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Multiomics characteristics of neurogenesis-related gene are
dysregulated in tumor immune microenvironment
Ben Wang 1,6, Hai Mou1,6, Mengmeng Liu2, Zhujie Ran3, Xin Li4, Jie Li5 and Yunsheng Ou 1✉

The success of immunotherapy was overshadowed by its low response rate, and the hot or cold tumor microenvironment was
reported to be responsible for it. However, due to the lack of an appropriate method, it is still a huge challenge for researchers to
understand the molecular differences between hot and cold tumor microenvironments. Further research is needed to gain deeper
insight into the molecular characteristics of the hot/cold tumor microenvironment. A large-scale clinical cohort and single-cell RNA-
seq technology were used to identify the molecular characteristics of inflamed or noninflamed tumors. With single-cell RNA
sequencing technology, we provided a novel method to dissect the tumor microenvironment into a hot/cold tumor
microenvironment to help us understand the molecular differences between hot and cold tumor microenvironments. Compared
with cold tumors, hot tumors highly expressed B cell-related genes, such as MS4A1 and CXCR5, neurogenesis-related miRNA such
as MIR650, and immune molecule-related lncRNA such as MIR155HG and LINC00426. In cold tumors, the expression of genes
related to multiple biological processes, such as the neural system, was significantly upregulated, and methylome analysis indicated
that the promoter methylation level of genes related to neurogenesis was significantly reduced. Finally, we investigated the pan-
cancer prognostic value of the cold/hot microenvironment and performed pharmacogenomic analysis to predict potential drugs
that may have the potential to convert the cold microenvironment into a hot microenvironment. Our study reveals the multiomics
characteristics of cold/hot microenvironments. These molecular characteristics may contribute to the understanding of immune
exclusion and the development of microenvironment-targeted therapy.
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INTRODUCTION
The recent clinical successes of immunotherapy, including immune
checkpoint inhibitors and adoptive cell therapy, represent a turning
point in cancer treatment1,2. Clinical trials of anti-PD-1 for patients
with melanoma have demonstrated substantial therapeutic
responses. Despite these encouraging clinical results, only a fraction
of patients can benefit from immunotherapy3.
Recent studies suggest that the phenotype of the tumor

microenvironment (TME) is a critical factor influencing the efficacy
of immunotherapy. From here, the tumor microenvironment can
be broadly categorized as an inflamed (hot) or noninflamed (cold)
tumor microenvironment4,5. The inflammatory tumor microenvir-
onment was characterized by rich infiltration of immune cells.
These tumors are correlated with significant tumor regression
when treated by immunotherapy6–10. However, due to the lack of
appropriate experimental methods, how different tumor cells
shape their TME, thereby determining their response to therapy,
remains a critical unsolved problem.
Here, based on single-cell RNA sequencing technology, a

powerful tool to dissect the complexity of the tumor microenvir-
onment11–14, we identified multiomics molecular alterations in the
inflamed/noninflamed tumor microenvironment. Unexpectedly,
we found that the multiomics characteristics of neurogenesis-
related genes were dysregulated in a cold microenvironment.
However, it is interesting that a similar discovery has been
reported in recent studies. Balanis et al. reported that these
neuroendocrine-related molecular characteristics were unexpect-
edly found in hematological malignancies and correlated with

treatment resistance15. Pathologically, neuroendocrine tumors are
a rare tumor subtype that originate from a variety of tissues,
including small cell lung cancer and neuroendocrine prostate
cancer15. Previous studies have revealed that neuroendocrine
tumors exhibit an “immune desert” microenvironment16. Our
results suggested that neuroendocrine-related molecular altera-
tions may be more widespread than we previously thought,
although most tumors cannot be classified into this subtype based
on the recent pathological definition.

