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Ratio of the interferon-γ signature to the immunosuppression
signature predicts anti-PD-1 therapy response in melanoma
Chuanliang Cui1,4, Canqiang Xu2,4, Wenxian Yang 2, Zhihong Chi1, Xinan Sheng 1, Lu Si1, Yihong Xie1, Jinyu Yu1, Shun Wang3,
Rongshan Yu 2,3✉, Jun Guo 1✉ and Yan Kong 1✉

Immune checkpoint inhibitor (ICI) treatments produce clinical benefit in many patients. However, better pretreatment predictive
biomarkers for ICI are still needed to help match individual patients to the treatment most likely to be of benefit. Existing gene
expression profiling (GEP)-based biomarkers for ICI are primarily focused on measuring a T cell-inflamed tumor microenvironment
that contributes positively to the response to ICI. Here, we identified an immunosuppression signature (IMS) through analyzing RNA
sequencing data from a combined discovery cohort (n= 120) consisting of three publicly available melanoma datasets. Using the
ratio of an established IFN-γ signature and IMS led to consistently better prediction of the ICI therapy outcome compared to a
collection of nine published GEP signatures from the literature on a newly generated internal validation cohort (n= 55) and three
published datasets of metastatic melanoma treated with anti-PD-1 (n= 54) and anti-CTLA-4 (n= 42), as well as in patients with
gastric cancer treated with anti-PD-1 (n= 45), demonstrating the potential utility of IMS as a predictive biomarker that
complements existing GEP signatures for immunotherapy.
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INTRODUCTION
Historically, advanced melanoma has a poor prognosis, with a 5-
year survival rate of less than 10%.1 Immune checkpoint inhibitors
(ICIs) targeting PD-1 and CTLA-4 have shown improved survival in
advanced melanoma patients1–4, but only a subset of patients
respond. In addition, the efficacy of ICIs has been observed to be
significantly lower for East Asian melanoma patients than for
Caucasian patients5,6.
Published data suggest that tumor mutational burden (TMB)

and PD-L1 expression may predict the clinical benefit of anti-PD-1
therapy in multiple cancer types7–9. Although the potential
predictive power of PD-L1 expression for the clinical benefit of
anti-PD-1 therapy remains controversial for advanced melanoma
patients10,11, higher TMB has been correlated with a superior
clinical response12,13, improved survival14,15, and durable bene-
fit12,16 in advanced melanomas. In Asian melanoma patients,
acral17,18 and mucosal melanomas18 are the predominant
subtypes and generally have a low point mutation burden.
Consequently, it is not clear whether TMB is an effective predictor
for advanced Asian melanoma patients.
In addition to TMB and PD-L1 expression, prediction models

based on GEPs have also been proposed. Most GEP signatures
consider T cell inflamed microenvironments characterized by the
upregulation of IFN-γ signaling, antigen presentation, and
immune checkpoint-related genes when predicting response to
ICIs across multiple cancer types. However, these features are
necessary but not always sufficient for a cancer patient to receive
clinical benefit from ICI treatments19. A recent meta-review
showed that predictive models built on inflamed GEP signatures
achieved a moderate area under the receiver operator curve (AUC)
value of 0.65 for the summary receiver operation characteristic
(sROC) curve generated from 10 different solid tumor types in
8135 patients20.

Here, we argued that immune suppressive elements in the
tumor microenvironment (TME) should be considered in combina-
tion with an inflamed GEP signature to more accurately predict ICI
therapy outcomes. The main objective of this study was to
develop immunosuppressive GEP signatures that, when used in
combination with inflamed GEP signatures, could better stratify
patients based on their potential benefits from ICI therapy. We
started by analyzing RNA-seq data from baseline biopsy samples
of melanoma patients treated with anti-PD-1 therapy and
identified a set of 18 genes that played an “antagonistic” role
against a pro-inflammatory TME and lead to negative outcomes in
the discovery cohort consisting of multiple datasets. Our results
reveal that key genes of the identified IMS are related to hallmark
activities of cancer-associated fibroblasts (CAFs), macrophages
and epithelial to mesenchymal transition (EMT), and the balance
between the IFN-γ signature and the IMS plays an important
predictive role in both immunotherapy-naive primary tumors
from The Cancer Genome Atlas (TCGA) database and ICI-treated
patients.

