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A systematic comparison of pharmacogene star allele calling
bioinformatics algorithms: a focus on CYP2D6 genotyping
David Twesigomwe 1,2✉, Galen E. B. Wright3,4, Britt I. Drögemöller 5, Jorge da Rocha 1,2, Zané Lombard 2 and
Scott Hazelhurst 1,6✉

Genetic variation in genes encoding cytochrome P450 enzymes has important clinical implications for drug metabolism. Bioinformatics
algorithms for genotyping these highly polymorphic genes using high-throughput sequence data and automating phenotype
prediction have recently been developed. The CYP2D6 gene is often used as a model during the validation of these algorithms due to
its clinical importance, high polymorphism, and structural variations. However, the validation process is often limited to common star
alleles due to scarcity of reference datasets. In addition, there has been no comprehensive benchmark of these algorithms to date. We
performed a systematic comparison of three star allele calling algorithms using 4618 simulations as well as 75 whole-genome sequence
samples from the GeT-RM project. Overall, we found that Aldy and Astrolabe are better suited to call both common and rare diplotypes
compared to Stargazer, which is affected by population structure. Aldy was the best performing algorithm in calling CYP2D6 structural
variants followed by Stargazer, whereas Astrolabe had limitations especially in calling hybrid rearrangements. We found that ensemble
genotyping, characterised by taking a consensus of genotypes called by all three algorithms, has higher haplotype concordance but it is
prone to ambiguities whenever complete discrepancies between the tools arise. Further, we evaluated the effects of sequencing
coverage and indel misalignment on genotyping accuracy. Our account of the strengths and limitations of these algorithms is
extremely important to clinicians and researchers in the pharmacogenomics and precision medicine communities looking to haplotype
CYP2D6 and other pharmacogenes using high-throughput sequencing data.
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INTRODUCTION
Genetic variation is known to influence the way in which
individuals respond to therapeutics. Groups of variants that are
inherited together, known as haplotypes, provide a basis for
phenotype prediction and treatment decisions during pharmaco-
genomic testing. Accurately detecting functional haplotypes,
popularly known as star (*) alleles, in clinically actionable
pharmacogenes (e.g. cytochrome P450 genes) is therefore crucial
to the implementation of personalised medicine. In addition,
determining pharmacogene star allele frequencies and conse-
quently predicting the phenotypic landscape is a crucial part of
large-scale population genetic studies, which can help inform
drug policy1.
Of the clinically relevant pharmacogenes, CYP2D6 is one of the

most widely studied owing to its contribution to the Phase 1
metabolism of ~25% of clinically prescribed drugs, and high
genetic variability within and between populations2. Drugs
metabolised by CYP2D6 include various antidepressants, antipsy-
chotics, anticancer agents (e.g. tamoxifen), and opioids (https://
drug-interactions.medicine.iu.edu/MainTable.aspx, last accessed:
19-02-2020).
The highly polymorphic CYP2D6 gene has nine exons and is

located on chromosome 22q13.2 neighbouring two paralogous
pseudogenes, CYP2D7 and CYP2D8, which further complicates
genotyping3,4. To date, the Pharmacogene Variation (PharmVar)
Consortium5 has catalogued over 130 different CYP2D6 star alleles

with varying levels of evidence (https://www.pharmvar.org, last
accessed: 19-02-2020). The majority of CYP2D6 star alleles are
defined by specific combinations of single nucleotide polymorph-
isms (SNPs) and/or small insertions and deletions (indels)
(collectively referred to as single/small nucleotide variants (SNVs)
for the rest of this manuscript), which may either alter the function
of the protein or be neutral. In addition, the CYP2D6 gene locus
contains a number of complex structural variants including full
gene deletions, gene duplications and multiplications, as well as
hybrid tandem rearrangements with the highly similar CYP2D76–8.
These allelic variants are graphically shown in Fig. 1.
The complexities in the CYP2D gene locus present a significant

challenge in accurately genotyping CYP2D6. Currently, gold
standard genotyping involves a battery of methods e.g. quanti-
tative PCR analysis for CNV detection, allele specific XL-PCR, SMRT
sequencing, and Sanger sequencing. However, these techniques
are expensive, laborious and unscalable, especially for large cohort
studies9–11. Further, although more economical, selectively
targeting a subset of alleles through individually genotyping
defining variants can have important clinical implications as
inaccurate phenotype prediction is more likely to occur11,12. The
widespread availability of next-generation sequencing (NGS)
characterised by high-throughput parallel DNA sequence data
generation provides a solution to the cost-limitations of experi-
mental methods for genotyping CYP2D6 and other pharmaco-
genes. The ever-decreasing cost of NGS facilitates whole-genome

1Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa. 2Division of Human Genetics, National Health Laboratory
Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 3Neuroscience Research Program, Kleysen Institute for
Advanced Medicine, Winnipeg Health Sciences Centre and Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada. 4Department of Pharmacology and
Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. 5Department of Biochemistry and Medical Genetics, Rady Faculty of Health
Sciences, University of Manitoba, Winnipeg, MB, Canada. 6School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
✉email: twesigomwedavid@gmail.com; scott.hazelhurst@wits.ac.za

www.nature.com/npjgenmed

Published in partnership with CEGMR, King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-020-0135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-020-0135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-020-0135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41525-020-0135-2&domain=pdf
http://orcid.org/0000-0002-5421-5512
http://orcid.org/0000-0002-5421-5512
http://orcid.org/0000-0002-5421-5512
http://orcid.org/0000-0002-5421-5512
http://orcid.org/0000-0002-5421-5512
http://orcid.org/0000-0002-3348-5855
http://orcid.org/0000-0002-3348-5855
http://orcid.org/0000-0002-3348-5855
http://orcid.org/0000-0002-3348-5855
http://orcid.org/0000-0002-3348-5855
http://orcid.org/0000-0002-1386-5367
http://orcid.org/0000-0002-1386-5367
http://orcid.org/0000-0002-1386-5367
http://orcid.org/0000-0002-1386-5367
http://orcid.org/0000-0002-1386-5367
http://orcid.org/0000-0002-7997-2616
http://orcid.org/0000-0002-7997-2616
http://orcid.org/0000-0002-7997-2616
http://orcid.org/0000-0002-7997-2616
http://orcid.org/0000-0002-7997-2616
http://orcid.org/0000-0002-0581-149X
http://orcid.org/0000-0002-0581-149X
http://orcid.org/0000-0002-0581-149X
http://orcid.org/0000-0002-0581-149X
http://orcid.org/0000-0002-0581-149X
https://doi.org/10.1038/s41525-020-0135-2
https://drug-interactions.medicine.iu.edu/MainTable.aspx
https://drug-interactions.medicine.iu.edu/MainTable.aspx
https://www.pharmvar.org
mailto:twesigomwedavid@gmail.com
mailto:scott.hazelhurst@wits.ac.za
www.nature.com/npjgenmed