RESULTS
Classifying the tumor microenvironment into inflamed or
noninflamed with single-cell RNA-seq
Before classifying the tumor microenvironment as hot/cold, we
needed to obtain a set of tumor-infiltrating immune cell gene
markers to estimate the immune cell infiltration of each tumor
sample (Fig. 1a).
To generate robust immune cell gene markers to separate the

tumor microenvironment into a hot/cold TME, we first performed
single-cell RNA-seq analysis to identify immune cell-specific mole-
cular markers (Fig. 1b, c and Supplementary Data 2). Then, these
molecular markers were used as input for the GSVA algorithm17 to
estimate the immune cell-level score of tumor samples. Finally, based
on the unsupervised clustering pattern (immune cell scores) of tumor
samples, we classified tumor samples into the high immune score
(inflamed)/median immune score/low immune score (noninflamed).
The unsupervised clustering results are shown in Fig. 2a. Tumor
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samples with median immune scores were excluded to avoid
potential confounding factors (Fig. 2b). We also used methylomics
data18 and copy number variant (CNV) data19 to validate the
unsupervised clustering results (Supplementary Fig. 8).
Then, we compared RNA expression between the inflamed TME

and the noninflamed TME, and significant alterations in RNA
expression across different cancer types were observed. The number
of differentially expressed RNAs varied across tumor types (upregu-
lated (noninflamed-specific) mRNA ranging from 9 to 355; down-
regulated (inflamed-specific) mRNA ranging from 355 to 1024).
Among them, downregulated mRNA (inflamed tumor-specific)
represents the most striking signature that accounts for major
differences between inflamed TME and noninflamed TME (Fig. 2d).
For example, several genes involved in B cell-associated

immune processes were biased in most tumor types (Fig. 2c),
including membrane-spanning 4-domain A1 (MS4A1), immuno-
globulin lambda-like polypeptide 1 (IGLL1), B-cell antigen receptor

complex-associated protein alpha chain (CD79A), C–X–C motif
chemokine receptor 5 (CXCR5), and immune receptor
translocation-associated protein 2 (FCRL5), suggesting that
inflamed tumor types were also B cell-rich tumors, which has
been proven to be a key factor determining sensitivity to
immunotherapy20,21.
More systematic functional insight into the inflamed/nonin-

flamed TME demonstrated that genes involved in the neuronal
system, extracellular matrix degradation, biological oxidation, and
IGFBP-associated pathways were more likely to be upregulated in
the noninflamed TME but varied across tumor types (Fig. 3a). In
contrast, enriched biological processes of inflamed TME-specific
mRNA tended to be shared across tumor types, for example,
signaling by interleukins (interleukin-4/13/10) and chemokines
and PD-1 signaling, suggesting a recruiting and inhibitory tumor
microenvironment for such inflamed tumors (Fig. 3b).

Fig. 1 Acquisition of immune cell signatures. a Overview of the workflow design. b tSNE dimension plot of cells in tumors. Each dot
represents a cell colored and labeled by inferred cell types. c Heatmap for cell-type annotation in single-cell RNA sequencing. The color
represents the mean expression (log2 (TPM+ 1)) of molecular markers (red: high, blue: low).
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Noncoding RNA pattern of inflamed and noninflamed TMEs
To further investigate the effect of the inflamed TME on
noncoding RNA expression, we identified miRNAs and lncRNAs
that were differentially expressed between the inflamed TME and
the noninflamed TME. As shown in Fig. 2c, hsa-miR-650 was
upregulated in the inflamed TME in most tumor types.

Further analysis revealed that hsa-miR-650 may inhibit the
neurotrophic signaling pathway and axon guidance (Fig. 4c, d) by
inhibiting nerve-associated receptors (such as neurotrophic receptor
tyrosine kinase 2 (NTRK2) and GABA type A receptor-associated
protein-like 1 (GABARAPL1)) and downstream molecules (such as
CRK, CRKL, RRAS, PTK2, KRAS, and ephrin (EPH) family members:
EPHB1, EPHB4, EFNB1/2/3, and EFNA5) (Fig. 4a).

Fig. 2 Unsupervised clustering identification of the cold/hot tumor immune microenvironment. a Heatmap for global expression (estimated
with the GSVA algorithm) of immune cell markers in each TCGA tumor type. b Stacked bar plot for the proportion of immune microenvironment
type in each tumor type. The number in each bar is the number of tumor samples assigned to the corresponding TME classification (high: inflamed,
low: noninflamed, median: excluded). c Heatmap for the differentially expressed molecular characteristics (including mRNA, lncRNA, miRNA). The
heatmap cell is colored according to the fold change of genes in differential expression analysis, where red represents genes that are upregulated in
noninflamed tumors. d Overview of the molecular signature differences between inflamed and noninflamed TMEs. The fraction in the left panel
represents the proportion of molecular characteristics from a tumor type among the molecular characteristics from all tumor types.
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In terms of lncRNAs, lncRNAs including MIR155HG and
LINC00426 were upregulated in the inflamed TME (Fig. 2c).
Coexpression analysis revealed that these lncRNAs were positively

