known variants (left, variants reported in gnomAD or
dbSNP databases) and novel variants (right, not reported in these databases). Blue, red and green stacked bars represent variants found
exclusively in Spanish, Colombian, or Brazilian individuals, respectively, and yellow for variants found in a mixture of individuals from different
countries. b Pie chart summarizing the fraction of different novel variants (missense, in-frame, frameshift, splice, or start/stop gained/lost).
c Bar plots representing the number of novel LOF variants per gene. The percentages over each bar is an estimation of the contribution of the
novel LOF in each gene over the total number of actionable alleles previously found. LOF variants in CACNA1S and RYR1 have not been
associated with increased risk of malignant hyperthermia, thus, the contribution of them to this phenotype is not applicable (NA).
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Resulting diplotypes were translated into their corresponding pharma-
cogenetic phenotypes following the functionality tables provided by CPIC
clinical guidelines.

Comparison of population-specific allele frequencies
Statistical analysis to compare the allele frequencies in our Spanish and
Latin American subcohorts was performed using χ2 test. GnomAD variation
data (number of alleles and minor allele frequencies) was extracted from
MyVariant.info database55. Chi-square statistical analysis was performed to
compare gnomAD Non-Finish European (NFE) and Latino/Admixed
American (AMR) population data to our Spanish and Latin American
individuals, respectively. The threshold for statistical significance was 0.001
due to multiple comparisons. Allele frequencies reported in CPIC guide-
lines were also used in the analysis.

Discovery of novel variants
The variant discovery of novel and known variants (SNV and indel variants)
in the 11 selected pharmacogenes was done using GATK v3.6. We selected
all non-synonymous coding variants (e.g. missense, frameshift, stop gain,
start lost) and those affecting canonical splice sites. A variant was
considered as “novel” when it was not present neither in gnomAD (v2.1.1)
nor in the SNP database (dbSNP v138-b3756). Novel frameshift, stop gain
and start lost variants together with those altering canonical splicing sites
were considered LOF. Variants with <20x depth of coverage or <30%
Variant Allele Fraction were filtered out. However, novel variants with 10-
20x coverage were manually curated.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Pharmacogenetics variation data to reproduce results presented in this work are
deposited at the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena/
browser/home) and publicly available under accession number PRJEB48632. Novel
variants are provided in Supplementary Data 3. Individual-related information
(country and exome platform) are available in Supplementary Data 2.

CODE AVAILABILITY
Python scripts were created to perform the analyses described in the previous
sections: coverage QC, genotyping data to CPIC alleles and phenotype conversion,
collecting gnomAD population data for specific variants, all statistical analysis and
filtering of the novel variants. Plots displayed in figures were also created using
Python (v3.6). All scripts have been uploaded to a GitHub repository: https://github.
com/jlanillos/clinAcc_PGx_WES.

Received: 20 May 2021; Accepted: 21 January 2022;

REFERENCES
1. Coleman, J. J. & Pontefract, S. K. Adverse drug reactions. Clin. Med. 16, 5 (2016).
2. Schork, N. J. Time for one-person trials. Nature 520, 609–611 (2015).
3. Zhou, Z.-W. et al. Clinical association between pharmacogenomics and adverse

drug reactions. Drugs 75, 589–631 (2015).
4. Van Driest, S. et al. Clinically actionable genotypes among 10,000 patients with

preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 95, 423–431 (2014).
5. Bush, W. et al. Genetic variation among 82 pharmacogenes: the PGRNseq data

from the eMERGE network. Clin. Pharmacol. Ther. 100, 160–169 (2016).
6. Kalman, L. et al. Pharmacogenetic allele nomenclature: International workgroup

recommendations for test result reporting. Clin. Pharmacol. Ther. 99, 172–185 (2016).
7. Gaedigk, A., Whirl-Carrillo, M., Pratt, V. M., Miller, N. A. & Klein, T. E. PharmVar and the

landscape of pharmacogenetic resources. Clin. Pharmacol. Ther. 107, 43–46 (2020).
8. Ehmann, F. et al. Pharmacogenomic information in drug labels: European Med-

icines Agency perspective. Pharmacogenomics J. 15, 201–210 (2015).
9. Bank, P. et al. Comparison of the guidelines of the clinical pharmacogenetics

implementation consortium and the dutch pharmacogenetics working group.
Clin. Pharmacol. Ther. 103, 599–618 (2018).

10. Reisberg, S. et al. Translating genotype data of 44,000 biobank participants into
clinical pharmacogenetic recommendations: challenges and solutions. Genet.
Med. 21, 1345–1354 (2019).

11. Stark, Z. et al. Integrating genomics into healthcare: a global responsibility. Am. J.
Hum. Genet. 104, 13–20 (2019).

12. Ji, Y., Si, Y., McMillin, G. A. & Lyon, E. Clinical pharmacogenomics testing in the era
of next generation sequencing: challenges and opportunities for precision
medicine. Expert Rev. Mol. Diagn. 18, 411–421 (2018).