sequencing (WGS) in addition to providing options for the
development of gene panels such as PGRNseq13.
In addition, NGS methods have the advantage of being

unbiased, thus allowing for the detection of rare and novel
variations, which are more likely to be deleterious14. Although
there are important benefits associated with NGS-based genotyp-
ing, these approaches present computational challenges, mainly
relating to the alignment of short-read data in regions of high
sequence similarity. This makes variant calling and haplotyping
genes such as CYP2D6, that are located in regions of high
sequence similarity, challenging.
To address these challenges, bioinformatics tools that have

recently been developed for calling star alleles in CYP2D6 and
other highly polymorphic pharmacogenes using genome sequen-
cing data and/or targeted-capture panels such as PGRNseq,
include Astrolabe (formerly Constellation)15, Aldy16, Stargazer17,
VCF Annotator18, Cypiripi19, and PharmCAT20. These tools auto-
mate the detection of diplotype combinations based on PharmVar
and the Pharmacogenomics Knowledgebase (PharmGKB) star
allele catalogues thus facilitating clinical interpretation. The
importance of these algorithms in CYP2D6 phenotype prediction
in clinical settings, and allele discovery in research studies,
therefore cannot be overstated. However, to date, there is no

comprehensive comparison of these tools. Astrolabe, Aldy,
Stargazer, and PharmCAT are regularly maintained. However,
PharmCAT does not perform star allele calling for CYP2D6 directly,
but rather uses Astrolabeś allele calling output for its unique
clinical annotation step, which is based on current clinical
implementation guidelines20,21.
We therefore provide a much-needed in-depth comparison of

the performance of Astrolabe, Aldy, and Stargazer on a wide range
of CYP2D6 allelic variation using simulated data (entire CYP2D
locus) and real data. The research participant-derived data used in
the study are part of the Polaris pharmacogenomics cohort (https://
github.com/Illumina/Polaris/wiki/HiSeqX-PGx-Cohort#Pratt2016)
whose samples were originally collected as part of the HapMap and
1000 genomes projects22. The Centers for Disease Control and
Prevention (CDC)-based Genetic Testing Reference Material Coor-
dination Program (GeT-RM) has characterised these samples
through extensive orthogonal testing by various laboratories23,24.
In doing so, GeT-RM has contributed invaluable reference materials
for benchmarking CYP2D6 genotyping approaches.
In addition, we evaluate the impact of read depth on recall of

CYP2D6 CNVs for each tool. Given the differences in the allele
calling approach of these algorithms, we further analyse the

Fig. 1 Graphical overview of the highly polymorphic CYP2D6/2D7/2D8 locus, by Twist et al.15, licensed under Creative Commons CC BY
4.0 (https://creativecommons.org/licenses/by/4.0/). No changes have been made to the figure content. a The relative position of the
reference CYP2D6*1 haplotype (white) to two non-functional paralogs, CYP2D7 (red) and CYP2D8 (grey) on the minus strand of Chromosome
22. REP6 and REP7 are paralogous, Alu-containing, 600-bp repetitive sequences found downstream of CYP2D6 and CYP2D7, respectively. The
blue boxes indicate identical unique sequences downstream of CYP2D6 and CYP2D7. Notice the “spacer” (1.6-kb) separating REP7 from CYP2D7
but none between CYP2D6 and REP6. b Common CYP2D6 star alleles defined by core single nucleotide variants (SNVs). c Examples of CYP2D6
copy number variations and their functional annotation. d Examples of CYP2D7/2D6 hybrid genes. e Common tandem rearrangements in the
CYP2D gene locus. The activity level boxes on the right are coded; red for a non-functional haplotype, orange for decreased activity, green for
fully functional reference activity, and blue for increased activity.
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efficacy of an ensemble genotyping approach involving all three
tools using the real data.
Through this comparative analysis, we provide important

information on the strengths and limitations of current pharma-
cogene star allele calling algorithms. Our recommendations will
serve as a valuable resource for the pharmacogenomics commu-
nity regarding the use of these algorithms in clinical and research
settings, and provide important data for developers aiming to
improve the software or develop new ones. A summary of the
main features of Astrolabe, Aldy, and Stargazer is given in Table 1.

RESULTS
Criteria
We evaluated Astrolabe, Aldy, and Stargazer using three criteria
including;

● Haplotype concordance: The percentage of total haplotype
calls that are consistent with the ground truth. The haplotype
true positive rate is also known as the analytic specificity.

● Diplotype (genotype) concordance: The percentage of diplotype
calls that are consistent with the ground truth (i.e. correctly
calling both haplotypes for each sample).

● Phenotype concordance: Percentage of assigned phenotypes
(based on activity scores) concordant to the reference
materials.

The results reported here are specific to Astrolabe (v0.8.7.0),
Aldy (v2.2.3), Stargazer (v1.0.7), and the datasets (simulated and
real) used in this study. The goal was to have datasets with a wide
variety of catalogued CYP2D6 alleles. The simulated data (4618
test cases) do not represent actual population frequencies. In
comparison, the GeT-RM WGS data (75 samples) are representa-
tive of African, Admixed American, European, and Asian allele
distributions.

Simulated datasets
Set 1 of our simulations comprised all theoretically possible
diplotype combinations (homozygous and heterozygous) derived
from PharmVar-catalogued CYP2D6 SNV-defined haplotypes. Set 2
comprised diplotypes with at least one structural variant (CYP2D6
gene deletion (*5), duplications, exon conversions and hybrid
rearrangements i.e. CYP2D6/2D7 and CYP2D7/2D6 hybrids). These
structural variations are comprehensively described by PharmVar
(https://www.pharmvar.org/gene-support/Variation_CYP2D6.pdf).