associated with T-helper cell differentiation and cytokine signaling
pathways (Fig. 4e), such as multiple immune markers, including
cytotoxic markers: KLRD1, GZMB, GZMA, and GZMH; immune
coinhibitory and costimulatory molecules: PDCD1, HAVCR2, CTLA4,
TIGIT, FOXP3, and ICOS; and chemokine receptors and ligands:
CXCR3/6, CXCL9/13, CCL4/5/7/19, and CCR7 (Fig. 4b). These
coexpression analysis results revealed that these lncRNAs may have
the potential to shape the tumor immune microenvironment by
interacting with immune T-helper cell differentiation and cytokine
signaling pathways.

Methylation pattern of inflamed and noninflamed TMEs
Alteration of DNA methylation is an important epigenetic mechanism
that results in the dysregulation of RNA. Therefore, we further
investigated the alteration of DNA methylation between inflamed

and noninflamed tumors. As shown in Fig. 5a, b, the promoters of
several genes involved in oncogenesis biological processes were
hypomethylated in noninflamed tumors, which suggests that the
abnormal hypomethylation of these genes may confer invasive and
metastatic abilities to noninflamed tumors; for example, cell-matrix
adhesion-related genes: proto-oncogene c-Src (SRC), GPI-anchored
metastasis-associated protein homolog (LYPD3); and invasion- and
metastasis-associated molecules: matrix metallopeptidase 14
(MMP14).
Interestingly, consistent with the mRNA and noncoding RNA

results, we found that different methylated regions (hypomethy-
lated in noninflamed tumors) were related to the neuronal system
and GABAB receptor-associated pathways, which suggested that
methylation-level dysregulation of neuronal genes may be
relevant to the formation of an inflamed/noninflamed tumor
microenvironment (Fig. 5c). In terms of inflamed tumors, multiple
immune-associated molecular pathways were hypomethylated,
including costimulation by the CD28 family, TCR signaling, and
interleukin-21/2 signaling (Fig. 5d).

Fig. 3 Gene function analysis of inflamed/noninflamed TME-specific mRNA (with Reactome datasets). a Enriched biological process for
noninflamed TME-specific genes expressed across tumor types. b Enriched biological process for inflamed TME-specific genes expressed
across tumor types. BLCA bladder urothelial carcinoma, BRCA breast invasive carcinoma, COAD colon adenocarcinoma, LIHC liver
hepatocellular carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, PRAD prostate adenocarcinoma, READ rectum
adenocarcinoma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, HNSC head and neck squamous cancer (the number
below the TCGA tumor type represents the number of identified genes in each category, the gene ratio represents the ratio of differentially
expressed genes in the total pathway gene sets).
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Screening for potential drugs that may convert noninflamed
tumors to inflamed tumors
Despite the limited understanding of why the response rate of
immunotherapy is unsatisfactory, it is increasingly clear that
combination immunotherapy with classical therapy is the most
feasible way to improve the response rate of immunotherapy4.
Combination immunotherapy with classical therapy is considered

the most feasible way to improve the response rate of immunother-
apy4. However, limited by classical methods, a systemic under-
standing of hot/cold tumor microenvironment genomic
characteristics is still limited, which constrains related drug discovery
with big data22.
Here, based on these molecular characteristics and an efficient

and widely used computational drug-genomic method23–25, we

identified multiple drugs that may have the potential to convert a
noninflamed environment into an inflamed tumor environment
(Fig. 6a). These results may be helpful for developing novel
combination immunotherapeutic strategies, and further clinical
trials or experiments are also needed to validate these results.
As shown in Fig. 6b, the histone deacetylase inhibitor

PHA0081679526, the active compound β-escin from Aesculus
hippocastanum L. seeds, the peripheral sympathetic nerve activity
inhibitor moxonidine27,28, and the PGE2 receptor antagonist
AH2384829 were predicted to be promising drugs. Although these
drugs have totally different molecular targets, as these results
predicted, the potential of these drugs in immune modulation has
been supported by an increasing number of recently published
articles. For example, histone deacetylase inhibitors (HDACs) are