RESULTS
Definition of an immunosuppression signature
We reviewed the literature and found three external data-
sets14,15,21 of advanced melanoma treated with an anti-PD-1 ICI
with response and RNA-seq data, which we used as our discovery
cohort (n= 120; see “Methods” section). We then identified 18
genes of which the expression levels, after adjusting for IFN-γ
signature score, are consistently associated with negative
response to ICI in the discovery cohort as our IMS (FAP, PDGFRB,
CD163, SIGLEC1, IL10, CCL2, CCL8, CCL13, INHBA, VCAN, AXL, TWIST2,
ADAM12, COL6A3, STC1, ISG15, BCAT1, OLFML2B; Fig. 1A–C).
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Respective biological functions of IMS genes are listed in
Supplementary Table 1.
Figure 1D shows a heatmap of the expression of all genes in the

IMS and IFN-γ signatures in the combined discovery cohort.
Patients with elevated expression of IFN-γ-related genes included
both responders and nonresponders, suggesting that an inflamed
TME alone, as indicated by a higher IFN-γ signature score, is not
sufficient to ensure positive outcomes from ICI. On the other hand,
elevated expression levels of IMS genes were observed in patients
from the nonresponder groups in the IFN-γ+ subgroup (n= 49,
p= 0.0006; Fig. 1E). These data indicate a potential immunosup-
pressive role of the IMS genes that is opposite to the role of the
IFN-γ related inflammatory signature, and both signatures should
be considered in order to have more accurate predictions of
outcomes from immunotherapy.

Association of the immunosuppression signature with
immune cell types
The identified IMS shows a strong presence of genes related to
CAFs (FAP and PDGFRB22) and tumor-associated macrophages
(TAMs) (CD16323 and SIGLEC124,25), as well as their associated
cytokines or chemokines that lead to an immunosuppressive
microenvironment (IL1026, CCL2, CCL8, and CCL1314) and stromal
activities that lead to tumor proliferation, invasion and immune

escape such as EMT or extracellular matrix (ECM) degradation
(AXL27, TWIST2, ADAM1228, and COL6A329). Therefore, high infiltra-
tion of CAFs and myeloid cells and their related stromal activities
may be the reasons behind the lack of response from patients
with an inflammatory TME. To further validate this hypothesis, we
performed digital cell composition analysis using xCell30 on a
combined melanoma dataset consisting of the three datasets in
the discovery cohort and a TCGA melanoma dataset (n= 516) and
in TCGA melanoma dataset only (n= 309), and analyzed the
distribution of different immune cell types with respect to the IFN-
γ signature and IMS scores.
As expected, we observed that the IMS score was positively

correlated with the abundances of fibroblasts (r= 0.62, p <
0.0001), monocytes (r= 0.45, p < 0.0001) and macrophages (r=
0.34, p < 0.0001) (Fig. 2A). Stratification of patients into IFN-γ+/−
and IMS+/− subgroups according to their median values further
revealed the different distributions of immune cells in relation to
these two signatures (Fig. 2B). Fibroblasts were significantly
enriched in IMS+ subgroups regardless of IFN-γ status (p <
0.0001; Fig. 2C). In addition, higher abundances of macrophage
were associated with both higher IMS scores and higher IFN-γ
signature scores. Interestingly, M2 macrophages, which play an
important immunosuppressive role in the TME, were significantly
associated with the IMS score in only the IFN-γ+ subgroups
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Fig. 1 The definition of the IMS genes. A–C Volcano plot depiction of differentially expressed genes after normalization by the IFN-γ score of
individual sample by response on Riaz17 (in A, n= 51), Gide19 (in B, n= 41) and Hugo16 (in C, n= 28). R, responders (CR or PR); NR,
nonresponders (PD) as per RECIST 1.1. IMS genes are highlighted in red. D Heatmap showing the expression of genes from the IFN-γ signature
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(p= 0.0281) but not the IFN-γ− subgroups. On the other hand,
higher IFN-γ signature scores were associated with increased
infiltration of CD8+ T cells, CD4+ T cells and B cells. However, the
association of IMS scores and abundances of these cells within
the microenvironment is not significant. Similar association can be
observed on cell type abundance results from TCGA melanoma
dataset only (Supplementary Fig. 1). All these results are consistent
with the notion that IMS genes are related to immunosuppressive
activities in cancers, and the balance between IFN-γ signature and
IMS scores has a significant role in determining which patients
benefit from adaptive immune rejuvenating therapies.

Balance between the IFN-γ signature and the IMS as a
biomarker for cancer
We next studied the distribution of IMS scores and their interaction
with IFN-γ signature scores in different tumor types using TCGA data.
First, we analyzed the correlation between IMS scores and IFN-γ
signature scores for all TCGA patients (n= 11,043; Fig. 3A). The results
showed that the IFN-γ signature and IMS scores had a modest
positive correlation with r= 0.53 (p < 0.0001); however, IMS scores
were poorly explained by IFN-γ signature scores (R2= 0.28),
suggesting that these two signatures are not fully overlapping and
might contribute complementary information regarding the TME. A
similar conclusion can be made on the correlation of the IMS and IFN-
γ scores on selected cancer types from TCGA (Supplementary Fig. 2).
Given that the status of the tumor immune microenvironment

and the associated composition of immune cells contain
prognostic information, we hypothesized that the balance
between IFN-γ signature and IMS may be associated with the
survival of cancers. To assess this possibility, we performed a
stratified multivariate analysis using Cox proportional hazards