For a complete list of all the CYP2D6 haplotypes used for
generating simulations in this study, see Supplementary Data Set 1.

Performance based on simulated data
In set 1 (SNV-defined alleles), the concordance of Astrolabe and
Aldy for homozygous diplotypes was comparable as they correctly
identified 142 (92%) and 148 (96%) diplotypes, respectively, out of
154 diplotypes (Table 2, Run 1). However, Stargazer had lower
concordance (135 i.e. 88%) for the homozygous diplotypes. On
further investigation, we found 18 cases where Stargazer
prioritised reporting background functionally annotated alleles
as the main result for haplotypes that have uncertain function. For
example, Stargazer reported *58/*58 as *17/*17 given that *58
(unknown function) and *17(decreased function) both have the
T107I variant. In such cases, Stargazer reported the expected allele
(s) ambiguously with other candidate solutions (see Table 2,
Supplementary Data Set 2, and Supplementary Information for
additional details).
Calling some indel-defined alleles was challenging for all the

tools due to left/right shifts in the alignments. These shifts
emphasise challenges of using short-read NGS data for genotyp-
ing CYP2D6 as they caused position discordance in the input data
(BAM and/or VCF) and the algorithms’ definitions (see Table 2 for
examples of problematic indel-defined alleles). Discordant cases
for Astrolabe and Aldy involved undefined suballeles as well
(Table 2), resulting in ambiguous genotypes or miscalls. The
concordance of Astrolabe and Aldy increased to 99% and 97%,
respectively, after updating their allele databases with previously
undefined suballeles (Table 2, Run 2).
We next considered tool concordance on all theoretically possible

diplotype combinations of CYP2D6 SNV-defined haplotypes with
definitive or moderate PharmVar level of evidence (N= 4560 i.e. 95
choose 2 plus 95). The main diplotypes called by all three tools are
shown in Supplementary Data Set 3. The concordance of Astrolabe
and Aldy was again comparable (99% and 97%, respectively),
whereas Stargazer was concordant for only (43%) of the possible
diplotypes (Fig. 2). Stargazer’s lower recall can be attributed to not
only the aforementioned differences in reporting uncertain function
alleles but also to the limitations of the statistical phasing process
central to the Stargazer pipeline. For example, the *74/*48
combination involving a rare African-specific haplotype (*74) and a
rare East Asian-specific haplotypes (*48) was called as *1/*1 by
Stargazer. Homozygous cases of these alleles are correctly called by
Stargazer via manual phasing. However, rare heterozygous combi-
nations are more difficult to call since population structure affects
statistical phasing. Notably, some alleles are correctly called using

Table 1. Properties of Astrolabe, Aldy, and Stargazer.

Tool OS Language Central feature NGS data Input/ref Output

Astrolabe Linux Java Probabilistic WGS VCF Diplotypes

Mac scoring system PGRNseqa BAM Suballeles

b37, b38 Phenotype

All novel SNVs

Aldy Linux Python Combinatorial WGS BAM Diplotypes

Mac framework PGRNseq b37 Suballeles

Putative novel

core variants

Stargazer Linux Python Statistical WGS VCF Diplotypes

Mac phasing PGRNseq GDF Phenotype

b37 All novel SNVs

aNot yet optimised for Astrolabe’s CNV calling.
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Stargazer’s “phasing by haplotype extension algorithm” that
complements the statistical phasing (https://stargazer.gs.
washington.edu/stargazerweb/). Astrolabe and Aldy do not do
statistical phasing; hence, they are virtually not affected by
population structure.
For all three tools, the concordance for haplotypes was much

higher than that for diplotypes. This underscores the challenge of
consistently calling both haplotypes for each sample in a highly
polymorphic gene such as CYP2D6. We show the true extent of
this later on with the real data that follows true population
distributions.
All three tools accurately genotyped simulated samples with at

least one CYP2D6 full gene deletion allele (*5) (i.e. CN = 0,1) as
indicated in Table 3. The notable discordances were samples that
contained a duplicated allele on the second haplotype (e.g. *5/

*29×2 was called as *29/*29). Astrolabe in particular also had
challenges calling the *5/*5 diplotype (CN= 0). Astrolabe reported
failed BAM quality control for the *5/*5 test cases. Running the
algorithm by skipping quality control unsurprisingly yielded
haplotype calls matching GRCh37 (i.e. *2M/*2M, indicating
absence of non-reference SNVs). Varying the coverage from 30×
to 100× had very little effect on the CYP2D6*5 recall of Aldy and
Stargazer. However, Astrolabe detected 5 from 20 CYP2D6*5
alleles at 60× compared to 10 from 20 at 30× and 100×. The
miscalls were observed mainly in samples with CN = 1.
For copy number gains (CN > 2), Aldy and Stargazer out-

performed Astrolabe by detecting up to 50% more duplication/
multiplication events. By default, Aldy and Stargazer resolve copy
number gains further to report which of the star alleles was
duplicated or multiplicated. However, for our simulated test cases
with high copy number, some discordant tandem arrangements
were reported by Aldy and Stargazer. For example, Aldy
genotyped the test case *1×4/*2×8 as *1×3+*63/*2×7+*79,
whereas Stargazer genotyped it as *1×6/*34×6. Genotypes with
such high CYP2D6 copy number are rare but possible as shown
previously25. It is worth mentioning that Aldy was the only
algorithm that resolved the *90+*1 non-hybrid tandem
arrangements.
In contrast to Stargazer and Aldy, Astrolabe does not actively

resolve duplicated/multiplicated alleles but rather generically
indicates that a gene duplication has been detected. Similarly
by default, Astrolabe does not distinguish between a duplication
and a multiplication but rather generically indicates the presence
of a gene duplication if copy number gain is detected. The
concordance for duplications/multiplications was more or less
equally good at 30×, 60× and 100× for Aldy and Stargazer (Table
3). For Astrolabe, there was no evidence to suggest that increasing
coverage from 30× to 60× or 100× increases recall of duplications.
This could be due to limitations of using short-read NGS data for
interrogating the complex CYP2D6 region.
Regarding gene exon conversions and hybrid rearrangements,

Aldy consistently called more of such alleles at 30× (72 out of 107)
compared to Stargazer (31 out of 107) and Astrolabe (3 out of

Fig. 2 Concordance of Astrolabe, Aldy, and Stargazer for all
theoretically possible CYP2D6 diplotype combinations (homozy-
gous and heterozygous) comprising SNV-defined haplotypes with
PharmVar definitive or moderate level of evidence from our
starting set. We left the allele databases of the three tools as is in
order to examine the effect of the undefined suballeles on diplotype
calling. The sequencing coverage for each test case was 30× and
default parameters were used for each tool.