Fig. 4 Noncoding RNA patterns of inflamed and noninflamed TMEs. a Potential targets of miR-650 (only genes annotated by neuronal
pathways in c and d were visualized, and all potential targets are shown in Supplementary Data 1). b Coexpression network of identified
lncRNAs. The red line represents a positive correlation, and the black line represents a negative correlation. c Gene ontology (GO) functional
analysis of potential miRNA targets. d Functional analysis of miRNA targets with the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. e Functional analysis of lncRNA coexpressed genes was performed with the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. The left panel shows the functions of lncRNA positively correlated genes. The right panel shows the functions of lncRNA negatively
correlated genes.
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regarded as promising drug candidates by combining them with
immunotherapy30–33, and moxonidine34–37, β-escin38,39 and
AH2384840–46 have shown potential in cytokine signaling modula-
tion and inflammation regulation in published reports. However,
whether these drugs can directly affect antitumor immunity
in vivo and whether they can enhance the effect of immunother-
apy still need to be further explored.
In total, our method provides an efficient way to identify robust

molecular signatures of the tumor microenvironment. These

molecular characteristics may serve as efficient resources and
provide an opportunity for related drug discovery.

The identified noncoding RNAs and immunophenotypes
correlate with tumor patient prognosis
To explore the prognostic significance of the identified noncoding
RNAs and immune subtypes, univariate/multivariate Cox models and
Kaplan–Meier analyses were performed. Kaplan–Meier analysis

Fig. 5 Reactome pathway analysis of inflamed/noninflamed-specific differently methylated regions. a Heatmap for differently methylated
probes. Red represents inflamed tumor-specific hypermethylated probes and noninflamed tumor-specific hypomethylated probes. Gray
represents noninflamed tumor-specific hypermethylated probes and inflamed tumor-specific hypomethylated probes. b Enriched reactome
pathways for noninflamed tumor-specific hypomethylated genes across TCGA tumor types. c Enriched reactome pathways for inflamed
tumor-specific hypomethylated genes across TCGA tumor types. The number (below b and c) refers to the number of dysregulated genes (up
or down) in each tumor type.
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revealed that these noncoding RNAs (LNC00426, MIR155HG, and
MIR650) were positively associated with better overall survival (OS) in
BRCA, LUAD, HNSC, and SKCM (Fig. 7a). The univariate/multivariate
Cox model also validated that LNC00426, MIR650, and miR155HG
were independently and significantly correlated with the prognosis
of tumor patients. These noncoding RNAs may serve as pan-cancer
prognostic markers (Supplementary Tables 1–4, LNC00426: positively
correlated with the prognosis of BLCA, BRCA, HNSC, and LUAD
patients, average hazard ratio (HR) 0.49–0.74; miR155HG: positively
correlated with BLCA, HNSC, and SKCM, HR: 0.74–0.77; miR650:
positively correlated with BRCA, COAD, HNSC, LIHC, LUAD, LUSC,
READ, and SKCM, HR: 0.91–0.93).
Considering the favorable role of these noncoding RNAs and

their potential to regulate the tumor immune microenvironment,
further investigation of these noncoding RNAs may be helpful to
elucidate the role of noncoding RNAs in the tumor immune
microenvironment.
We further investigated the prognostic role of immunopheno-

types across tumor types. As shown in Fig. 7b, the pooled hazard
ratio of the inflamed TME was 0.73 (univariate Cox model 95% CI
0.64–0.84) or 0.95 (multivariate Cox model, 95% CI 0.93–0.97).
Kaplan–Meier analysis also suggested that an inflamed phenotype
was associated with better OS (Fig. 7c).

DISCUSSION
Neuroendocrine-related molecular characteristics have been
reported in some tumors, but little is known about how the tumor
genome shapes it16,47. Our results may provide some mechanistic
insights for this persistent unsolved problem. Here, we found that
neurogenesis-associated multiomics characteristics were significantly
dysregulated between noninflamed and inflamed tumor microenvir-
onments, which is interesting and complements previous reports. For
example, Nikolas G Balanis et al. reported that a neuroendocrine
phenotype existed in multiple hematological malignancies, and
transdifferentiation into a neuroendocrine phenotype conferred
treatment resistance to tumors15. Our results indicated that
neurogenesis-related genes were also dysregulated in a variety of
solid tumors and may be modified in various ways, including
noncoding RNA and methylation. For example, miR-650, which is
downregulated in noninflamed tumors, may enhance the expression
of neurogenesis-related genes in the cold tumor microenvironment.
The promoters of multiple neurogenesis-associated genes were
hypomethylated in multiple noninflamed tumors48.
Our studies also revealed that lncRNAs may act as general

