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Convergence of biomarkers and risk factor trait loci of
coronary artery disease at 3p21.31 and HLA region
Majid Nikpay 1✉ and Ruth McPherson1,2✉

Here we seek to identify molecular biomarkers that mediate the effect of risk factors on coronary artery disease (CAD). We perform
a SNP-based multiomics data analysis to find biomarkers (probes) causally associated with the risk of CAD within known genomic
loci for its risk factors. We identify 78 biomarkers, the majority (64%) of which are methylation probes. We detect the convergence
of several CNS and lifestyle trait loci and their biomarkers at the 3p21.31 and human leukocyte antigen (HLA) regions. The 3p21.31
locus was the most populated region in the convergence of biomarkers and risk factors. In this region, we noted as the BSN gene
becomes methylated the level of stomatin (STOM) in blood increases and this contributes to higher risk of CAD. In the HLA locus,
we identify several methylation biomarkers associated with various CAD risk factors. SNPs in the CFB gene display a trans-regulatory
impact on the GRIA4 protein level. A methylation site upstream of the APOE gene is associated with a higher protein level of
S100A13 which in turn leads to higher LDL-C and greater CAD risk. We find UHRF1BP1 and ILRUN mediate the effect of obesity on
CAD whereas methylation sites within NOS3 and CKM mediate the effect of their associated-risk factors on CAD. This study provides
further insight into the biology of CAD and identifies a list of biomarkers that mediate the impact of risk factors on CAD. A SNP-
based initiative can unite data from various fields of omics into a single network of knowledge.
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INTRODUCTION
GWAS studies have identified numerous loci associated with
various complex phenotypes including the susceptibility to
coronary artery disease (CAD). Multiomic approaches to the
analysis of GWAS data provide a new means to understand the
biology of these traits. Namely, we have GWAS data that catalog
the associations between genome and the phenome but cannot
provide molecular insight and we also have GWAS data from
omics studies that report associations between genome and
various molecular features. By combining these two different sets
of data, it is possible to identify genomic regions where SNP-
association signals are consistent (co-localize) for a trait and a
molecular feature (biomarker), then Mendelian randomization
(MR) can be used to test whether change in the level of the
biomarker is causally contributing to the trait (Fig. 1 and
Supplementary Fig. 1). A similar design can relate and combine
different sets of omics data to understand the whole organism at
molecular and cellular levels.
We have used GWAS data to investigate the genetic

architecture of CAD and reported it largely derives from the
cumulative effect of common SNPs throughout the genome each
of small effect size1,2. We also reported that CAD is the outcome of
several phenotypically distinct but genetically inter-related risk
factors3. We devised a SNP-based analysis plan based on the
above paradigm to identify biomarkers contributing to the risk of
CAD4,5. In this study, we have extended these studies to identify
genomic loci through which CAD risk factors exert their effects.

RESULTS
Overview
Using our SNP-based multiomics data analysis plan (Fig. 1), we
identified 78 biomarkers associated with various risk factors for

CAD at GWAS significance level (P < 5e−8) as well as to CAD per se
after correction for multiple testing (Supplementary Data 3).
Although the mQTL datasets had the smallest sample sizes
(Supplementary Data 1), majority of the identified biomarkers
were methylation probes (68%). Transcription and protein probes
accounted for 26% and 6% of the biomarkers, respectively.
Summary association statistics for SNPs that we used to carry out
these tests are available in Supplementary Data 4 and Supple-
mentary Data 5.
We then obtained data from additional omic studies that also

made their GWAS data publicly available and used this informa-
tion to examine our results. The list of biomarkers that showed
significant association (P < 0.05) following MR analysis is available
in Supplementary Data 6. Of note, a lack of replication for a
biomarker does not indicate a negative result. This is mainly
because we used highly stringent statistical criteria to do the MR
analysis. Namely, SNPs that (a) are in linkage equilibrium with each
other (r2 < 0.05); (b) associated with the biomarker at P < 5e−8; and
(c) are not showing pleiotropic effect (HEIDI P < 0.01). Therefore,
for number of biomarkers, we did not obtain enough SNPs to do
the MR analysis. For example, we did not replicate the association
of SELE protein level with CAD using data from Suhre et al.6.
However, after relaxing our LD threshold to r2 < 0.2, we found a
higher level of SELE is causally contributing to lower risk of CAD
[B=−0.05, P= 5e−13, Number of SNPs (NSNPs) = 6] using pQTLs
from this study.
Our analysis plan can provide insight at both molecular