Table 2. Concordance of Astrolabe, Aldy, and Stargazer on test cases (N= 154) homozygous for SNV-defined star alleles at 30×.

Astrolabe Aldy Stargazer

Run 1 Run 2 Run 1 Run 2

Match 142 (92%) 152 (99%) 148 (96%) 149 (97%) 135 (88%)

Mismatch 9 (6%) 1 (1%) 4 (3%) 3 (2%) 19 (12%)

Ungenotyped 3 (2%) 1 (1%) 2 (1%) 1 (1%) 0

Inconsistencies

Algorithm Challenges Discordant cases Notes

Astrolabe Undefined suballeles *2.014, *4.002, *4.003, *4.007, *4.009, *52.002,
*56.003

Ambiguous calls or miscalls

Indel-defined alleles *18.001 Position discordance with database

Aldy Undefined suballeles *12.002, *71.003 Ambiguous calls or miscalls

Indel-defined alleles *18.001, *20.001, *38.001 Position discordance with database

Stargazer Indel-defined alleles *20.001 Position discordance with database

Alleles with unknown or
uncertain function and/or
rare alleles

18 alleles including *30.001, *37.001, *58.001,
*52.001, *64.001, *65.001, and *73.001
(Supplementary Data Set 2)

Stargazer reports background alleles as the main
haplotypes in these cases. Exact haplotypes (matching
truthset) in the sample(s) are reported among other
candidate haplotypes. (See discussion for details)

The complete list of genotypes called per sample is provided in Supplementary Data Set 2.
Run 1 and Run 2 indicate results before and after defining missing suballeles in the allele tables, respectively. There was only one run for Stargazer as it does
not typically call suballeles.
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107). Astrolabe consistently called *82 at 30×, 60×, and 100×
unlike Aldy and Stargazer, and then consistently called the *68+*4
tandem only at 60× and 100×. As observed for duplication events,
increase in coverage from 30× to 60× and 100× did not
considerably affect Aldy and Stargazer’s performance for calling
hybrids (see Table 3 and Supplementary Data Set 4 for additional
details).

Comparison of CYP2D6 star allele calling performance on real data
To evaluate the genotyping accuracy of Aldy, Astrolabe, and
Stargazer on real data, we applied all three algorithms to 75
ethnically diverse samples from the GeT-RM project. GeT-RM
previously characterised 137 DNA samples from Coriell cell lines
for 28 genes, including CYP2D6, through targeted genotyping by
selected laboratories23. GeT-RM has recently re-characterised
these 137 samples and genotyped 42 new samples to ascertain
complex rearrangements and rare variants in CYP2D624. Of the
combined 179 samples, 75 currently have publicly available high
coverage WGS data (see Data availability section for details). We
used published consensus CYP2D6 genotypes23,24 for these
samples as the Gold Standard calls except for sample NA18519.
GeT-RM used only panel-based genotyping for this sample
resulting in the *1/*29 diplotype call. However, the *106 defining
variant 3878G>A as well as the *29 defining variants were
detected from NGS. Therefore, *106/*29 is considered to be the
true positive call for sample NA18519 for this analysis.
When applied to the GeT-RM WGS samples, both Astrolabe and

Stargazer assigned diplotypes for 75 of 75 samples. One sample
could not be genotyped by Aldy with default parameters.
Stargazer had the highest genotype concordance (89%—67 of
75 diplotypes) to the ground truth followed by Aldy (88%—66 of
75 diplotypes) and then Astrolabe (72%—54 of 75 diplotypes). The
haplotype concordance followed a similar trend i.e. 94% (141 of
150 haplotypes), 91% (136 of 150 haplotypes), and 83% (125 of
150 haplotypes) for Stargazer, Aldy, and Astrolabe, respectively
(Fig. 3a).
Notably, the ensemble genotyping approach (2 from 3 rule) had

the highest diplotype concordance (95%—71 of 75 diplotypes)
and haplotype concordance (97%—145 of 150 haplotypes).
Samples with CYP2D6 CNVs were more challenging to call for all

the algorithms notably Astrolabe (15 of 75 samples) (Fig. 3b).
Astrolabe particularly had challenges calling *36, a CYP2D6/2D7
hybrid gene that frequently occurs singly or in tandem with *10.
Tandem rearrangements involving *36 present in the GeT-RM
dataset include *36×2, *36+*10, and *36×2+*10. Aldy and
Stargazer consistently detected the more common *36+*10
arrangement but could not call all copies correctly for the more

complex *36×2 and *36×2+*10 arrangements (see Supplemen-
tary Data Set 5 for detailed genotype calls).
All the three tools consistently called the *68+*4 tandem

arrangement except for one case where Astrolabe called sample
NA21781 as *2/*4 (possible duplication) instead of *2×2/*68+*4.
*68 is a non-functional CYP2D6/2D7 hybrid gene with an intron 1
breakpoint. The *68+*4 haplotype is therefore non-functional as
*4 is also a non-functional allele.
As shown in Fig. 3c, haplotype calls by one tool that are not

confirmed by either of the other two tools are mostly incorrect.
The caller overlap between Aldy and Stargazer was more
prominent than either tool’s intersection with Astrolabe because
of Astrolabe’s lower recall for structural variations. The ensemble
genotyping approach reduced the number of discordant geno-
type calls especially for samples “without” CYP2D6 CNVs (many of
these have haplotypes with the neutral intron 1 conversion).
However, some alleles defined by CYP2D6 CNVs (especially
aforementioned *36 hybrid arrangements) proved to be challen-
ging even with ensemble calling (Fig. 3b). In addition, the
ensemble genotyping approach had two ambiguous calls (from
samples NA19908 and NA18540) arising from discrepant calls from
all three tools (see Supplementary Data Set 5).