regression within each TCGA cancer type. The results showed that
the association between the ratio of IFN-γ signature to the IMS
score (IFN-γ/IMS) and overall survival (OS) varied according to
cancer type (Fig. 3D). A higher IFN-γ/IMS ratio was associated with
a modest prognostic benefit after adjusting for sex, age, and TMB
in breast invasive carcinoma (BRCA) (HR= 0.92; 95% CI: 0.82–0.98),
cutaneous melanoma (SKCM) (HR= 0.89, 95% CI: 0.87–0.99),
stomach adenocarcinoma (STAD) (HR= 0.86; 95% CI: 0.77–0.96),
bladder urothelial carcinoma (BLCA) (HR= 0.93; 95% CI: 0.87–0.99)
and cervical tumors (CESC) (HR= 0.85; 95% CI: 0.74–0.98).
Conversely, a higher IFN-γ/IMS ratio was associated with poor
prognosis in uveal melanoma (UVM) (HR= 1.67; 95% CI: 1.17–2.38),
uterine carcinosarcoma (UCS) (HR= 1.49; 95% CI: 1.01–2.20) and
brain lower-grade gliomas (LGG) (HR= 1.41; 95% CI: 1.06–1.88),
suggesting that these cancers may have different antitumour
immune responses than those cancers mentioned previously.
Interestingly, it was previously reported that a higher TMB was
associated with poor survival in patients with glioma7. Associations
of the IFN-γ/IMS ratio and survival in different directions have also
been observed in other cancer types but did not reach statistical
significance. Furthermore, we tried to include tumor stage (III/IV
versus I/II) in the Cox model for cancer types with this information
available on TCGA and found that the association of the IFN-γ/IMS
ratio and survival remains significant for BRCA, BLCA, SKCM and
UVM after adjusted for tumor stage (Supplementary Fig. 1).
We further checked the relationship between the IFN-γ/IMS

ratio and TMB scores in TCGA data and found that there was a
positive but weak association between them (r= 0.20, R2= 0.042,
p < 0.0001; Fig. 3B) on all samples from TCGA datasets (n= 11,043)
and on selected cancer types (Supplementary Fig. 2).
Finally, following the same method as in31, we compared the
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their ratio with objective response rates (ORRs) to anti-PD-1
therapies for cancer types with efficacy performance data
available32 to get an educated guess of the applicability of these
scores as potential biomarkers for immunotherapy. A positive
correlation of ORR with the IFN-γ signature score (R2= 0.27, p=
0.047, Fig. 3E) and IFN-γ/IMS (R2= 0.54, p= 0.001, Fig. 3G) was
observed. Importantly, tumors with high median IFN-γ/IMS values,
most notably SKCM33, colon adenocarcinoma (COAD), CESC34,
BLCA35, lung squamous cell carcinoma (LUSC)36 and liver
hepatocellular carcinoma (LIHC), have shown clinical sensitivity
to ICI therapies (Fig. 3G). Some tumor types (e.g., pancreatic
adenocarcinoma (PAAD) and BRCA) have shown poor response to
immunotherapy despite their moderate to high median IFN-γ
scores (Fig. 3E). These tumors are known to be highly infiltrated
with myeloid cells, which may serve as an additional immuno-
suppressive mechanism preventing efficacy with ICI therapy37,38.
Notably, these cancer types were also characterized by elevated
IMS scores (Fig. 3C).

Ratio of the IFN-γ signature score to the IMS score predicts
PD-1 blockade efficacy
We next assessed whether directly using the ratio of the IFN-γ
signature score to the IMS score could be used as a reliable metric

to predict anti-PD-1 therapy outcome for melanoma patients.
Patients with higher IFN-γ/IMS scores have better chance to
receive clinical benefits from anti-PD-1 therapy (Fig. 4A–C). We
used IFN-γ/IMS together with the clinical response data to
generate receiver operating characteristic (ROC) curves to quantify
its prediction performance in our discovery cohorts. The resulting
AUCs were in the range of 0.70–0.83 (Fig. 4B), which is better than
other GEP signatures from the literature (Fig. 4D–F). In addition,
higher IFN-γ/IMS scores also associated with improved OS in the
Riaz17 and Gide19 datasets (Fig. 4G–H).
We next tested the prediction ability of IFN-γ/IMS in a newly