(Biomarker → Biomarker) and clinical levels (Biomarker → Trait);
therefore, findings from these studies can be used to investigate
our results as well. For example, we find that SNPs near SORT1 on
chromosome 1 displays trans-regulatory impact on GRN on
chromosome 17 (Supplementary Data 3) and this affects circulat-
ing levels of HDL. This finding is not unprecedented. SORT1 is an
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extracellular receptor for GRN7. In addition, it is known that GRN
contributes to the anti-inflammatory effect of HDL by forming a
complex with HDL/apolipoprotein A-I8.
Among our identified biomarkers, seventeen were associated

with CAD at GWAS significance (Supplementary Fig. 2A). We also
noted the presence of several trans-regulatory effects (Supple-
mentary Fig. 2B). Studying these trans-regulatory effects is
important because they can provide novel insights into the
molecular pathway whereby a biomarker exerts its effect. Below
we review the most notable findings:

LDL and S100A13
We found the plasma protein level of S100A13 (S100 calcium-
binding protein 13) is causally associated with higher LDL (B=
0.25, P= 4.75e−55) and higher risk for CAD (B= 0.05, P= 9.78e−12,
Supplementary Data 3). The interpretation of β estimate from the
MR analysis can be explained in standard deviation (SD) units.
Therefore, a β= 0.05 (OR= 1.05) indicates that individuals whose
S100A13 plasma protein levels are 1 SD above the population
mean will have 1.05 times increase in risk to CAD.
We noted that the S100A13 protein level in the blood is under

the trans-regulatory impact of SNPs at the APOE locus. Further
analysis revealed, both APOE and S100A13 levels are under the
regulatory impact of a methylation site (cg13375295) upstream of
the APOE gene (Fig. 2). Higher methylation at this site was
associated with lower levels of APOE (β=−3.7, P= 9.7e−10) and
S100A13 (β=−4.0, P= 1.4e−11) in the blood. Previous studies also
reported the trans-regulatory effect of APOE on S100A139,10. MR
analysis revealed that this gene has a causal impact on other
cardiometabolic risk factors of CAD. We found that a higher level
of S100A13 in the blood is associated (P < 5e−8) with higher levels

of TC, immature reticulocyte fraction, and a higher risk of T2D
(Supplementary Fig. 2 and Supplementary Data 7). The protein
encoded by this gene is a member of the S100 family of proteins.
It exhibits calcium and lipid-binding properties and is highly
expressed in the heart. In smooth muscle cells, S100A13 co-
expresses with other family members in the nucleus and in stress
fibers, suggesting diverse functions in signal transduction.

Thrombosis and F8
SNPs in the ABO locus are reported to have a trans-regulatory
effect on protein levels of F8 (coagulation Factor VIII) in the blood.
Factor VIII participates in the intrinsic pathway of blood
coagulation; it is a cofactor for factor IXa which, in the presence
of Ca2+ and phospholipids, converts factor X to the activated
form Xa.
Here, we confirmed this effect (Supplementary Data 3) and

noted that it is attributed to methylation sites within the ABO
locus (Supplementary Data 8). We found multiple methylation
sites within the ABO locus that show causal association with F8
protein levels. As displayed in Fig. 2, as ABO becomes methylated
the level of F8 in the blood raises and this consequently increases
the risk of thrombosis (B= 0.01, P= 7.57e−34) and the risk for CAD
(B= 0.06, P= 1.25e−08).