Comparison of CYP2D6 phenotype prediction concordance
We next evaluated the clinical accuracy of Astrolabe, Aldy,
Stargazer, and the ensemble approach. We followed the current
consensus clinical implementation guidelines21,26 to assign
activity scores corresponding to the genotype calls and compared
them to the GeT-RM consensus reference. All the three algorithms
had much higher phenotype concordances compared to their
diplotype concordances (Fig. 4). This is due to the fact that even
though some samples may not be accurately genotyped, the
activity score or phenotype group of the reported diplotype could
be the same as that of the truth call. For instance, sample
NA18565 was called as *10/*36+*10 (Stargazer and Aldy) and *10/
*10 (Astrolabe) instead of *10/*36×2 (truth call). All these
genotypes denote an intermediate metaboliser phenotype. Aldy
(95%) and Stargazer (96%) had comparably higher phenotype
concordance than Astrolabe (91%) because they were able to
consistently genotype more samples with CYP2D6 CNVs as
mentioned earlier. Notably, the ensemble approach had the
highest phenotype concordance (97%) and it was comparable to
its diplotype concordance (95%). In some cases, we obtained
phenotype “no calls” due to ungenotyped samples e.g. for Aldy(1)
and the ensemble approach (two ambiguous cases).

Table 3. Summary of correctly called structural variations by Astrolabe, Aldy, and Stargazer in set 2.

Set 2 Truth Astrolabe Aldy Stargazer

30× 60× 100× 30× 60× 100× 30× 60× 100×

Full gene deletion (*5) 20 10 5 10 15 14 15 15 15 15

Copy number gaina 52 29 25 25 52 50 52 47 45 45

Resolved duplicated/ multiplicated alleles 61 4c 4c 4c 53 49 51 54 51 48

Hybridsb 107 3 8 8 72 66 67 31 30 28

Non-hybrid tandem 4 0 0 0 4 4 4 0 0 0

Ungenotyped (defaults) 0 0 0 1 3 2 18 16 19

The complete list of genotypes called per sample is provided in Supplementary Data Set 4.
aDue to gene duplications/multiplications.
bCollectively representing exon conversions and gene hybrids involving CYP2D6 and CYP2D7.
cDetermined only for homozygous allele cases.
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DISCUSSION
Accurately calling star alleles in CYP2D6 is crucial to inferring
phenotype from genotype. However, CYP2D6 is one of the most
challenging genes to genotype largely because of the complexity

of its genomic locus. The limitations of using short-read NGS data
compound the problem even further. Herein, we have bench-
marked three algorithms that use largely different approaches to
call CYP2D6 star alleles from high-throughput sequence data.
We used simulations to test the performance of each algorithm

on a wide variety of CYP2D6 allelic variation i.e. 154 SNV-defined
haplotypes (many have the CYP2D7 intron 1 conversion), and over
50 different structural variant arrangements (Supplementary Data
Set 1). We also assessed the accuracy of each algorithm using real
WGS data from CDC-based GeT-RM project.
Overall, Astrolabe and Aldy call more combinations of SNV-

defined CYP2D6 star alleles (homozygous and heterozygous)
compared to Stargazer. Stargazer faces a challenge in calling rare
(frequency < 0.1%) SNV-defined alleles due to its reliance on
statistical phasing. Although Stargazer has supplementary algo-
rithms to phase rare variants that are not present in the reference
panel, we found that they work best in homozygous cases but
have lower accuracy in heterozygous cases. Stargazer also had
discordances due to its difference in reporting alleles with
unknown/uncertain function. For such alleles, Stargazer currently
prioritises to report background alleles for which the function is
known as the main haplotypes. However, it is difficult to infer the
exact alleles in the sample as they are reported in a separate
column ambiguously with other candidate alleles. Notably,
homozygous cases of these alleles are assigned unfounded
phenotypes. For example, *58/*58 (unknown metaboliser status)

Fig. 4 Comparison between the CYP2D6 diplotype concordance
and the phenotype prediction concordance for each algorithm
based on 75 GeT-RM samples and the Activity Score system. All
three algorithms and the ensemble approach have relatively high
phenotype concordance thus underscoring their clinical utility even
for some cases with inconsistent diplotype calls.

Fig. 3 Performance of Astrolabe, Aldy, and Stargazer on 75 WGS GeT-RM samples. a Concordance of each algorithm to the GeT-RM
consensus calls. b Cases with discordant genotypes. The green colour represents samples “without” CYP2D6 CNVs (most of the samples may
have the intron 1 conversion), whereas the blue colour represents samples with allele-defining CYP2D6 CNVs. c Overlap of haplotypes called
by each algorithm. As shown ensemble call sets have high concordance. Haplotypes called by one tool but not confirmed with any of the
others have low true positive rate.

D. Twesigomwe et al.

6

npj Genomic Medicine (2020)    30 Published in partnership with CEGMR, King Abdulaziz University



is called as *17/*17 (intermediate metaboliser) by Stargazer,
whereas *58 is reported among candidate alleles for haplotype
1 and 2.
Notably all three algorithms depend on the comprehensive

definition of alleles (and suballeles especially for Astrolabe and
Aldy) to avoid ambiguous calls and miscalls. Indel-defined star
alleles are a major challenge for all three algorithms especially
where the core SNV occurred in a repeat region causing the
aligner to pick the left-most possible position in the alignment
(BAM) file. Core indels for *18, *20, *38, *40, and *42 all appear in
unexpected positions due to this problem. Miscalling these alleles
could have potential clinical implications. Even though the three
algorithms have corrected for some of these changes in their allele
definitions, the complexity of their locus can affect coverage and
variant quality scores. Of note, other alleles with indel core
variants such as *3, *6, *9, *19, and *21 were consistently called.
Regarding the calling of CYP2D6 structural variants, duplica-

tions/multiplications and deletions were considerably easier to call
compared to hybrid rearrangements. Aldy had the highest
concordance followed by Stargazer, and then Astrolabe. Notably,
Astrolabe does not distinguish between duplications and multi-
plications (i.e. identifies all scenarios as duplications), and also
does not resolve the exact duplicated gene copy (or copies) for
samples where it detects copy number gains. This could affect
phenotype prediction depending on the diplotype combination in
a sample. Astrolabe also had challenges detecting the *5/*5
diplotype (CN= 0) probably because its current model for
structural variant calling was not trained on enough cases with
zero copy number. In addition, for hybrid rearrangements,
Astrolabe consistently detected only *82 (has an exon 2
conversion) and *68+*4 (at 60× and 100×). As with the duplication
events, the effect of Astrolabe’s inconsistency in calling hybrid
rearrangements on phenotype prediction depends on the entire
diplotype combination of an individual.
Stargazer had the intermediate performance for calling

structural variants of the three tools. It was able to phase CNVs
and detect more hybrid rearrangements compared to Astrolabe
while also producing visual plots (Supplementary Fig. 1) of the
structural variants in the process. However, Stargazer had the
highest number of indeterminate (i.e. ungenotyped) diplotypes for
samples with structural variants. Notably, Stargazer still produced
copy number and allele fraction plots for these samples. However,
ungenotyped calls can be a major hindrance to automated
phenotype prediction in practice.
Aldy performed best in calling CYP2D6 structural variants.