generated RNA-seq dataset from 55 tumor tissues of melanoma
patients treated with anti-PD-1 monotherapy at Peking University
Cancer Hospital (PUCH), Beijing, China. In this dataset, IFN-γ/IMS
achieved a prediction accuracy of AUC= 0.81 (95% CI: 0.69–0.93;
Fig. 5E). Using the threshold that generated the maximum Youden
index39 to divide patients into predicted responder (n= 29) and
predicted nonresponder groups (n= 26), IFN-γ/IMS successfully
captured 67.71% of nonresponders (23 out of 35) with only 3
exceptions (1 patient with a complete or partial response (CR/PR)
and 2 patients with stable disease (SD) were misclassified as
nonresponders), achieving a classification accuracy of 88.5% (p=
0.0006) for this group. On the other hand, of the 29 patients
classified as predicted responders by IFN-γ/IMS, 17 (13 patients
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with a PR/CR and 4 patients with SD) actually responded. Overall, a
higher IFN-γ/IMS ratio was associated with a better ORR (p=
0.0005; Fig. 5A), OS (HR= 3.45; 95% CI: 0.97–12.19; p= 0.0547;
Fig. 5D) than a lower IFN-γ/IMS ratio. Compared with IFN-γ
signature-based classification (Fig. 5B), IFN-γ/IMS correctly classi-
fied six nonresponders that would otherwise be misclassified by
IFN-γ signature as responders due to their medium to high IFN-γ
scores, and one patient who had low IFN-γ score but responded to
ICI therapy as responder (Fig. 5C). The OS results were not
significant (p= 0.0547) possibly due to limited sample size, and
relatively short follow-up period of this cohort. In the public
dataset of 54 preclinical metastasis melanoma treated with anti-
PD-1 (Liu1913), IFN-γ/IMS achieved an AUC of 0.66 (95% CI:
0.50–0.83, Fig. 6A). In addition, patients with higher IFN-γ/IMS ratio
(with cutoff value based on the Youden index) had better ORR
(p= 0.0043; Supplementary Fig. 4E and longer OS (HR= 4.42; 95%
CI: 1.46–13.36; p= 0.0084, Fig. 6G). Collectively, the above
data demonstrate the potential value of IFN-γ/IMS ratio as a
combinatorial biomarker for anti-PD-1 treatment for metastatic
melanoma.
Although the IMS was derived from advanced melanoma

cohorts receiving anti-PD-1 treatment, the resulting genes
measure immune-related expression levels with minimal con-
tribution from tumor-related transcriptomic activities. Therefore,
the signature may provide a treatment or tumor-type agnostic
insight into immune microenvironment activities. To test this
concept, we further evaluated the prediction performance of IFN-
γ/IMS on two publicly available RNA-seq datasets with pretreat-
ment samples from melanoma patients treated with anti-CTLA-4
therapy (VanAllen15; n= 42)40 and metastatic gastric cancer
patients treated with anti-PD-1 therapy (Kim18; n= 45)41. The
resulting AUCs were 0.75 (95% CI: 0.59–0.91; Fig. 6B) and 0.82 (95%
CI: 0.64–0.99; Fig. 6C), respectively, for these two datasets. In
addition, patients with high IFN-γ/IMS ratios (using the Youden

index to determine the cutoff point) had better ORR on the
VanAllen15 dataset (p= 0.0004; Supplementary Fig. 4E) and the
Kim18 dataset (p= 0.0022; Supplementary Fig. 4F) and longer OS
in the VanAllen15 dataset (HR= 3.06; 95% CI: 1.41–6.61; p=
0.0032; Fig. 6H) than patients with low IFN-γ/IMS ratios, suggesting
the potential of using the IFN-γ/IMS ratio as a predictive biomarker
for immunotherapies different to anti-PD-1, or other cancer types.

Comparison with other GEP signatures
Currently, there were significant number of independent studies
on GEP signatures that predict the response of patients to anti-PD-
1 therapy. To compare the prediction accuracy of the proposed
IFN-γ/IMS ratio with that of existing GEP signature-based
predictors, we generated predictions using nine published GEP
signatures (Table 1) and the comparison results showed that
IFN-γ/IMS ratio achieved same or better AUC performance on
both PUCH (Fig. 5F) and the three external validation cohorts
(Fig. 6D–F). One limitation of existing GEP signature studies is that
many of these signatures were validated with independent
cohorts within each publication, but frequently these signatures
have not performed well in follow-up reports. To further validate
the robustness of the proposed approach, we performed a
randomized permutation test where three datasets were ran-
domly selected from the seven datasets (Table 2) as the discovery
cohort to identify the top 18 IMS genes as described previously.
We then tested the prediction performance of ratio of IFN-γ and
the identified IMS on the remaining four datasets. The results from
the total 35 permutation tests indicated that IFN-γ/IMS out-
performed other GEP signatures by a significant margin (Wilcoxon
matched-pairs signed rank test, p < 0.0001; Fig. 7A). Significantly,
we found that the IMS signatures from the randomized tests were
highly consistent despite that they were obtained from different
training datasets. More than half of the total 630 occurrences of
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the IMS genes from the 35 randomized tests were from the top 23
frequent genes (Fig. 7B). Moreover, of the 18 IMS genes identified
from the original discovery cohorts, 13 (OLFML2B, AXL, ADAM12,
STC1, VCAN, PDGFRB, INHBA, CAT1, COL6A3, SIGLEC1, CD163, IL10,
TWIST2) can be found in these top 23 frequent IMS genes from the
randomized test. Further analysis of these genes on a public
single-cell RNA-seq (scRNA) dataset from melanoma42 indicated
that most of these genes are highly expressed on CAF (e.g.,
OLFML2B, VCAN, PDGFRB, COL6A3; Fig. 7C, D and Supplementary
Fig. 5) and/or macrophages (e.g., VCAN, CD163, SIGLEC1; Fig. 7C, D
and Supplementary Fig. 5), confirming the significant roles of
these immune cells and their related immune suppressive
activities in preventing patients from responding to anti-PD-1
therapy.