Obesity and UHRF1BP1
Co-localization and subsequent MR analysis found UHRF1BP1 on
chromosome 6 as a gene for which elevated expression (B=
−0.013, P= 5.14e−16, Supplementary Data 3) contributes to the
risk of obesity (defined here as lower whole body impedance). MR
analysis revealed that elevated expression of UHRF1BP1 is
positively associated (P < 5e−8) with time spent watching TV but
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Fig. 1 Flowchart of our SNP-based multiomics data analysis approach to identify biomarkers that mediate the effect of risk factors on
CAD. Through this data analysis pipeline, we aimed to find biomarkers causally associated with the risk of CAD within known genomic regions
for its risk factors. We started by collecting full GWAS summary statistics from studies that made their data publicly available. Next, we
harmonized the data by converting them to SMR and GSMR formats. We then did the co-localization analysis to find SNPs that exert their
effect through a molecular biomarker (probe). Next, we subjected the tagged probes to MR analysis to find biomarkers that are causally
associated with a risk factor. Furthermore, we investigated whether the identified biomarkers are causally associated with the risk of CAD or
other biomarkers for molecular insight.
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negatively (P < 5e−8) with phenotypes that lower the risk of
CAD including birth weight, age at first child birth, education
qualifications, and HDL levels (Supplementary Data 7). In this
region, we note that GWAS data for CAD, eQTLs for UHRF1BP1 and
eQTLs for ILRUN show correlated patterns (Fig. 3). Furthermore, MR
analysis confirmed that change in the expression of these genes
causally contributes to the risk of CAD (Fig. 3). UHRF1BP1 is
binding protein 1 for UHRF1 which regulates chromatin structure
and gene expression. ILRUN (inflammation and lipid regulator with
UBA-like and NBR1-like domains) has immune functions. It is a
negative regulator of innate antiviral response, and acts as an
inhibitor of proinflammatory and antimicrobial cytokines11.
Further interrogation of our findings revealed the presence

of two hotspot genomic regions whereby SNPs underlying
several biomarkers and risk factors of CAD show overlapping
association patterns.

3p21.31 region
Our analysis pipeline (co-localization and subsequent MR analysis)
revealed several methylation and expression biomarkers for CNS
and lifestyle risk factors for CAD within the 3p21.31 region
(Supplementary Data 3). This suggests that genes in this region
may be involved in the neural process consistent with other
evidence for BSN, IP6K1, APEH, RBM5, and RBM6. MR analysis
revealed that the identified biomarkers are causally contributing
to numerous risk factors of CAD (Supplementary Data 7). The
3p21.31 region was the most populated locus in terms of the
convergence of molecular biomarkers and risk factors for CAD.
Among the 78 identified biomarkers, those with the highest
number of associated-risk factors were in this region (Supple-
mentary Data 7). For example, expression biomarkers for RBM6
and UBA7 were associated with 16 CAD risk factors at GWAS
significance level (Supplementary Data 7 and Fig. 4).
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Fig. 2 Molecular path whereby S100A13 and F8 impact CAD. a We found lower methylation at cg13375295 site, upstream of APOE,
increases the level of S100A13 in the blood; this consequently contributes to higher level of LDL and higher risk of CAD. b MR analysis also
revealed higher metylation of ABO locus (see Supplementary Data 8 as well) is associated with higher level of F8 and this increases the risk of
CAD by increasing the risk of thrombosis. Each point represents a SNP, the x-value of a SNP is its Beta effect size on a molecular probe and the
horizontal error bar, represents the standard error around the Beta. The y-value of the SNP is its Beta effect size on a biomarker/trait and the
vertical error bar represents the standard error around its Beta. The dashed line represents the line of best fit (a line with the intercept of 0 and
the slope of β from the MR test).
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We noted that SNPs within BSN also display a trans-regulatory
impact on the plasma protein level of stomatin (STOM). These data
show that as this gene becomes methylated (as measured by
cg05126514), the plasma protein level of STOM increases (B=
0.33, P= 1.83e−84, Fig. 4). We find that higher plasma levels of
stomatin are positively associated with CAD and several CAD risk
factors and negatively with CAD protective factors (Supplemen-
tary Data 7). Of note, higher methylation at cg05126514 site was
also associated with higher risk of CAD (B= 0.06, P= 1.4e−8).
Stomatin encodes a member of a highly conserved family of
integral membrane proteins. The encoded protein localizes to the
cell membrane of red blood cells and other cell types, where it
may regulate ion channels and transporters. Loss of localization of
the encoded protein is associated with hereditary stomatocytosis,
a form of hemolytic anemia. Although the wide distribution of
stomatin and its constitutive expression suggest an important role
for this protein in cell biology, perhaps as a house-keeping
component, its function remains to be clarified. In this study,
stomatin was mainly associated with CNS and lifestyle risk factors
(Supplementary Data 7) suggesting a CNS function for this gene.
Among the other identified biomarkers in this region, change in

expression of APEH was associated with CAD at GWAS significance.
The gene has aminoacylase activity and is implicated in various
biological processes. Concordantly, MR analysis revealed higher
expression of APEH to be negatively associated with the risk for
obesity, immature reticulocyte count and positively with CNS/
lifestyle traits associated with higher cognition (Supplementary
Data 7).

