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metPropagate: network-guided propagation of metabolomic
information for prioritization of metabolic disease genes
Emma J. Graham Linck1, Phillip A. Richmond1, Maja Tarailo-Graovac2,3, Udo Engelke4, Leo A. J. Kluijtmans4, Karlien L. M. Coene4,
Ron A. Wevers 4, Wyeth Wasserman 1,5, Clara D. M. van Karnebeek6,7 and Sara Mostafavi 1,5,8✉

Many inborn errors of metabolism (IEMs) are amenable to treatment, therefore early diagnosis is imperative. Whole-exome
sequencing (WES) variant prioritization coupled with phenotype-guided clinical and bioinformatics expertise is typically used to
identify disease-causing variants; however, it can be challenging to identify the causal candidate gene when a large number of rare
and potentially pathogenic variants are detected. Here, we present a network-based approach, metPropagate, that uses untargeted
metabolomics (UM) data from a single patient and a group of controls to prioritize candidate genes in patients with suspected IEMs.
We validate metPropagate on 107 patients with IEMs diagnosed in Miller et al. (2015) and 11 patients with both CNS and metabolic
abnormalities. The metPropagate method ranks candidate genes by label propagation, a graph-smoothing algorithm that considers
each gene’s metabolic perturbation in addition to the network of interactions between neighbors. metPropagate was able to
prioritize at least one causative gene in the top 20th percentile of candidate genes for 92% of patients with known IEMs. Applied to
patients with suspected neurometabolic disease, metPropagate placed at least one causative gene in the top 20th percentile in 9/11
patients, and ranked the causative gene more highly than Exomiser’s phenotype-based ranking in 6/11 patients. Interestingly,
ranking by a weighted combination of metPropagate and Exomiser scores resulted in improved prioritization. The results of this
study indicate that network-based analysis of UM data can provide an additional mode of evidence to prioritize causal genes in
patients with suspected IEMs.
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INTRODUCTION
Inborn errors of metabolism (IEMs) are the largest group of
genetic diseases amenable to therapy, and are defined as any
condition that leads to a disruption of a metabolic pathway,
irrespective of whether it is associated with an abnormal
biochemical test1. A growing understanding of metabolic and
genetic phenotypes has resulted in the identification of at least
1015 well-characterized IEMs1. Identifying the causal gene has in
turn provided insights and opportunities for interventions
targeting downstream molecular or cellular abnormalities2–4.
These efforts have been catalogued in the online resource
IEMbase, which provides further information on the etiology and
treatment of over 500 IEMs5. Early detection of IEMs, for example
in the general population through newborn metabolic screening
programs or in disease cohorts via genetics profiling, is pivotal so
that treatment can be initiated before the onset of irreversible
progressive organ damage. Without rapid treatment, damage to
the central nervous system due to an IEM can result in intellectual
disability disorder (IDD).
Identifying the genetic basis of IEMs has typically been

performed using WES coupled with frequency and
pathogenicity-guided variant prioritization. The promise of this
approach was illustrated by a gene discovery study in which deep
phenotyping and WES of patients with unexplained neurometa-
bolic phenotypes achieved a diagnostic yield of 68%, identifying
novel human disease genes and most importantly enabling

targeted interventions in 44% of patients6. More broadly,
published studies applying WES coupled with variant prioritization
in patients with unexplained phenotypes are successful in
identifying the underlying cause in 16 to 68% of patients6.
The significant time and reasoning required to identify the

causative gene after WES analysis has led to the development of a
variety of variant prioritization algorithms. These approaches take
phenotype-specific and variant-specific characteristics into con-
sideration to prioritize patient-specific candidate genes. One
approach, CIPHER, uses networks of human protein–protein
interactions, disease phenotype similarities, and known
gene–phenotype associations to predict and prioritize disease
genes7. Exomiser’s hiPHIVE algorithm maps human phenotype
ontology terms across species, enabling researchers to leverage
databases of well-phenotyped single-gene knock out animal
models to identify the causative gene in a single patient8. These
approaches have demonstrated the utility of protein–protein and
protein–phenotype interaction networks in prioritizing
candidate genes.
However, prioritized variants—even in the case of a fitting