DISCUSSION
There is significant interest in developing robust biomarkers of
response to immunotherapy, as well as identifying actionable
targets in those who do not respond to the current standard ICI
therapies. Gene expression biomarkers, such as Oncotype DX43,
have demonstrated clinical utility in predicting treatment benefits
in breast cancer. However, as interactions between the tumor and
its microenvironment are highly complex, constructing predictors
of patient response to ICIs remains a serious challenge.
Existing efforts to create gene expression-based tests for ICI

efficacy have mainly focused on developing “response signatures”
that measure the expression of adaptive immune response-related
inflammatory genes20, most of which include an IFN-γ gene
signature as a major component44. However, due to the presence
of intricate immunosuppressive mechanisms within the TME, the
presence of a peripherally suppressed adaptive immune response

alone appears to be necessary but not sufficient for clinical benefit
from PD-1/PD-L1 blockade. In this study, we identified an
immunosuppression signature that, when combined with an
inflammatory signature, had predictive value in patients with
advanced melanoma treated with PD-1 blockade. To maximize our
chance in identifying the correct genes for this signature, we
started with an established 10-gene IFN-γ signature measuring the
expression of genes associated with cytotoxic cells, antigen
presentation, and IFN-γ activity44, and then selected genes that
were significantly upregulated in nonresponsive versus responsive
groups after they were normalized by IFN-γ signature scores of
individual patients using one-sided Student’s t-test. To avoid
potential batch effect from different datasets, the Student’s t-tests
were conducted individually on each dataset from the discovery
cohort. In addition, since conceptually, a truly predictive gene
should produce a significant result in all datasets, we used the
Pearson’s method45 to combine p-values from different datasets
to identify the IMS genes. As the Pearson’s method is more
sensitive to the largest p-value when combining p-values from
multiple tests, this approach helps to avoid artefacts due to single
significance from individual dataset46.
Interestingly, the genes identified in our IMS through the above

computational method were highly consistent with several
important biological activities related to innate or acquired
resistance to ICIs. CAFs are a nonredundant, immunosuppressive
component of the TME47,48. It was previously reported that inhibin
β A (INHBA) production by cancer cells helps to induce CAFs, and
ablating INHBA decreases the CAF phenotype both in vitro and
in vivo49. CAFs hinder antitumour immunity by secreting
immunosuppressive cytokines such as IL-10 and TGF-β, reducing
the function and viability of cytotoxic T lymphocytes50,51 and
attracting immunosuppressive myeloid cells, including TAMs, via
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CCL248,52. Notably, Siglec-1/CD163 is associated with the activa-
tion of macrophages towards an immunosuppressive phenotype,
and accordingly, the expression of both CAF (FAP) and TAM
(SIGLEC1) markers is associated with poor clinical outcomes across
multiple tumor types53–56. CAF-mediated EMT, which is strongly
correlated with the expression of AXL, TWIST2 and ADAM12 from
the IMS, can result in biomechanical and biochemical changes that
facilitate tumor immune escape, invasion, and metastasis57. The
dense collagen matrix produced by CAFs may also present a
physical barrier to the infiltration of T lymphocytes58 or treatments
reaching the cancer cells59. Indeed, the association between a lack
of response to ICIs and upregulated EMT-related genes has been
observed in multiple cancers41,60, and inhibiting CAF/TAM-related
pathways and extracellular collagen and hyaluronan can induce
T cell accumulation and improve the outcome of ICIs61–64,
reinforcing the role of those stromal-related activities in limiting
the efficacy of immune checkpoint blockade immunotherapy.
Using the ratio of opposing immune signatures instead of the

absolute value of individual signatures as a predictive biomarker
brings another advantage. It is well known that to compensate
for potential technical variation, raw gene expression data from
RNA-seq must be normalized so that meaningful biological
comparisons can be made65. Typically, this is done with a set of
housekeeping genes that are expected to maintain constant
expression levels under different experimental conditions66.
However, it has become increasingly clear that housekeeping
gene expression levels may vary considerably in some condi-
tions67,68. When that happens, the normalization process itself can
lead to increased intersample “noise” that covers meaningful
differences in target genes if the chosen housekeeping genes
fluctuate randomly or erroneous results if there is a directional
change in the housekeeping genes between experimental
groups67,69. The calculation of the IFN-γ/IMS ratio provides a
self-normalization method that directly measures the balance

between contradicting biological processes within the tumor
microenvironment, thus providing a selection process that is more
robust to the confounding factor of intersample gene expression
variations to identify genes that contribute negatively to the
outcome of immunotherapy.
Our study has limitations. Since the current ICI clinical trials have