HLA region
Another congested region with regard to the convergence of risk
factors for CAD and their biomarkers is the HLA region. Unlike the
3p21.31 locus, biomarkers identified in this region were associated
to a more diverse group of risk factors (Supplementary Data 7).
Following co-localization, and MR analysis, we identified 12
methylation biomarkers for white blood cell count, diabetes,
obesity, height, and frequency of tiredness within the HLA region
(Supplementary Data 7, Fig. 5).
cg19117063 and cg11530659 associated with white blood cell

count and cg01521131 associated with the frequency of tiredness
were associated with CAD at GWAS significance (Fig. 5). In this
region, we note SNPs within CFB (complement factor B) gene
display trans-regulatory effect on synaptic gene GRIA4. MR analysis
indicates that the level of this protein in blood shows the
correlation with biomarkers within the HLA region (Supplementary
Data 9). Furthermore, we note that this biomarker is causally
associated with 12 CAD risk factors at GWAS significance. A higher
level of this protein was positively associated with a higher risk for
CAD, TC levels, white blood cell counts and negatively with height
and CNS/lifestyle traits associated with higher cognition (Supple-
mentary Data 7). GRIA4 encodes glutamate receptor 4 which is a
member of a family of glutamate receptors that mediate fast
synaptic excitatory neurotransmission. Glutamate receptors are
the predominant excitatory neurotransmitter receptors in the
mammalian brain and are activated in a variety of normal
neurophysiologic processes. This finding also highlights the close
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molecular crosstalk between the immune and central nervous
systems with regard to CAD risk factors.

DISCUSSION
CAD is a global health problem mandating improved strategies for
risk assessment and prevention. Here we devised a SNP-based
multiomics data analysis approach to identify biomarkers that are
causally associated with risk for CAD within genomic regions that
are known to be associated with its risk factors.
We identified 12 methylation biomarkers associated with

various risk factors of CAD within the HLA region. This is the
most important area in the genome regarding infection and
autoimmunity and is essential in adaptive and innate immunity.
Previously, we reported that SNPs that contribute to the risk of
CAD are highly enriched in genomic regions pertinent to immune
function2. In another study, we did a comprehensive phenome-
wide search for risk factors of CAD. Although the most
represented category was lifestyle features, CAD showed the
highest genetic correlation with thrombotic conditions3. Taken
together, these data support the notion that CAD involves an
immune response to the cumulative effects of adverse lifestyle
risk factors.

Within the HLA region, SNPs in the complement factor B gene
(CFB) have a trans-regulatory impact on GRIA4 protein level in
blood and this in turn is associated with the risk of CAD and its
attendant risk factors (Supplementary Data 7). GRIA4 is a neural
gene involved in synaptic transmission. This finding gives further
support to studies that reported HLA contributes to neuronal
function and development12. We also noted STOM a gene with
hemo-immune function to be under the trans-regulatory effect of
SNPs within the BSN gene that has a neural function. Although
biomarkers within 3p21.31 co-localized with CNS/lifestyle trait loci,
genes in this region appear to have diverse functions, for example,
APEH is involved in barbiturate dependence, kidney cortex
necrosis, gene expression, and innate immune response. Micro-
deletions in this region are characterized by developmental delay,
elevated serum creatine kinase levels, and white matter involve-
ment13. These findings may also explain why the biomarkers
identified in this region were associated with multiple CAD risk
factors (Supplementary Data 7). Furthermore, we noted that a
number of seemingly non-CNS functional elements co-localize
with CNS/lifestyle trait loci and mediate their impact on CAD. We
found a methylation site within the HLA region that was a risk
locus for the frequency of tiredness (Fig. 5 and Supplementary
Data 3). A methylation site within Creatine Kinase, Muscle-Type
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Fig. 4 Convergence of molecular biomarkers and risk factors of CAD at chromosome 3p21.31 region. a Biomarker-risk factor associations,
only biomarker-risk factor pairs with association P-value < 5e−8 (based on MR analysis) are displayed for better visualization. Risk factors that
increase the risk of CAD are colored in orange, those that decrease the risk of CAD are colored in cyan and biomarkers (probes) are shown in
yellow. The dashed lines indicate negative associations between probes and traits whereas solid lines indicate positive associations. Complete
summary statistics are provided in Supplementary Data 7. b Regional association plot of SNPs that are associated with plasma protein level of
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region. LD (r2) calculations were based on the European population from the 1000 Genomes reference panel (Phase I; release 3). Genomic
coordinates refer to the hg19 sequence assembly. c Higher methylation at BSN gene (measured by cg05126514) is causally associated with
higher level of stomatin in the blood. Each point represents a SNP, the x-value of a SNP is its Beta effect size on cg05126514 and the horizontal
error bar, represents the standard error around the Beta. The y-value of the SNP is its Beta effect size on stomatin level and the vertical error
bar represents the standard error around its Beta. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of
β from the MR test).
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(CKM) mediated the impact of lack of education qualifications
(LEQ) on CAD. Higher methylation at this site was associated with
a higher likelihood of LEQ, increased risk of CAD and lower
expression of CKM (Fig. 6 and Supplementary Data 3). Altogether,
these findings add support to the notion that CNS/lifestyle
contributes to the risk of cardiovascular disease14,15.