gene-phenotype match—often have a low level of supporting
evidence for causality, and are thus not adequate to establish a
genetic-based diagnosis. Using multiple types of personalized
“-omic” data is a promising approach to address the evidence gap
in support of an IEM diagnosis. While RNA profiling has been
popular, it still leaves much to be desired with regards to
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diagnoses9. For patients suspected to have a metabolic disorder,
integration of metabolomics data with WES/WGS data can provide
direct evidence of a gene’s causality based on its implied
metabolic dysfunction. For example, detection of the metabolite
N-acetylmannosamine in cerebrospinal fluid can lend support to
the identification of NANS as a causal gene4. These biochemical
biomarkers can be detected individually (targeted metabolomics),
or as part of a broader characterization of the metabolome
(untargeted metabolomics).
Recently, two separate untargeted metabolomics analysis

pipelines were able to measure metabolites diagnostic for 20 of
21 and 42 of 46 IEMs, respectively10,11. These studies demonstrate
that untargeted metabolomics analyses are able to measure
clinically relevant metabolic phenotypes. However, it is important
to note that available chromatographic and MS acquisition
technologies are not able to measure all metabolites in a single
individual, even when used in combination. This means that,
depending on the combination of metabolomic systems used,
some portion of metabolites will be missed, and the analysis will
be insensitive to diseases associated with these unmeasured
metabolites. Protein–protein interactions networks offer a poten-
tial solution to this problem, as they allow a perturbation in
metabolites associated with Gene A to implicate Gene B. For
instance, DHFR (dihydrofolate reductase), in the absence of folate
differential abundance, could be prioritized by the detection of
metabolites associated with one of its interaction partners, CBL
(carbonyl reductase), which it is connected to through shared
membership in the folate biosynthesis KEGG pathway (Fig. 1a).
This method could also be used to prioritize non-IEM genes. For
example, SCN2A, which is not associated with any metabolites
detectable by LC/MS, could be prioritized by detection of
differentially abundant metabolites (DAMs) associated with the
ALDH7A1 gene (Fig. 1b). In this case, given the lack of physical
interaction between SCN2A and ALDH7A1, their connection
represents their frequent co-citation, attributable to their common
relationship to epilepsy. These examples illustrate how under-
standing how proteins interact with each other and their shared
functions may help implicate (1) genes with metabolites that are
undetectable by a given metabolomic system and (2) non-
metabolic genes that share disease or pathway-level associations
with metabolic genes.
In this paper, we describe a gene prioritization approach, called

metPropagate, that uses patient-specific metabolomic data to
prioritize candidate genes in patients with suspected metabolic
disorders. metPropagate uses untargeted metabolomic data and
gene-metabolite interaction databases to identify proteins whose
metabolic function are perturbed in a given patient. We then use
this information to assign a score to each protein in a protein
functional linkage network (STRING), and then propagate this
evidence across the network12. Each patient’s set of candidate
genes is ranked by the resulting propagated score, resulting in a
prioritized list of candidate genes. We apply this method to both
curated and non-curated untargeted metabolomic datasets. Our
curated dataset, which was initially described by Miller and
colleagues (hereby referred to as the Miller data set), consists of
107 patients with diagnosed IEMs, each with a confirmed set of
metabolite intensities from high-resolution untargeted LC/MS
(Orbitrap) and GC/MS (Trace-DSQ) metabolomic analyses10. To
determine the utility of metPropagate when applied to non-
curated LC-MS metabolomic data, we also applied metPropagate
to 11 patients diagnosed through the TIDEX neurometabolic
discovery project at BC Children’s Hospital at the University of
British Columbia. Notably, these two datasets differed in the types
of diagnoses made. All patients in the Miller data set were
diagnosed with an IEM; in the TIDEX data set, in contrast, all
patients were suspected to have an IEM at time of study
enrollment, but the majority were diagnosed with a neurogenetic
disease that included abnormal metabolic characteristics.