13. van der Wouden, C. et al. Implementing pharmacogenomics in europe: design
and implementation strategy of the ubiquitous pharmacogenomics consortium.
Clin. Pharmacol. Ther. 101, 341–358 (2017).

14. Ng, D. et al. Assessing the capability of massively parallel sequencing for
opportunistic pharmacogenetic screening. Genet. Med. 19, 357–361 (2017).

15. Londin, E. R. et al. Performance of exome sequencing for pharmacogenomics.
Personalized Med. 12, 109–115 (2015).

16. Lee, M. et al. Repurposing of diagnostic whole exome sequencing data of 1,583
individuals for clinical pharmacogenetics. Clin. Pharmacol. Ther. 107, 617–627
(2020).

17. Yang, W. et al. Comparison of genome sequencing and clinical genotyping for
pharmacogenes. Clin. Pharmacol. Ther. 100, 380–388 (2016).

18. Carr, D. F. & Pirmohamed, M. Precision medicine in drug safety. Curr. Opin. Toxicol.
23–24, 87–97 (2020).

19. Zhou, Y., Fujikura, K., Mkrtchian, S. & Lauschke, V. M. Computational methods for
the pharmacogenetic interpretation of next generation sequencing data. Front.
Pharmacol. 9, 1437 (2018).

20. Smith, D. M. et al. Pharmacogenetics in practice: estimating the clinical action-
ability of pharmacogenetic testing in perioperative and ambulatory settings. Clin.
Transl. Sci. 13, 618–627 (2020).

21. Gulilat, M. et al. Targeted next generation sequencing as a tool for precision
medicine. BMC Med. Genomics 12, 81 (2019).

22. Bank, P. C. D., Swen, J. J. & Guchelaar, H.-J. Advances in Pharmacology. Vol. 83, p.
219–246 (Elsevier, 2018).

23. Lauschke, V. M. & Ingelman-Sundberg, M. Prediction of drug response and
adverse drug reactions: from twin studies to Next Generation Sequencing. Eur. J.
Pharm. Sci. 130, 65–77 (2019).

24. Ingelman-Sundberg, M., Mkrtchian, S., Zhou, Y. & Lauschke, V. M. Integrating rare
genetic variants into pharmacogenetic drug response predictions. Hum. Geno-
mics 12, 26 (2018).

25. Santos, M. et al. Novel copy-number variations in pharmacogenes contribute to
interindividual differences in drug pharmacokinetics. Genet. Med. 20, 622–629
(2018).

26. Twesigomwe, D. et al. A systematic comparison of pharmacogene star allele
calling bioinformatics algorithms: a focus on CYP2D6 genotyping. npj Genom.
Med. 5, 30 (2020).

27. Srivastava, S. et al. Meta-analysis and multidisciplinary consensus statement:
exome sequencing is a first-tier clinical diagnostic test for individuals with neu-
rodevelopmental disorders. Genet. Med. 21, 2413–2421 (2019).

28. Aref-Eshghi, E. et al. Clinical and technical assessment of MedExome vs. NGS
panels in patients with suspected genetic disorders in Southwestern Ontario. J.
Hum. Genet. 66, 451–464 (2021).

29. Melbourne Genomics Health Alliance. et al. Exome sequencing has higher
diagnostic yield compared to simulated disease-specific panels in children with
suspected monogenic disorders. Eur. J. Hum. Genet. 26, 644–651 (2018).

30. McInnes, G. et al. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin.
Pharmacol. Ther. 109, 1528–1537 (2021).

31. Mulder, D. J. et al. Utilization of whole exome sequencing data to identify clini-
cally relevant pharmacogenomic variants in pediatric inflammatory bowel dis-
ease. Clin. Transl. Gastroenterol. 11, e00263 (2020).

32. Yu, M. H. C. et al. Actionable pharmacogenetic variants in Hong Kong Chinese
exome sequencing data and projected prescription impact in the Hong Kong
population. PLoS Genet. 17, e1009323 (2021).

33. Rotger, M. et al. Partial deletion of CYP2B6 owing to unequal crossover with
CYP2B7. Pharmacogenet. Genomics 17, 885–890 (2007).

34. Martis, S. et al. Multi-ethnic cytochrome-P450 copy number profiling: novel
pharmacogenetic alleles and mechanism of copy number variation formation.
Pharmacogenomics J. 13, 558–566 (2013).

35. Genome Aggregation Database Consortium. et al. The mutational constraint spec-
trum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

36. Relling, M. V. & Klein, T. E. CPIC: clinical pharmacogenetics implementation
consortium of the pharmacogenomics research network. Clin. Pharmacol. Ther.
89, 464–467 (2011).

37. Birney, E., Vamathevan, J. & Goodhand, P. Genomics in healthcare: GA4GH looks to
2022. https://doi.org/10.1101/203554 (2017).

38. Ross, J. P., Dion, P. A. & Rouleau, G. A. Exome sequencing in genetic disease:
recent advances and considerations. F1000Res 9, 336 (2020).