Genomic regions that undergo epigenetic modification are
considered as sites of gene-environment interactions. Previously
we reported that SNPs that contribute to the risk of CAD are
enriched in epigenetic sites associated with transcriptional
activity2. Although in this study, the methylation datasets had
the smallest sample size, majority 64% (N= 50) of the identified
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biomarkers were methylation probes. Biomarkers identified in the
HLA region were all methylation probes. We also noted the impact
of methylation on several known cardiometabolic biomarkers. In
addition to those presented in the previous sections, we found a
methylation biomarker (cg21901847, Supplementary Data 3)
within NOS3 that is associated with risk for early onset
hypertension (β=−0.42, P= 5.3e−10) and CAD (β= 0.04, P=
7.5e−5). Similarly, a methylation site (cg18187658) within GALNT2,
an established locus for TG and HDL-C16 was associated with a
higher blood level of TG (β= 0.05, P= 1e−19) and the risk for CAD
(β= 0.03, P= 8.6e−6). A methylation site within ZNF664 was
associated with higher HDL levels (β= 0.03, P= 9.4e−11), lower
risk for obesity (β=−0.013, P= 3.5e−16) and CAD (β=−0.02, P=
2.5e−5). Recent studies also demonstrate that epigenetics may
play an important role in the development of CAD17–19.
Altogether, these findings indicate epigenetic reversal could have
a profound impact in prevention and treatment of cardiovascular
disease. In this regard, 3p21.31 and HLA region are prime
candidates because they appear to be hotspots for interactions
between risk factors of CAD and their biomarkers.
In this study, we connected different types of omics data

(proteome, epigenome, transcriptome, phenome) to obtain novel
molecular and clinical insights. We achieved this by linking these
data to a single backbone i.e. genome or SNPs. This is a logical
approach because DNA provides the information for the devel-
opment and maintenance of various layers of omics and the
human organism is the outcome of these layers and their
connections. This study provides a new paradigm whereby the
information generated in each field of biology can be linked to
common SNPs. This can serve to unite the omics fields and
provides a single network of knowledge to which the generated
information is continually being linked.
Pursuant to our previous works1–5, this study provides further

insight into the biology of CAD and identifies a list of biomarkers
that mediate the impact of risk factors on CAD. The clinical
message of these studies is that CAD (in its common form) is a
complex disease arising from interactions amongst numerous
genes and risk factors (notably lifestyle traits). Here we sub-
stantiate the hypothesis that CAD evolves in part from an immune
response to the cumulative effects of adverse lifestyle factors on
epigenetic modifications. We identify two hotspots (3p21 and HLA
region) in the genome where there is a convergence between
biomarkers and risk factor trait loci for CAD.

METHODS
SNP-based approach toward linking omics data
Omics studies use probes (biomarkers) to study a phenomenon. The
probes that are used in these fields are different, making it difficult to link
the findings generated in each field. However, the common feature
amongst these studies is that they measure genomic-related entities.
Hence the genome is the connecting backbone. This approach is logical
given that DNA provides information for the development and main-
tenance of various layers of omics and the living organism is the outcome
of these layers and their connections.