Application of metPropagate to these two contexts represents
its flexibility in prioritizing genes causing both classic IEMs and
neurogenetic disorders with metabolic phenotypes.
We show here that metPropagate is able to prioritize candidate

genes from Exomiser’s variant filtering pipeline at a similar rate to
Exomiser’s Human Phenotype Ontology term-driven prioritization
algorithm13. Interestingly, we found that metPropagate and
Exomiser’s phenotype-driven algorithm complement each other,
as causative genes prioritized by one algorithm were often not
prioritized by the other. Additionally, ranking by a weighted
combination of metPropagate and Exomiser scores resulted in
prioritization of at least one causative gene in 10/11 patients, an
improvement over either algorithm alone. This paper demon-
strates that curated and non-curated untargeted metabolomic
data from a single patient can be used in conjunction with
protein–protein interaction networks to prioritize causative genes
by providing an additional stream of evidence of a gene’s
impaired function. This prioritization technique can be used to
complement existing variant-based and phenotype-based prior-
itization algorithms.

RESULTS
The metPropagate algorithm uses patient-specific untargeted
metabolomic data (both curated and non-curated) to prioritize a
list of candidate genes. In this paper, curated metabolomic data is
untargeted data that has been subset to only include intensities of
metabolites that have a confirmed identity; in contrast, non-
curated metabolomic data is untargeted data in which a m/z ratio
can represent multiple different metabolites (e.g., the intensity of
a feature with m/z 200 could be included in the data set as 10
different metabolites). This list of candidate genes can originate
through a WES or WGS filtering pipeline, or be chosen a priori. In
this study, we first demonstrate metPropagate’s applicability to
the Miller data set, a previously published, curated untargeted LC/
MS and GC/MS metabolomics data set consisting of 107 patients
with IEMs (Fig. 2a). We then apply metPropagate to a non-curated
untargeted LC/MS dataset consisting of eleven patients diagnosed
with neurometabolic disease through the TIDEX project (Fig. 2b).
Neurometabolic disease was defined as the presence of (1) CNS
and (2) metabolic abnormalities (see “Methods” section). Impor-
tantly, although all TIDEX patients exhibited metabolic abnorm-
alities at time of study enrollment, the majority of patients were
not diagnosed with an inborn error of metabolism, highlighting
metPropagate’s utility in diagnosing neurogenetic diseases with
some metabolic features. We compare metPropagate to currently
used metabolomics-based prioritization methods, in addition to a
clinical phenotype-driven prioritization algorithm: Exomiser’s
phenotype score in the hiPHIVE algorithm13.

Gene-based metabolomic enrichment tests can prioritize a
causative gene when annotated metabolites are differentially
abundant
The Miller data set consists of 436 plasma metabolite z-scores for
107 patients diagnosed with one of 21 IEMs (Table 1). Each z-score
was generated by comparing the intensity of a given metabolite in
a patient with the intensity of that metabolite in a group of 75
controls. Importantly, no genetic information other than each
patient’s IEM diagnosis was made available in the Miller et al.
publication. We sought to determine if metabolomic data and
gene-metabolite associations available in the Human Metabolome
Database (HMDB) could be used to prioritize at least one gene
associated with each IEM in OMIM (Fig. 2a, Table 1)14. The HMDB
database is routinely used to annotate m/z features in untargeted
metabolomic experiments due to the large number of annotated
metabolites and detailed isotope, adduct and structural informa-
tion available (Fig. 3a)11. To identify genes that may be causing
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perturbations in a single patient’s metabolome, metabolites with
significantly higher or lower abundance than in controls, hereby
referred to as DAMs, were mapped to HMDB genes, and statistical
enrichment of DAMs among each group of gene-associated
metabolites was assessed using a Fisher’s Exact Test. To generate a
score that could be used to rank candidate genes, we multiped
the scaled enrichment p-value (differentially metabolic enrich-
ment—DME) by the absolute value of each gene’s largest
metabolite z-score, generating a per-gene score called the
metabolic enrichment (ME) score. For each patient, we calculated
the median rank of the ME score of the causative gene(s) across
1000 permuted sets of 300 randomly chosen genes. We
delineated our results by causative genes that had an ME score
(i.e., metabolites associated with the causative gene were
differentially abundant) and those that did not. At least one
causative gene had an ME score in 61% of patients; in these cases,
the causative gene was prioritized in the top 20th percentile (Fig.
2a, circle 1; Fig. 3a, b). Causative genes with an ME score of zero
were not able to be prioritized. Notably, metabolites commonly
used as IEM biomarkers, such as acyl glycines or acyl carnitines, are
not annotated to IEM-associated genes in HMDB (e.g.,