generated gene expression data for only a limited number of
pretreatment samples, which were insufficient to train robust
prediction models, we did not systematically optimize the weights
of individual genes in the IFN-γ/IMS ratio calculation. With more
RNA-seq data available from subsequent studies, we expect that
further optimization of the combined biomarker will yield even
better predictive accuracy. In this study, we did not attempt to
specify a universally applicable cutoff point for IFN-γ/IMS for
different datasets due to potential batch effects from different
RNA-seq procedures conducted at multiple sites. Rather, we
demonstrated a trend that shows an increase in benefits with
increasing IFN-γ/IMS ratios. Nevertheless, we envision that a
relevant cutoff would need to be aligned to specific assay designs
and clinical situations as the cutoff value may be affected by the
sampling bias from intra-tumor heterogeneity70, as well as the
difference in the cellular composition of primary and metastatic
tumors. The IFN-γ/IMS ratio was primarily designed as a predictive
biomarker for anti-PD-1 therapy for melanoma. Therefore, the OS
results reported in this paper should not be overinterpreted since
OS is determined not only by response but also by events not
considered in the current model such as acquired therapy
resistance, adverse event, or presence of other targetable
mutations, which need to be further evaluated towards a more
meaningful prognostic biomarker. Finally, our analysis is retro-
spective in nature, and validation of the findings in additional
datasets is warranted.
In conclusion, the IMS studied in this paper exemplifies the

potential of using GEP signatures for modeling the adverse TME,
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and using IMS in combination with an existing inflammatory GEP
signature enables better identification of patients who could
respond favorably to ICIs. Currently, clinical trials are assessing the
efficacy of combining anti-PD-1 therapy with medicines that
target at normalization of immune suppressive TME including the
CSF1R inhibitor Cabrilizumab for the treatment of resectable
biliary tract cancer (NCT03768531), CCR2 inhibitor plozalizumab
for the treatment of melanoma (NCT02723006), the FAP inhibitor
RO6874281 for the treatment of metastatic head and neck,
esophageal or cervical cancers (NCT03386721) and metastatic
melanoma (NCT03875079), and the TGF-β inhibitor galunisertib
(LY2157299) for the treatment of advanced-stage NSCLC or
hepatocellular carcinoma (NCT02423343) and metastatic pancrea-
tic cancer (NCT02734160). However, due to the diversity of the
immune evasion mechanisms in inflammatory tumors, specific
immunosuppressive mechanisms utilized by each individual
tumor would still need to be fully understood and gauged to
better direct patients to different combination therapy options.
PUCH samples are mostly acral or mucosal, and are not
biologically similar to samples from the TCGA or other melanoma
datasets used in this study, which are mostly cutaneous. Acral or
mucosal melanoma in primary site often has deeper Breslow
thickness, higher incidence of ulceration, and is more prone to
visceral metastasis. Compared with cutaneous melanoma. acral or
mucosal melanoma has lower TMB17 and shows decreased
response to PD-1 monotherapy5,11. Although recent research
found that the efficacy could be greatly improved by PD-1 based
combination therapy in mucosal melanoma cohort71, the mole-
cular mechanisms and predictive biomarkers are yet to be
explored. Nevertheless, results in this study indicate that the IMS
signature plays a very similar role in profiling the immune
suppressive microenvironment of acral or mucosal melanoma
although it was derived from cutaneous melanoma. In this
regard, it is anticipated that IMS or future immunosuppressive
signatures gleaning through deeper understanding of the

immunosuppressive mechanisms of cancer would enable the
development of more effective stratification models or therapeu-
tic combinations to increase the efficacy and cost-effectiveness of
immunotherapies for the benefits of cancer patients.

METHODS
Patients and specimens
In this study, we obtained 55 formalin-fixed, paraffin-embedded (FFPE)
pretreatment tumor tissues from melanoma patients treated with anti-PD-
1 monotherapy at PUCH, Beijing, China, between March 2016 and March
2019 (Table 3). Diagnosis was histopathologically confirmed for all patients.
Clinical data, including sex, age, tumor site, tumor thickness, metastasis
status, and clinical efficacy, were collected. Therapy outcomes evaluated
following Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1,
including presence of a CR or PR, SD and progressive disease (PD), were
used to assess efficacy. OS was calculated from the treatment start date.
Patients who did not die were censored at the date of last contact. The
study followed the REMARK reporting guidelines.

Whole-transcriptome RNA sequencing
Total RNA was extracted from unstained FFPE tumor samples by the All
Prep-DNA/RNA-Micro Kit (Qiagen) following the standard manufacturer’s
protocol. Reverse transcription and second-strand cDNA synthesis were
subsequently performed. Barcoded RNA libraries were generated and
captured by a customized whole-exome panel. All libraries were
sequenced on the Illumina NovaSeq 6000 platform with 2 × 150 bp
paired-end reads. The mean sequencing coverage across all samples was
∼100× (3.5 G). RNA-seq reads were mapped to the human reference
genome GRCh37 using STAR72, and gene expression was quantified using
RSEM73. Coding region reads were counted to calculate fragments per
kilobase of transcript per million mapped reads (FPKM) values at the gene
level and log2-transformed before analysis to avoid extremely skewed
gene expression distributions.