Natural variations in the genome (SNPs) are historically used to study the
genetics of omics and notably the phenome. Summary association
statistics from these studies are usually publicly available. Therefore, if
we can relate these findings through SNPs, we can repurpose them. For
example, by linking the expression of a gene to the phenome and the
epigenome, we can investigate the likely function of the gene and the
location of regulatory elements that govern the expression of the gene.
This allows us to understand the mechanism by which a gene impacts a
phenotype. Our analysis pipeline (Fig. 1) was designed with the aim of
combining omics data, in order to obtain such insights.
We started by asking the question, does the SNP-association signal for a

risk factor and a functional element (Supplementary Data 1) co-localize in a
genomic region. Supplementary Fig. 1 provides a graphical visualization for
such a scenario. For this purpose, we systematically searched the genome
and investigated the evidence of co-localization using the SMR (Summary-
data-based Mendelian Randomization) test (version 1.03). The underlying
assumption in this test is that, if in a region the effect of the top association
signal (SNPA) on the risk factor is βy and its effect on a biomarker is βx, we
can estimate the effect of SNPA on the risk factor that is attributed to the
biomarker (βSMR) as

20

βSMR ¼
βy
βx

(1)

Then, we can test whether the computed effect significantly deviates from
the null (SNPA is not exerting its effect on risk factor through the
biomarker) as20

T ¼ β2SMR

var βSMRð Þ ¼
Z2
y ´ Z

2
x

Z2
y þ Z2

x
(2)

where T=χ21 and Zy and Zx are Z-statistics of SNPA for the risk factor and the
biomarker. The test is very useful because most published studies only
provide access to summary level statistics and access to individual-level
data is limited, due to privacy concerns and other logistical considerations.
From a biological perspective, a significant βSMR could also be due to

linkage or to a situation where the top signal, for the risk factor and the
biomarker, are close but not the same (Fig. 1). To exclude such instances,
we used Heterogeneity In Dependent Instruments (HEIDI) test as
implemented in SMR software to exclude significant βSMR effects that are
due to linkage (PHEIDI ≤ 0.05). The null model in the HEIDI test is that there
is a shared casual variant that affects both the risk factor and the biomarker
(pleiotropy or causality scenario) while the alternative hypothesis indicates
linkage. The HEIDI test differentiates between these two scenarios by
examining the change in pattern of

βy
βx

for SNPs surrounding the SNPA; a
non-homogenous pattern indicates linkage.
Inherently, the SMR program cannot differentiate between pleiotropy

(Biomarker ← SNP→ risk factor) or causality (SNP→ Biomarker → risk
factor) because to make a causal inference between the exposure and
outcome, multiple SNPs (reference points) are required. Therefore, we next
performed multi-SNPs summary-based Mendelian randomization analysis,
also known as 2-sample Mendelian randomization (where exposure and
outcome are measured in two separate samples)21. This method requires
summary association statistics and it works by contrasting the effect sizes
of SNPs on the exposure with the effect sizes of the SNPs on the outcome.
In this context, a significant positive association indicates subjects that are
genetically susceptible to have higher values of the exposure (e.g. a
biomarker) tend to have higher values of the outcome. SNPs that are used
in the MR test must pass a number of criteria. Notably a) they must not be
in linkage disequlibrium, b) must not show pleiotropic effect, and c) must
be significantly associated with the exposure. For this purpose, we
obtained summary association statistics (Beta and Standard error) for non-