However, as with Astrolabe and Stargazer, it had challenges in
reconstructing complex hybrid rearrangements such as *79+*68+*4
and *79+*68+*4×2, and it also incorrectly indicated the presence of
hybrids such as *63 and *79 for samples with high copy number.
Although high copy number diplotypes such as *1×4/*2×8 are rare,
it is important to examine whether they can be picked up by these
algorithms. This is particularly important given that some popula-
tions are largely understudied and may have individuals with such
alleles.
To evaluate the performance of Astolabe, Aldy, and Stargazer

on real data, we used 75 sequences from the 1000 Genomes
Project for Coriell reference samples that have been re-
characterised through the GeT-RM project. Astrolabe and Starga-
zer were able to call diplotypes for 100% of the samples, whereas
one sample could not be diplotyped using Aldy’s default
parameters. However, the concordance of Aldy and Stargazer
was comparably higher than that for Astrolabe mainly due to their
superiority in calling CYP2D6 CNVs. Although the 75 GeT-RM WGS
samples used for this analysis depicted the complexity and
diversity in CYP2D6 pharmacogenomic variation, they did not
include a number of rare alleles. Future availability of WGS data for
the remaining 104 GeT-RM reference materials will provide the

opportunity to test these algorithms against a more comprehen-
sive distribution of CYP2D6 star alleles.
As with the simulated data, gene deletions as well as

duplications/multiplications were more consistently called com-
pared to hybrid rearrangements. However, Astrolabe missed more
deletions and duplications than Aldy and Stargazer did. This could
be attributed to Aldy and Stargazer’s coverage normalisation
strategies during structural variant detection that are not utilised
by Astrolabe.
Regarding hybrids, the *68+*4 non-functional tandem arrange-

ment was consistently called by all three algorithms. Notably,
Astrolabe could not differentiate *36 from *10. On the other hand,
Aldy and Stargazer consistently called the *36+*10 arrangement
but could not differentiate more complex arrangements such as
*36×2, *36×2+*10. This can be attributed to incomprehensive
definition of these haplotypes within the algorithms and also the
limitations of using short-read NGS data.
We also assessed the overlap of Astrolabe, Aldy, and Stargazer

calls as well as the practical application of ensemble CYP2D6 star
allele calling. Simple ensemble calling could be useful in obtaining
high-confidence CYP2D6 star allele calls both in the clinical setting
and in large-scale population studies. Through obtaining high-
confidence star allele calls, the number of samples requiring
experimental validation (e.g. those found to have putative novel
alleles and structural variants) would be reduced to a smaller
subset of the study population. We generated the ensemble call
set by taking a consensus of Aldy, Astrolabe and Stargazer allele
calls for each sample on a 2 from 3 rule. We obtained 100%
concordance for haplotypes (107) that were called by all three
algorithms, and only 5 discordant genotypes compared to
Astrolabe (21), Aldy (9), and Stargazer (8) from 75 samples. Based
on the challenges and limitations of each algorithm and of using
short-read NGS data, we recommend the use of all three
algorithms to perform highly accurate ensemble calling. The
ensemble calling is also practical as the typical runtime for each of
three algorithms from our workflows was less than 1 min per
sample while using 4 CPU cores.
Although it is quite straightforward to obtain high-confidence

SNV-defined star allele calls using ensemble calling, it is more
challenging to get unambiguous high-confidence diplotype calls
for individuals with complex structural variations especially the
hybrid rearrangements. This follows from the differences in
accuracy of the three algorithms for different forms of CYP2D6
allelic variation described above. A worry with ensemble calling in
the clinic would be how to resolve the discrepancies among the
tools. These samples would require orthogonal testing to resolve
the number and exact sequence content of their CYP2D6 copies.
Further work is required to build an automated ensemble allele
calling and phenotype prediction pipeline. This will heavily
depend on achieving uniformity in the precision of reporting star
alleles and suballeles by all the algorithms in their future updates.
All three algorithms had much higher phenotype concordance

compared to their diplotype concordance implying that their
clinical accuracy does not necessarily match their genotyping
accuracy. Notably, the ensemble genotyping approach had
comparably high phenotype and diplotype concordance in
contrast to Astrolabe, Aldy, and Stargazer. This implies that
ensemble genotyping followed by phenotyping, minimises
incorrect predictions of individual CYP2D6 diplotypes as well as
metaboliser status for which the three algorithms could be prone
if used singly.
The pros and cons of Astrolabe, Aldy, Stargazer, and the

ensemble approach based on our analysis are summarised in
Table 4.
Our approach had some limitations. Firstly, we used simulated

data for most of the benchmarking especially for rare alleles and
structural variants. Therefore, we did not capture the alterations in
performance caused by some of the features present in real data
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for these cases. However, publicly available reference datasets
with validated CYP2D6 diplotype calls are limited and they also
have drawbacks as they do not cover a wide variety of CYP2D6
allelic variation. The GeT-RM reference materials are more or less
comprehensive; however, public WGS data is not yet available for
all the samples or biobank scale cohorts. The different relative
performances between the algorithms on simulated data and real
data are attributed to the different distribution of alleles (i.e. fewer
rare alleles in the real data). Our exhaustive simulation enabled us
to test the genotyping algorithms on a wider array of CYP2D6
variations. On the other hand, the small cohort of real world
patients was very helpful for evaluating results from the
algorithms against those obtained by using orthogonal techni-
ques. The 75 GeT-RM samples are representative of 24 CYP2D6
major star alleles (17 SNV-defined haplotypes plus 7 structural
variants) compared to the 204 haplotypes (154 SNV-defined
haplotypes plus 50 structural variants) represented in our
simulated data.
We also did not compare the performance of the three tools