regulators in the inflamed tumor microenvironment. The expres-
sion of MIR155HG and LINC00426 was altered in pan-cancer, and
the coexpressed genes of MIR155HG and LINC00426 were
involved in multiple immune-associated biological processes,

including immune cell differentiation and exhausted/activated T-
cell genetic programs, indicating that these lncRNAs might assist
in the maintenance of the inflamed tumor microenvironment
across tumor types, especially MIR155HG, which is an inflamed
TME-specific gene in all analyzed tumor types.
This study has some limitations. First, validation in other tumor

types or a large cohort is warranted in further studies. Second,
TCGA does not provide direct information on the tumor
microenvironment. Therefore, we had to indirectly infer the
relative score of the immune composition as described in previous
studies49. Third, our study provided a comprehensive catalog of
molecular alterations, but we could not further investigate the role
of the identified molecule due to the lack of funding support and
the experimental environment. Therefore, further studies are
necessary to elucidate the detailed role of these molecular
characteristics.
In conclusion, our study identified multiple molecular differences

between inflamed and noninflamed TMEs. These results provide
comprehensive insights into the inflamed tumor microenvironment-
related molecular mechanisms and have profound clinical implica-
tions. These results may help to optimize current combination
immunotherapy to benefit more tumor patients.
Nevertheless, our study calls attention to the need to include

tumor microenvironment status in future clinical trials.

METHODS
Clinical cohort and multiomics data for TCGA samples
RNA sequencing datasets, including mRNA expression, miRNA, and lncRNA,
were downloaded from the GEO database with accession number
GSE6294450. Healthy controls of GSE62944 were excluded in this study.
Updated clinical data and DNA methylation data were downloaded from
TCGAbiolinks51–53. The raw count data of RNA sequencing were normalized
and quantitated by the edgeR package54. The immunotherapy clinical
cohort was from Riaz et al.55 and Cloughesy et al.56. The clinical data of
patients involved in this study was based on open-Access database, so the
ethical declaration is not appliable. But patients in these databases have
obtained ethical approval, all information about ethical approval of these
open-Access databases can be obtained from GDC portal (https://docs.gdc.
cancer.gov/).

Identifying genetic signatures of immune cells from single-cell
RNA sequencing data
Raw single-cell RNA sequencing data were downloaded from the GEO
database with accession number GSE7205657. This dataset contains
4645 single cells isolated from 19 patients and profiles of immune and
malignant cells within the tumor microenvironment. We applied the Seurat58

package to normalize the data and identify differentially expressed genes.
Cells with unique feature counts over 10,000 or less than 1000 (these
thresholds were determined by the QC metrics of Seurat) and features

Fig. 6 Analysis combining pharmacogenomic perturbation database screens of multiple drugs that have the potential to promote
inflamed or noninflamed immunophenotypic switching. a The schematic plot shows the workflow for identifying potential drugs that can
shape the tumor microenvironment. b The dot plots show potential adjuvant drugs that may contribute to favorable immunophenotype
transformation. Red: drugs that may induce systematic transcriptomic alternation from a noninflamed TME to an inflamed TME. Blue: opposite
drugs. Connectivity is a score calculated by the PharmacoGx package based on the CMAP algorithm, and it represents the drug’s potential to
convert the transcriptomic characteristics of “cold” tumors into “hot” tumors.
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detected in less than three cells were excluded. tSNE was used for dimension
reduction. Each cell is represented as a dot in a two-dimensional tSNE plane.
The annotation of cells was annotated based on Guo et al.59 and the
CellMarker database60. Gene signatures of immune cells were selected
according to the following workflow (taking B cells as an example). First,
markers of B cells should be positively correlated with B cells and statistically
significant (detailed criteria: compared to malignant and other immune cells,
log fold change >0 and adjusted P value <0.05). Then, to make sure that these
markers are as highly expressed as possible in B cells and as lowly expressed
as possible in malignant and other immune cells, we sorted the markers
identified in the above step in decreasing order of the absolute value of
PCTB_cells-PCT malignant and the absolute value of PCTB_cells-PCT malignant (PCT is
an index calculated by the Seurat package58, which represents the expression
percentage of a molecular marker in a cell subtype). The top 1% of gene
markers in the sorted list with the highest absolute value of PCT difference
were regarded as B cell-specific molecular markers.