Fig. 5 Convergence of methylation biomarkers and risk factors of CAD at HLA region. a Biomarker-risk factor associations, only half (N=6)
of the biomarkers and biomarker-risk factor with association P-value < 5e−8 (based on MR analysis) are displayed for better visualization. Risk
factors that increase the risk of CAD are colored in orange, those that decrease the risk of CAD are colored in cyan and biomarkers (probes) are
shown in yellow. The dashed lines indicate negative associations between probes and traits whereas solid lines indicate positive associations.
Complete summary statistics are provided in Supplementary Data 7. b Co-localization and MR analysis found cg19117063 to be associated
with white blood cell count. We found higher methylation at this site is associated with lower leukocyte count and lower risk of CAD. c
Similarly higher methylation at cg01521131 site was associated with lower frequency of tiredness and risk of CAD. Each point on the scatter
plots represents a SNP, the x-value of a SNP is its Beta effect size on a molecular probe and the horizontal error bar, represents the standard
error around the Beta. The y-value of the SNP is its Beta effect size on a molecular probe/CAD risk and the vertical error bar represents the
standard error around its Beta. The dashed line represents the line of best fit (a line with the intercept of 0 and the slope of β from the
MR test).
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pleiotropic SNPs (PHEIDI < 0.01) that are independently (r2 < 0.05) associated
with a biomarker (P < 5e−8) and used these as an instrument to investigate
their impact on the risk factor. To facilitate the process of SNP selection
and the MR test, we used the GSMR (Generalised Summary-data-based
Mendelian Randomization) algorithm implemented in GCTA software
(version 1.92) and passing the default setting criteria as specified above21.
As compared to other methods for 2-sample MR analysis, this algorithm
automatically detects and removes SNPs that have a pleiotropic effect on
both exposure and outcome; in addition, GSMR accounts for the sampling
variance in β estimates and the linkage disequilibrium (LD) among SNPs, as
such it is statistically more powerful than other 2-sample MR approaches21.
Following this step (i.e. forward MR), we selected biomarkers causally
contributing to risk factors (P < 5e−8) and subjected them to the reverse-
MR (Risk factor → Biomarker). Namely, we identified independent SNPs
that are associated with the risk factor (P < 5e−8) and contrasted their
effect size on the risk factor with their effect size on the biomarker and
excluded any risk factor-biomarker associations that showed significant
evidence of reverse-causation (P < 0.05, Fig. 1). Biomarkers that also passed
this step then were tested for their association with CAD by performing
forward MR (Biomarker → CAD) and reverse MR (CAD→ Biomarker).
Biomarkers that passed this stage were then subjected to Bonferroni
correction and those with forward MR (Bonferroni corrected P < 0.05) are
reported in Supplementary Data 3.

Data sources
Our analysis pipeline requires full GWAS summary statistics. As such, we
searched for GWAS studies of molecular features (i.e. QTL studies) that
made their full results publicly available (Supplementary Data 1). Next, we
harmonized the retrieved data by converting them to SMR20 or GSMR21

format for downstream analyses. We obtained GWAS summary statistics
for SNPs that influence the human blood proteome (pQTLs) from Sun
et al.22 GWAS summary statistics for SNPs that influence transcriptome
(eQTLs) were from Võsa et al.23 and GWAS summary statistics for SNPs that
influence DNA methylation (mQTLs) were derived from two studies19,24.
These studies are independent with reference to study participants and
were conducted using blood samples. Although blood may not be the best
tissue to study the biology of CAD, it appears to be an overall good proxy
for many tissues. Liu et al.25 calculated pairwise genetic correlations (rg) of
local gene expression among 10 different tissues from GTEX, and found
the mean rg between blood and other tissues is 0.71 (SD= 0.02).
We also obtained GWAS summary statistics for CAD from the most

recent meta-analysis of CARDIoGRAMplusC4D and UK Biobank26, and
GWAS data for the major CAD risk factors (Supplementary Data 2) from a
recent phenome-wide study3. An important source of bias in genetic
studies, including Mendelian randomization is population stratification. To
address this issue, we collected GWAS summary statistics from studies
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Fig. 6 Methylation of CKM gene is associated with higher risk of CAD. a Regional association plot of mQTLs for cg12597660. SNPs are
colored based on their linkage disequilibrium (r2) with the labeled top SNP (rs7260359), which has the smallest P value in the region. b We
found higher methylation at cg12597660 (within CKM gene) is associated with lower expression of CKM. co-localization and MR analysis
revealed cg12597660 mediates the impact of lack of education qualifications on CAD. c Higher methylation at this site was associated with
lack of educational qualifications, and (d) higher risk of CAD. Each point represents a SNP, the x-value of a SNP is its Beta effect size on
cg12597660 and the horizontal error bar, represents the standard error around the Beta. The y-value of the SNP is its Beta effect size on a
biomarker/trait and the vertical error bar represents the standard error around its Beta. The dashed line represents the line of best fit (a line
with the intercept of 0 and the slope of β from the MR test).
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carried out in European subjects and adjusted their results for the impact
of population stratification. Our analysis pipeline also requires access to
individual-level genotype data to estimate the linkage disequilibrium
between SNPs. For this purpose, we used the genotype data from the
INTERHEART study which is a sample of 854 subjects of European ancestry
that we previously used in 1000 Genomes-based meta-analysis of CAD
GWAS results1. The current study was conducted in accordance with the
principles outlined in the Declaration of Helsinki. Research Ethics Board of
the Ottawa Hospital approved the research protocols and all participants
provided written informed consent.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Data that support the findings of this study are available from: https://github.com/
mnikpay/Multiomics-MR-scripts.git.
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Instructions and scripts to carry out the analyses are available from: https://github.
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