isovalerylglycine, which is a biomarker of 3-methylcrotonyl-CoA
carboxylase deficiency, is annotated to the GLYAT family of genes,
but not to either of the IEM-associated genes MCCC1 or MCCC2).
Further, metabolites profiled in the Miller data set mapped to only
37.3% of all genes listed in HMDB. This suggests that using the ME
score to directly rank candidate genes lacks the sensitivity needed
to reliably identify causative genes.

metPropagate can prioritize causative metabolic genes regardless
of metabolic enrichment status of causative gene
We applied metPropagate to the Miller data set to determine
whether metPropagate could prioritize IEM-related causative
genes, particularly those that were not prioritized via ME score.
metPropagate expands the number of prioritizable genes by
propagating per-gene ME scores across a protein–protein func-
tional linkage network (Fig. 4). metPropagate outputs a score for
each gene in the network that summarizes the degree to which
that protein’s neighborhood was enriched for DAMs. Among
patients with causative genes that did not have an ME score,
metPropagate was able to prioritize one causative gene in the top

Fig. 1 STRING network connectivity of two genes, DHFR and SCN2A. a DHFR (brown box) is connected to genes involved in folate
biosynthesis in the STRING network (stringdb.org)12. Perturbation of metabolites associated with genes in DHFR’s neighborhood interaction
partners, such as CBR1 (yellow box), could be used to implicate its metabolic dysregulation. b SCN2A (brown box) is connected to the SCN
family of ion channel proteins through co-expression analyses, and connected to another cluster of genes involved in monoamine metabolite
biosynthesis, including ALDH7A1 (yellow box), through co-citation in PubMed abstracts. Therefore, perturbed monoamine metabolite
biosynthesis, despite being unrelated to the function of SCN2A, could point to SCN2A as the causal gene.
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20th percentile for 79% of patients (33/42) (Fig. 3b). Out of all 107
patients, metPropagate was able to prioritize the causative gene
in 92% (98/107) of patients, 31% (33/107) more than with the ME
score alone. The rank of each candidate gene across all
permutations is provided in Supplementary Data Set 1. These
results indicate that metPropagate is able to prioritize genes even
when metabolites associated with the causative gene are not
observed or detected.

metPropagate can prioritize causative genes in patients with
neurometabolic disease
Next, we wanted to determine whether metPropagate could
prioritize the causative gene from a list of WES-derived candidate
genes using untargeted metabolomic data with unconfirmed
metabolite identities (Fig. 2b, circle 1 and 2). We applied
metPropagate to 11 patients who had been previously genetically
diagnosed through the TIDEX neurometabolic gene discovery
project6. Overall, one causative gene was identified in 9 patients
and two causative genes were identified in 2 patients, resulting in
a total of 13 causative genes. For each patient, between 281 and
609 total genes emerged from Exomiser’s variant effect and
population frequency filters (Table 2). Although all patients were
suspected to have neurometabolic disease caused by an IEM at
time of enrollment, 5/11 patients were found to have mutations in
a known IEM-causing gene (CPT1A, NANS, HAL/IDS, ATP8A2, DHFR),
and 7/11 patients were found to have mutations in known
neurogenetic disease genes (SCN2A, CACNA1D, CNKSR2, MYO5B,
KCNQ2, CHRNA1, DYRK1A). Therefore, application of metPropagate
to this patient population served to determine whether metabo-
lomic data could be used to prioritize both IEM genes and non-
IEM genes. Each patient’s metabolomic features, defined by m/z
ratio and intensity values, were derived from untargeted
metabolomics data and compared to a group of controls (separate
controls for CSF and plasma) to generate a z-score for each
feature. Due to lack of availability of feature to metabolite