J. Lanillos et al.

8

npj Genomic Medicine (2022)    12 Published in partnership with CEGMR, King Abdulaziz University

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://github.com/jlanillos/clinAcc_PGx_WES
https://github.com/jlanillos/clinAcc_PGx_WES
https://doi.org/10.1101/203554


39. Szustakowski, J. D. et al. Advancing Human Genetics Research and Drug Discovery
through Exome Sequencing of the UK Biobank https://doi.org/10.1101/
2020.11.02.20222232 (2020).

40. Park, J. et al. Exome-wide evaluation of rare coding variants using electronic health
records identifies new gene–phenotype associations. Nat. Med. 27, 66–72 (2021).

41. Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and
whole-genome sequencing approaches cost-effective? A systematic review of
the literature. Genet. Med. 20, 1122–1130 (2018).

42. Alfares, A. et al. Whole-genome sequencing offers additional but limited clinical
utility compared with reanalysis of whole-exome sequencing. Genet. Med. 20,
1328–1333 (2018).

43. Johnson, J. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC)
Guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin.
Pharmacol. Ther. 102, 397–404 (2017).

44. Karnes, J. H. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC)
Guideline for CYP2C9 and HLA‐B genotypes and phenytoin dosing: 2020 update.
Clin. Pharmacol. Ther. 109, 302–309 (2021).

45. Rehm, H. L. et al. ACMG clinical laboratory standards for next-generation
sequencing. Genet. Med. 15, 733–747 (2013).

46. Lee, S., Wheeler, M. M., Thummel, K. E. & Nickerson, D. A. Calling star alleles with
stargazer in 28 pharmacogenes with whole genome sequences. Clin. Pharmacol.
Ther. 106, 1328–1337 (2019).

47. van der Lee, M., Kriek, M., Guchelaar, H.-J. & Swen, J. J. Technologies for phar-
macogenomics: a review. Genes 11, 1456 (2020).

48. Volpi, S. et al. Research directions in the clinical implementation of pharmaco-
genomics: an overview of US programs and projects. Clin. Pharmacol. Ther. 103,
778–786 (2018).

49. Weinshilboum, R. M. & Wang, L. Pharmacogenomics: precision medicine and
drug response. Mayo Clin. Proc. 92, 1711–1722 (2017).

50. Tremmel, R. et al. Copy number variation profiling in pharmacogenes using
panel-based exome resequencing and correlation to human liver expression.
Hum. Genet. 139, 137–149 (2020).

51. Ingelman-Sundberg, M., Sim, S. C., Gomez, A. & Rodriguez-Antona, C. Influence of
cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, phar-
macoepigenetic and clinical aspects. Pharmacol. Ther. 116, 496–526 (2007).

52. Desta, Z. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC)
guideline for CYP2B6 and efavirenz‐containing antiretroviral therapy. Clin. Phar-
macol. Ther. 106, 726–733 (2019).

53. Amstutz, U. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC)
guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine
dosing: 2017 update. Clin. Pharmacol. Ther. 103, 210–216 (2018).

54. Poplin, R. et al. Scaling accurate genetic variant discovery to Tens of thousands of
samples. https://doi.org/10.1101/201178 (2017).

55. Xin, J. et al. High-performance web services for querying gene and variant
annotation. Genome Biol. 17, 91 (2016).

56. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP—database for single nucleotide
polymorphisms and other classes of minor genetic variation. Genome Res 9,
677–679 (1999).

ACKNOWLEDGEMENTS
This work was supported by the project RTI2018-095039-B-I00 from the Agencia
Estatal de Investigación (AEI-MCIN 10.13039/501100011033) and co-funded by the
European Regional Development Fund (ERDF-EU) and “la Caixa Foundation” INPhiNIT
Retaining Doctorate Fellowship Programme (LCF/BQ/DR19/11740015).

AUTHOR CONTRIBUTIONS
J.L., M.C., P.M., S.A., and C.R.A. designed research. J.L., M.C., and P.M. performed the
research and analyzed the data. J.L. contributed with new analytical tools. J.L. and C.R.A.
wrote the manuscript draft. All authors reviewed and approved the manuscript draft,
contributed to the review process, and approved the completed version.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41525-022-00283-3.

Correspondence and requests for materials should be addressed to Paolo Maietta or
Cristina Rodriguez-Antona.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

J. Lanillos et al.

9

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2022)    12 

https://doi.org/10.1101/2020.11.02.20222232
https://doi.org/10.1101/2020.11.02.20222232
https://doi.org/10.1101/201178
https://doi.org/10.1038/s41525-022-00283-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Clinical pharmacogenetic analysis in 5,001 individuals with diagnostic Exome Sequencing data
	Introduction
	Results
	Study cohort
	Selected pharmacogenetic alleles with clinical actionability
	Sequencing depth of coverage data and quality control
	Pharmacogenetic diplotypes
	Pharmacogenetic phenotype analysis
	Novel Loss-of-Function variants

	Discussion
	Methods
	Study cohort and Whole Exome Sequencing/Clinical Exome Sequencing
	Selection of pharmacogenes and alleles
	Quality control analysis
	Haplotype and phenotype assignment
	Comparison of population-specific allele frequencies
	Discovery of novel variants
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