External data sources
We collected the RNA-seq data of melanoma patients from six
immunotherapy studies with gene expression profiles for pretreatment
tumors and complete clinical information, including the Riaz17 (n= 51)15,
Hugo16 (n= 28)14, Gide19 (n= 41)21, VanAllen15 (n= 42)40, Liu19 (n=
54)13, and Kim18 (n= 45)41 datasets (Table 2). Patients from these clinical
studies were treated with nivolumab15 and/or pembrolizumab14,21. For the
Gide19 and Liu19 studies, only baseline data from samples that received
anti-PD-1 monotherapy (nivolumab or pembrolizumab) were used. The
immunotherapy outcomes provided in the original publications following
RECIST guidelines (PR/CR/SD/PD) were used in our analysis. The gene
expression data of VanAllen15 and Liu19 were downloaded from
respective references as provided by the authors. For Riaz17, Hugo16,
Gide19 and Kim18, the RNA-seq raw data was obtained and processed by
the above-mentioned pipeline to generate the gene expression data.
We downloaded TCGA Level-3 RSEM-normalized RNA-seq data and

mutation packager calls from the TCGA database. The RNA-seq data were

Table 1. GEP signatures used in this study.

Signature name Number of genes Description

IFN-γ/IMS 28 This work

IFN-γ (44) 6 Averaging the expression levels of the IFN-γ signature genes

Exp. Immu. (44) 18 Averaging the expression levels of the expanded immune genes

Roh Immu. (74) 41 Averaging the expression levels of immune genes

Messina (75) 12 Principal component 1 score from PCA of expression levels of 12 chemokine signature genes

IMPRES (76) 28 Sum of ratios of 15 checkpoint or immune gene pairs

Huang NRS (77) 69 Averaging the expression levels of neoadjuvant response signature (NRS) genes

T eff. (78) 8 Averaging the expression levels of T-effector IFN-γ signature genes

Davoli (79) 7 Averaging the expression levels of cytotoxic immune signature genes

Cytotoxic (80) 2 Averaging the expression levels of granzyme A (GZMA) and perforin (PRF1)

Table 2. Cohorts used in this study.

Cohort name Tumor type Cohort size Target checkpoint

PUCH Melanoma 55 PD-1

Riaz17 (15) Melanoma 51 PD-1

Gide19 (21) Melanoma 41 PD-1

Hugo16 (14) Melanoma 28 PD-1

VanAllen15 (40) Melanoma 42 CTLA-4

Liu19 (13) Melanoma 54 PD-1

Kim18 (41) Gastric 45 PD-1

C. Cui et al.

8

npj Genomic Medicine (2021)     7 Published in partnership with CEGMR, King Abdulaziz University



Fig. 7 Robustness of the proposed IMS signatures. A Comparison of AUC performance of IFN-γ/IMS ratio with nine published GEP
signatures (Table 1) after 35 bootstrapping randomized tests on the seven datasets (Table 2). In each randomized test, the IMS genes were
identified from three randomly selected datasets (see “Methods” section), and the AUC prediction performance of the ratio of IFN-γ
signature and the IMS identified from the randomly selected dataset was evaluated on the remaining four datasets. Models are sorted by
their median AUC performances and Wilcoxon matched-pairs signed rank test was performed to compare the AUC performances of IFN-γ/
IMS and the second best model T eff. B Top 23 highly frequent genes from the bootstrapping tests. Genes in the original IMS signature are
marked with an asterisk (*) symbol. C–D t-SNE plot of cells from melanoma42. Cells are colored by cell types in C and by normalized
expression of different IMS genes in D.
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log2-transformed. Each patient’s TMB was calculated as the number of
nonsynonymous mutations.

Housekeeping normalization
We renormalized the RNA-seq data using a set of 20 reference (“house-
keeping”) genes (ABCF1, DNAJC14, ERCC3, G6PD, GUSB, MRPL19, NRDE2,
OAZ1, POLR2A, PSMC4, PUM1, SDHA, SF3A1, STK11IP, TBC1D10B, TBP,
TFRC, TLK2, TMUB2, and UBB) with low variance across a set of banked
tumor samples from a variety of cancer types. The log2-transformed
expression of each gene was normalized by subtracting the arithmetic
mean of the log2-transformed expressions of the housekeeping genes.

Identification of the IMS genes
To identify the IMS genes, we first normalized the gene expression levels of
a patient with respect to his/her IFN-γ signature score. We then performed
a one-sided Student’s t-test to capture genes that were significantly
uplifted in the nonresponse group (PD) versus the response group (PR/CR)
after they were normalized by the IFN-γ signature scores. Due to the large
dimensionality of the data, we restricted our search to the 770 cancer
immune-related genes curated in Nanostring’s IO 360 panel. In addition, to
avoid potential batch effects from different datasets, the one-sided
Student’s t-test was performed on each individual dataset independently
and the resulting p-values from the three datasets in the discovery cohort
were then combined using Pearson’s method45 to avoid artefacts due to
single significance from individual dataset. Finally, the genes were ranked

based on their Pearson combined p-values, and the top 18 genes were
identified as our IMS genes.