mapping for the metabolomic system used in the TIDEX study, we
were unable to identify the exact metabolic identify of each
metabolic feature. Therefore, features were matched to all
possible metabolite identities using HMDB through exact-mass
matching. All possible metabolite IDs were retained for the
enrichment analysis. To illustrate how metPropagate improves
prioritization, a visual representation of the overlap between
candidate genes, metabolic enrichment scores, and metPropagate
scores for a patient with an SCN2A mutation is provided in Fig. 4.
More generally, metPropagate prioritized at least one causative
gene in the top 20th percentile of candidate genes in 9/11 patients
(9/13 genes), in the top 10th percentile in 6/11 patients (6/13
genes) and in the top 5th percentile in 5/11 patients (5/13 genes)
(Fig. 5). We sought to compare this prioritization to that
achievable using other prioritization methods: ME and Exomizer’s
hiPHIVE phenotype score. Using ME, the causative gene was
prioritized in the top 20th percentile in 4/11 patients, three of
whom had mutations in known IEM genes. Notably, although IDS
mutation does cause an IEM, the metabolic system used was not
able to measure the abundance of large glycoaminoglycans,
highlighting a limitation of ME analysis. metPropagate prioritized
the causative gene in more patients than clinical phenotype-
driven component of Exomiser’s hiPHIVE algorithm (Exomiser-
Phenotype) (Table 2). Exomiser-Phenotype placed the causative
gene in the top 20th percentile in 7/11 patients (8/13 genes), in the
top 10th percentile in 4/11 patients (5/13 genes), and in the top 5th

percentile in 3/11 patients (4/13 genes). Exomiser-Phenotype’s
ranking of the causative gene was higher in 5/11 patients, and 7/
13 genes. metPropagate prioritized the causative gene in all
patients prioritized by ME score. Interestingly, metPropagate and
Exomiser-Phenotype prioritized the causative gene in 5/7 and 4/7
of patients the ME score failed to prioritize, respectively. Further, at
least one algorithm prioritized the causative gene in each of the
eleven patients. These results suggest that metPropagate

Fig. 2 Analysis overview. a For each patient in the Miller dataset, 1000 permutations of random candidate gene lists that included the
causative gene were generated. Differentially abundant metabolites (DAMs) were identified as those with an absolute z-score greater than or
equal to 2. The per-gene enrichment p-value and absolute value of the largest metabolite z-score annotated to each gene were multiplied,
generating a per-gene metabolic enrichment (ME) score, which was used to rank candidate genes (circle 1). For the metPropagate analysis, the
DME scores were scaled between 0 and 1 and used as weights assigned to each gene in the STRING network. Label propagation generated a
score for each gene that could be used to identify median rank of causative gene across all permutations (circle 2). b TIDEX: The causative
gene in each patient was previously identified6. Singleton VCFs for all patient were created by DeepVariant, which were then filtered by
Exomiser to generate a list of candidate genes. Raw LC/MS files for a single patient and a group of biofluid-specific controls were analyzed
using XCMS. Samples were normalized and z-scores were generated for each feature using biofluid-specific controls as reference. Features
were mapped to metabolites using HMDB. DME and metPropagate scores were then calculated as in (a).
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outperforms prioritization by ME, and may complement existing
phenotype-driven approaches to prioritization.