Classification of TME phenotypes across different tumor types
To investigate the molecular characteristics of inflamed or noninflamed
immunophenotypes, immune cell signatures identified in the above single-
cell RNA sequencing data were used as input for the GSVA algorithm17 to
calculate the immune score for each immune cell type. The GSVA
algorithm has been proven to be an efficient way to reveal the
characteristics of the tumor microenvironment49. Then, tumor samples

were classified into the low immune score (noninflamed), median immune
score, and high immune score (inflamed) TME groups based on the
unsupervised clustering pattern of the immune score by optCluster61. To
avoid confounding factors from potential mixtures, we excluded samples
from the median immune score from further analysis. We also used
methylation data (with the MethylCIBERSORT algorithm)18 and CNV data
(with the ABOSULTE algorithm)19 to estimate immune cell infiltration.

Identification of molecular differences between inflamed and
noninflamed tumors
Then, we compared the molecular data between these two groups to
identify molecular differences.
The EdgeR54 package was used to perform differential gene expression

analyses with the raw count matrix of TCGA data. The statistically
significant criteria for each molecular characteristic were as follows:
molecular characteristics (mRNA, miRNA, and lncRNA) with an absolute
value of the log fold change >1.5 and FDR P value < 0.05 were considered
significant. To ensure that these molecules could represent pan-cancer
dysregulated characteristics, we only included molecular characteristics
differentially expressed in at least four tumor types. We next calculated
Spearman’s correlation coefficient between identified noncoding RNAs
and coding RNAs. Potential coding RNA targets were selected based on the
following criteria: lncRNAs: significantly correlated mRNAs (FDR < 0.05) of
lncRNAs were ranked with the average absolute value of Spearman’s

Fig. 7 Prognostic role of immunophenotypes and noncoding RNA. a Kaplan–Meier plots show the overall survival rate for noncoding RNAs.
The P value was calculated using the log-rank model. b, c Forest plots show hazard ratios for identified immunophenotypes. The hazard ratio
of b was calculated by a single variable Cox model. c is from the multiple variable cox model. d Kaplan–Meier plots show the overall survival
rate for the identified immunophenotypes. The P value was calculated using the log-rank model.
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correlation coefficient in decreasing order, and the top 1% of mRNAs (with
the highest correlation coefficient) in this list were regarded as potential
targets of lncRNAs. miRNAs: potential targets of miRNAs62 (from fourteen
miRNA-mRNA interaction databases) and negatively correlated with the
expression of miRNA (Spearman’s correlation coefficient <0 and FDR <
0.05). Functional enrichment analysis (KEGG, Reactome, and GO) of
potential targets was performed to contribute to the mechanistic
understanding of identified noncoding RNAs63.
In methylation analysis, only CpG probes mapped at promoter regions

(e.g., TSS1500, TSS200, 5’ UTR, 1stexon) were included in this analysis.
Differently expressed regions were identified by a champ64 pipeline based
on the following criteria65,66: (1) adjusted P value <0.05; and (2) absolute
value of beta-value differences >0.1.

Identification of potential drugs that convert a nonimmune
tumor into an inflamed tumor
Combination immunotherapy is considered the most efficient way to aid
current immunotherapy. Here, transcriptomic differences between
inflamed and noninflamed tumors were used as an input to calculate
the connectivity score between transcriptomic differences and drug-
induced genomic alterations. Drug-induced systematic genomic altera-
tions were obtained from the CMAP database67. The data download and
connectivity score calculation were performed with PharmacoGx68.

Statistical analysis
The chi-square test was used for statistical tests of categorical variables.
Kaplan–Meier analysis and log-rank tests were used to test the survival
differences between identified groups. The optimal cutoff point of
continuous variables was determined by the surv_cutpoint function in
the survminer package69.
The univariate Cox proportional hazard ratio was used to calculate the

hazard ratio of the factor of interest. The multivariate Cox proportional
hazard model was used to test the independence of variates. All statistical
analyses were performed by R 3.61.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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