across simulated or real NGS data from targeted custom-
capture panels such as PGRNseq. These panels greatly reduce
the cost of sequencing and enhance genotyping turnaround
time. Further, we did not compare the influence of the aligner,
BWA-MEM versus other aligners such as GSNAP27 and
NovoAlign (http://www.novocraft.com).
It is important to note that these algorithms face a major

challenge of genotyping individuals with novel SNVs which may
either be neutral or allele-defining (based on unpublished data).
We did not test for this in this study as the reference materials
used did not have novel star alleles. Ideally, for such cases, the two
background star alleles would be called but the novel SNV(s)

would be ambiguously assigned to either haplotype. Experimental
validation using approaches such as Sanger sequencing, XL-PCR
and/or long-read sequencing (e.g. PacBio, and Oxford Nanopore)
would then be required to unequivocally determine the phase of
these novel SNVs. Caution also needs to be taken in cases of
complex and/or novel CNVs as they might be misreported by the
algorithms. Nonetheless, combining short-read NGS (especially
WGS) and tools such as Astrolabe, Aldy, and Stargazer (or their
ensemble) is crucial to characterisation of pharmacogene variation
in a cost-effective manner by reducing the number of cases that
require the more expensive experimental genotyping approaches.
Lastly, even though our comparison is focused on CYP2D6, we
acknowledge that Astrolabe, Aldy, Stargazer, and PharmCAT (not
included in the analysis) are extremely useful in genotyping other
pharmacogenes for example CYP2C9, CYP2C19, CYP2A6, CYP2B6,
CYP3A4, and CYP3A5 as shown previously by others15,16,20,28 (see
also Supplementary Data Set 6).
Through this benchmarking study, we have examined the major

differences as well as strengths and limitations of three algorithms
that perform the challenging task of genotyping CYP2D6 and
other highly polymorphic pharmacogenes using short-read NGS
data. Some of the inaccuracies reported were due to sequencing
noise in the simulated and real data. This supports the notion that
clinical-grade NGS data (preferably high coverage WGS) is
required for effective use of these algorithms in the clinical
setting. It is also clear that more CYP2D6 pharmacogenetic studies
especially in understudied populations would add to the
completeness of the allele catalogue in PharmVar and in the
allele definitions of these in silico genotyping algorithms hence
enhancing their utility across populations.

Table 4. Pros and cons of current CYP2D6 genotyping algorithms.

Algorithm Advantages Disadvantages

Astrolabe High accuracy for calling catalogued SNV-defined
alleles.

Lower recall for CYP2D6 CNVs and hybrid rearrangements compared to Aldy and
Stargazer

Supports hg19 and hg38. Prone to ambiguous calls and miscalls if alleles/suballeles are not
comprehensively defined

Performs variant calling error correction. Does not discriminate duplicated alleles in a sample with copy number gain

(generically reports presence of a duplication)

Easy to run (one-liner command). Does not distinguish between duplication events and multiplication events

Performs automated phenotype prediction.

Aldy High accuracy for calling catalogued SNV-defined
alleles.

Aldy supports only hg19 as of v2.2.3

Highest accuracy of the three tools in calling CYP2D6
structural variations.

Prone to ambiguous calls and miscalls if alleles/suballeles are not
comprehensively defined

Easiest to run of the three tools as it requires only the
BAM file on any system (even a normal laptop).

Prone to some erroneous calls when using default arguments due to
sequencing noise

Stargazer Supports various file inputs and imputation. Low recall for rare alleles especially in heterozygous combinations

Supports user-defined references for phasing and/or
phased VCF input.

Affected by linkage disequilibrium as it has to do statistical reference-based
phasing

Provides tools for viewing metrics of key variants in
a sample.

Prone to “no calls” for complex hybrid arrangements/combinations

Outputs coverage plots for visually examining
change-points for samples with CNVs.

Stargazer v1.0.7 supports only hg19

Performs automated phenotype prediction. Does not call suballeles as of v1.0.7

Easy to run (one-liner command). Has inconsistent reporting of alleles with uncertain function (reports
background functionally annotated alleles for these cases as of v1.0.7)

Ensemble Comparably high diplotype/haplotype concordance. Difficult to resolve complete discrepancies between the genotypes of the
three tools

Resolves single tool deficiencies. Prone to ambiguous calls especially for structural variations

No automated pipeline as of now as the three algorithms are being updated on
a regular basis and the reporting of alleles/suballeles is non-uniform
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METHODS
Ethics
Ethical approval was not required for this study as we used simulated and
publicly available WGS data only.

Brief description for each algorithm
Detailed descriptions of all three algorithms are given in their original
publications15–17.
Briefly, the Astrolabe (v0.8.7.0) algorithm uses probability scoring to

identify the most likely CYP2D6 diplotype match based on variant positions
and zygosity from input variant call format29 (VCF) or gVCF files. Astrolabe
also corrects for variant calling errors by using default or user-derived
sensitivity and specificity of the variant calling approach. In addition, for
WGS data, Astrolabe uses BAM30

files for CNV calling by comparing the
alignment depth of coverage ratios of the CYP2D6 exonic regions to the
coverage across various control regions along chromosome 22. Astrolabeś
output includes CYP2D6 diplotypes for each sample, special notes on
structural variants detected, suballeles, and diplotype activity information.
Aldy (v2.2.3) differs from Astrolabe by using a combinatorial approach to

reconstruct the sequence content in each copy of a target polymorphic
gene based on data from a sample’s SAM31, BAM or CRAM32

file. Aldy
leverages integer programming solvers such as Gurobi33, SCIP34, and CBC35

for timely solution of problem instances (copy number estimation, major
and minor star allele prediction) that would otherwise take an extended
period of time to solve. In addition, Aldy performs a coverage normal-
isation step, which corrects for errors when calling alleles and CNVs from
non-uniform coverage sequence data generated from target panels such
as PGRNseq.
The Stargazer (v1.0.7) pipeline retrieves variant information from VCF

files generated using GATK-HaplotypeCaller36, then performs statistical
haplotype phasing using Beagle37, and thereafter assigns CYP2D6
diplotypes based on haplotype matches with a reference star allele table.
The Stargazer pipeline also includes supplementary algorithms for phasing
variants that are not present in the reference VCF (default in v1.0.7 is the
1000 genomes reference panel). Of note, Stargazer also accepts phased
VCF files, chip-generated VCFs, and provides the option for imputation. In
addition, for structural variant detection, Stargazer requires read depth
information for the CYP2D6 and CYP2D7 regions as well as a control gene
region (e.g. EGFR, RYR1, and VDR), generated using GATK-
DepthOfCoverage36. The main output of Stargazer includes CYP2D6
genotype data for each sample, interactive visual plots for CNVs, and
predicted phenotype assignment based on the activity score system38,39.
In case a user has an automation platform installed, such as the Sun Grid
Engine (http://gridscheduler.sourceforge.net/htmlman/manuals.html), Star-
gazer can be run using the BAM file as input.