metPropagate ranking is affected by gene and patient-specific
characteristics
As the output of any network-based algorithm depends on
network connectivity, we next aimed to identify gene-specific and
patient-specific factors that affect gene prioritization. In order to
identify factors that affect a gene’s prioritization by metPropagate,
we used the Miller data set to collect patient-specific and
causative gene-specific characteristics and correlated these
variables with metPropagate’s percentile ranking of the causative
gene. We confined our analysis to patients who had exhibited no
ME in the causative gene(s), as we wanted to ensure that any
gene-specific or patient-specific characteristic that influenced the
ranking of the causative gene could be tied to the causative
gene’s neighborhood. The information gathered on each patient
included characteristics of their seed ME profile: the average
distance between seed genes (initial labels) and the causative
gene in the STRING network, and the number of metabolically
enriched genes. Neither the number of enriched genes nor the
median distance between a patient’s causative gene and its initial
labels was positively associated with the percentile rank of the
causative gene(s). For each gene, we gathered information on the
number of first-degree neighbors and the percentage of first-
degree neighbors annotated in HMDB (Fig. 6). We found that both
the number and percentage of HMDB-annotated first-degree
neighbors (hereby referred to as metabolic first-degree neighbors)

were independently positively associated with that gene’s median
percentile ranking across all patients with the same IEM (p= 2.9e
−09, coef= 6.5e−02, SE= 7.1e−03; p= 6.0e−04, coef=
73.384890, SE= 18.594193, n= 27).
The relationship between gene prioritization and node degree

has been found by others applying label propagation algorithms
to diverse networks, and is not surprising given the understanding
that genes that have multiple functionalities will be more affected
by metabolic abnormalities in diverse biological pathways15.
Similarly, it makes sense that genes that interact with metabolic
genes have a higher likelihood of being prioritized by a
metabolomics-driven prioritization algorithm. However, this asso-
ciation may lead genes with a large HMDB neighborhood to be
more vulnerable to false positive metabolic enrichment; indeed,
across all 19,354 genes in 107 patients, we find a positive
correlation between percentage of metabolic first-degree neigh-
bors and a gene’s median percentile ranking. Given these findings,
we next decided to build a model that combined metPropagate
and Exomiser-Phenotype rankings in order to reduce the like-
lihood of false-positive prioritization.

Combining Exomiser-Phenotype and metPropagate ranking
increases prioritization rate of causative gene
Both metPropagate and Exomiser-Phenotype algorithms are
vulnerable to false positive prioritization. metPropagate is more
likely to prioritize genes with a high percentage of metabolic first-
degree neighbors, and Exomiser-Phenotype is more likely to
prioritize well-characterized disease genes13. We sought to
combine metPropagate and Exomiser in a way that moderated
metPropagate’s inherent bias, leading to improved prioritization.
To do this, we created a weighted additive model that penalized
metPropagate by the prior probability that a gene with a
particular percentage of metabolic first neighbors would be
prioritized in the top 20th percentile (see “Methods” section).
Effectively, this meant that the metPropagate ranking was
weighted more heavily for genes with few metabolic first-
degree neighbors, and the Exomiser ranking was weighted more
heavily for genes with a high percentage of metabolic first-degree
neighbors. We found that the combined metPropagate and
Exomiser score prioritized the causative gene in the top 20th

percentile in 10/11 patients (11/13 genes), the top 10th percentile
in 8/11 patients (8/13 genes) and the top 5th percentile in 4/11
patients. As shown in Fig. 5, the combined ranking was higher
than either metPropagate’s or Exomiser’s rankings for 8/11
patients (9/13 genes), suggesting that the combined score
reduces false positive prioritization. This indicates that when
applied to a single patient, using metPropagate and Exomiser in
conjunction can increase the likelihood of prioritizing the
causative gene.