Calculation of GEP signatures
We collected nine published GEP signatures44,74–80 (Table 1) related to the
immune checkpoint response from the literature and validated in our
cohorts. Sample-wise scores of these signatures were calculated from RNA-
seq data following the methodology described in the corresponding
papers. Genes with unavailable expression data were excluded from the
calculation of signature scores.
For the IFN-γ signature in this paper, we used the arithmetic mean of the

log2-transformed, house-keeping gene-normalized expression levels of the
10-gene “preliminary” IFN-γ signature (IFNG, STAT1, CCR5, CXCL9, CXCL10,
CXCL11, IDO1, PRF1, GZMA, and HLA-DRA)44. Similarly, the IMS score was
calculated as the arithmetic mean of the log2-transformed, housekeeping
gene-normalized expression levels of the 18 IMS genes listed in
Supplementary Table 1. Furthermore, the IFN-γ signature/IMS ratio was
calculated as the difference between these two scores in the logarithmic
domain.

Single cell RNA-seq
Briefly, scRNA-seq data of 31 melanoma tumors were downloaded from
GEO database (GSE115978)42. The original expression profiles and cell type
annotations were used. Principal component analysis (PCA) was performed
to reduce the dimensionality of the scRNA-seq profiles. Then t-SNE
projections were generated using the first 25 principal components. Both
PCA and t-SNE analysis were performed by RunPCA and RunTSNE functions
in the Seurat package (version 3.1.0) with default parameters.

Data analysis and statistical information
Associations between categorical measurements and patient groups, such
as the predictive accuracy of different biomarkers/panels, were evaluated
using Fisher’s exact test. Differences in continuous measurements were
tested using the two-tailed Mann–Whitney U-test. Correlations between
two groups of continuous variables were evaluated using Pearson
correlation analysis. Multivariable Cox proportional hazard regression
models were used to identify prognostic factors, and the results were
reported as hazard ratios (HRs) with 95% confidence intervals. The
Kaplan–Meier method was utilized to estimate OS and PFS curves, and
difference between groups were assessed using the log-rank test. Two-
sided p-values were used unless otherwise specified, and a p-value less
than 0.05 was considered significant. For boxplots, center mark is median
and whiskers are minimum/maximum unless specified otherwise.
To validate the robustness of the proposed approach in identifying the

IMS GEP signature, we performed a randomized permutation test where
three datasets were randomly selected from the seven datasets (Table 2) as
the discovery cohort to identify the top 18 IMS genes as described
previously. The prediction performance of the ratio of IFN-γ to the
identified IMS was then evaluated on the remaining four datasets. The
resulting AUCs were compared with those of other GEP signatures on the
same testing datasets using Wilcoxon matched-pairs signed rank test.
PRISM was used for basic statistical analysis and plotting (http://www.

graphpad.com), and the Python language and programming environment
were used for the remainder of the statistical analysis. The abundances of
multiple cell types in whole tissue samples were estimated using xCell30.

Ethics approval
All the procedures including the collection, processing and analysis of
tumor samples in this study were approved by the Institutional Review
Board of the PUCH. Written informed consent was obtained from all
participants.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw sequence data from PUCH dataset reported in this paper have been
deposited in the Genome Sequence Archive in National Genomics Data Center,
Beijing Institute of Genomics (China National Center for Bioinformation), Chinese

Table 3. Patient characteristics.

Age (years) N= 55 (100%)

Median 51

Range 27–72

Race

Asian 55 (100%)

Sex

Male 17 (30.9%)

Female 38 (69.1%)

Tumor site

Acral 24 (43.6%)

Mucosal 8 (14.5%)

Cutaneous 18 (32.7%)

Unknown 5 (9.1%)

Tumor thickness

≤1mm 0

>1–2mm 4 (7.3%)

>2–4mm 4 (7.3%)

>4mm 18 (32.7%)

Unknown 29 (52.7%)

Ulceration

With 22 (40.0%)

Without 8 (14.5%)

Unknown 25 (45.5%)

Metastasis status

IIIC 10 (18.2%)

M1a 16 (29.1%)

M1b 18 (32.7%)

M1c 11 (20.0%)

Efficacy

CR 1 (1.8%)

PR 13 (23.6%)

SD 6 (10.9%)

PD 35 (63.6%)
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Academy of Sciences, under accession number HRA000524 that are publicly
accessible at http://bigd.big.ac.cn/gsa-human. All patients’ data analyzed from
published papers are referenced to and publicly available accordingly.

CODE AVAILABILITY
Code with data necessary to reproduce the work in this paper are publicly available
from https://github.com/xmuyulab/ims_gene_signature.
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