Simulation of benchmark datasets
In order to compare the performance of Aldy, Astrolabe, and Stargazer in
calling a large variety of CYP2D6 haplotypes, we created simulated datasets
with known CYP2D6 diplotypes for unrelated individuals, following the
approach described by Numanagić et al.19 with some modifications.
Maternal and paternal CYP2D locus sequences with respect to the human

reference genome, GRCh37 (Chr22:42518000–42555000) were constructed
separately for the simulation process. For cases with no allele-defining
structural variants, GATK FastaAlternateReferenceMaker36 was used to
mutate the CYP2D6 portion of the maternal and paternal CYP2D sequences
by giving CYP2D6 haplotype VCF files from PharmVar (version 4.0.4) as
input. Haplotype sequences with CYP2D6/2D7 intron and/or exon conver-
sions were constructed in a similar way since PharmVar gives details of all
the SNVs arising from these structural changes in the VCF files.
CYP2D6 gene deletions were generated by creating breakpoints within

the REP6 and REP7 regions as described by Gaedigk et al.40 and Steen
et al.41 previously. CYP2D6 duplications were generated by concatenating
CYP2D6 sequences containing desired mutations. For haplotypes with
more complex structural variations such as CYP2D6 *61, CYP2D6*63, and
subvariants of CYP2D6 *13, we replaced reference CYP2D6 and/or CYP2D7
portions of the CYP2D locus with haplotype sequences deposited in the
NCBI Nucleotide database by Kramer et al.6, Black et al.8, and Gaedigk
et al.7.
We simulated 101-bp paired-end reads (Illumina Hiseq2000) correspond-

ing to maternal and paternal CYP2D haplotype sequences of each sample
using the simNGS software (https://www.ebi.ac.uk/goldman-srv/simNGS/).

simNGS replicates NGS-like noise intensity, base quality, and read error
distributions by using runfiles trained from real sequencing experiments.
In order to account for the structural variant detection approaches used

by Astrolabe and Stargazer, we simulated reads corresponding to CNV-
neutral regions used by the algorithms and added them to the FASTQ files
for each sample. The GRCh37 sequences (Chr22:19882000–19908000 and
Chr22:44218000–44233000) contain control regions used by Astrolabe. For
Stargazer, we used the RYR1 gene locus (Chr19:38924340–39078204) as
the control region. The CNV-neutral region that Aldy uses
(Chr22:42547463–42548249) is covered by our simulation of the whole
CYP2D locus.
Furthermore, to assess how various sequencing coverage affected Aldy,

Astrolabe, and Stargazerś CYP2D6 structural variant calling, we simulated
read data with different coverage profiles that are frequently implemented
in research and clinical settings (~30×, 60×, and 100×).
In total, we generated 4618 simulations for set 1, comprising only SNV-

defined alleles. For set 2, where each sample had at least one haplotype
with allele-defining CYP2D6 strucural variant(s), we had 3 replicates of
121 samples at different coverages as mentioned above. We excluded
some CYP2D6 star alleles from our analysis, including *32, *99, *110–*139,
either because they were not defined by all the three tools or they were
still under curation by PharmVar. However, undefined suballeles were
included to check for their effect on the tools’ performance.

Real data
Regarding the real data, we used 75 samples from the CDC’s GeT-RM
project for which WGS data is publicly available. These samples were
originally collected as part of the 1000 genomes and HapMap projects and
were sequenced on Illumina HiseqX platform (2 × 150 bp reads) (https://
github.com/Illumina/Polaris/wiki/HiSeqX-PGx-Cohort#Pratt2016).

Variant calling
We aligned all our simulated read sets against the human reference
genome (build 37) using BWA-MEM30. We used the b37 reference in our
analysis because it is supported by all three algorithms (Table 1). The GeT-
RM WGS data were already in BAM format (b37) on retrieval. We obtained
gVCF files from BAM files using GATK-HaplotypeCaller followed by
generation of VCF files with GATK GenomicsDB and GenotypeGVCFs36.

CYP2D6 star allele calling
We performed CYP2D6 star allele calling separately for Aldy, Astrolabe and
Stargazer using default parameters, as well as parameters recommended
by the authors in cases of debugging and CNV calling. BAM files were used
as input for Aldy, whereas Astrolabe required both BAM and VCF files. For
Stargazer, we first generated depth of coverage (GDF) files, required for
calling structural variants, using GATK3 DepthofCoverage. The GDF files
were then used as input together with VCF files for each run. We included
reference samples without structural variants to account for Stargazer’s
intersample normalisation.
For the GeT-RM samples, we determined consensus genotypes

(ensemble) from the separate genotype calls of Astrolabe, Aldy and
Stargazer using the 2 from 3 rule. Truth calls for these samples were
obtained from previous publications by others23,24.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The real datasets used in this study are publicly available from the European Nucleotide
Archive (https://www.ebi.ac.uk/ena/data/view/PRJEB19931). Samples NA12878,
NA12891, and N12892 can also be downloaded from the 1000 genomes project
repository (https://www.internationalgenome.org). Metadata for all samples can be
found at https://github.com/Illumina/Polaris/wiki/HiSeqX-PGx-Cohort#Pratt2016. The
VCF files used to create hg19 consensus haplotype sequences for simulations are
publicly available from the PharmVar database (https://www.pharmvar.org/gene/
CYP2D6). All the fasta sequences used to generate CYP2D6 CNV simulations are
available at https://github.com/twesigomwedavid/CYP2D6-gt-algorithms.
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CODE AVAILABILITY
The code used for this analysis is publicly available at https://github.com/
twesigomwedavid/CYP2D6-gt-algorithms.
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