DISCUSSION
In this paper, we present metPropagate, an algorithm that uses a
protein-protein functional interaction network and metabolomic
information to prioritize candidate genes in patients with
suspected IEMs. Rather than relying solely on detecting perturbed
gene-associated metabolites, metPropagate uses evidence of
functional interactions between proteins to be able to also
prioritize candidate genes that either do not interact with any
metabolites or interact with metabolites that are not measured in
a given metabolomic system. metPropagate was able to use
untargeted metabolomic information to prioritize at least one IEM-
related gene in 92% of patients diagnosed with one of 21 known
IEMs, 30% more than was possible with DME analysis alone. A
similar result was observed using metabolomic data of uncon-
firmed metabolite identities. Specifically, in a set of eleven patients
with previously diagnosed neurometabolic disease, metPropagate

Table 1. Miller IEMs and associated genes.

Inborn error of metabolism Gene names

3-methylcrotonyl CoA carboxylase
deficiency

MCCC1, MCCC2

Argininosuccinic acid lyase
deficiency

ASL

Argininemia ARG1

Cobalamin biosynthesis deficiency MUT, MTR, MTRR, MMADHC,
MMAB, MMACHC, MMAA, LMBRD1

Citrullinemia ASS1, SLC25A13

Glutaric Aciduria type 1 GCDH

Glutaric Aciduria type 2 ETFA, ETFDH, ETFB

3-OH-3methylglutaryl (HMG) CoA
lyase deficiency

HMGCL

Holocarboxylase deficiency HLCS

Homocystinuria MTHFR, MTRR, MTR, MMADHC

Isovaleric aciduria IVD

Lysinuric protein intolerance SLC7A7

Medium chain acyl-CoA
dehydrogenase deficiency

ACADM

Methylmalonic aciduria MCEE, MMADHC, MMAB, MMAA

Maple syrup urine disease BCKDHB, BCKDHA, DBT

Ornithine transcarbamoylase
deficiency

OTC

Propionic aciduria PCCB, PCCA

Phenylketonuria PAH

Thymidine Phosphorylase
deficiency

TYMP

Trimethyllysine hydroxylase
epsilon deficiency

TMLHE

Very-long chain acyl-CoA
dehydrogenase deficiency

ACADVL
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was able to prioritize the causative gene in the top 20th percentile
of candidates in 9/11 of patients. We used a weighted additive
approach to combine metPropagate and Exomiser rankings to
reduce the likelihood of false positive prioritization, resulting in
improved ranking in 8/11 patients, and highlighting the value in
combining variant prioritization algorithms that use orthogonal
prioritization modalities.
STRING was chosen as the functional linkage network due to its

strong performance in benchmarking analyses16. Evidence sources
for edges in the STRING network include curated knowledge from
databases such as KEGG and BioCarta, shared gene context (e.g.,
shared homology and coevolution) analyses, in addition to co-
expression or co-citation studies. Based on the available evidence,
certain protein pairs can be predicted to interact physically or

functionally (e.g., shared catalysis/reaction/pathway or coopera-
tion in performing epigenetic modifications). Using edge weights
that reflect both physical and functional evidence of interaction
has benefits and drawbacks. A major benefit is the possibility of
modeling interactions between proteins that may not involve
direct binding, but do influence dynamics of a local neighbor-
hood. However, drawbacks include the addition of noise, as
metabolic information may be propagated between proteins that
share a function, rather than a physical bond. Due to the pros and
cons of both approaches, we decided to empirically determine
whether subsetting STRING to include just physical interactions or
both physical and functional interactions leads to improved
prioritization. We found that including both functional and
physical interactions in the STRING network resulted in increased

Fig. 3 Prioritization of IEM-related genes using Miller et al. curated, untargeted metabolomics data. a Gene-metabolite associations were
extracted from HMDB. Genes that were deemed to have differential metabolic enrichment (DME) have associated metabolites that are
differentially abundant, and therefore have an ME score by which they can be ranked. Genes that do not have DME either do not have any
metabolites that are differentially abundant or have metabolites that are undetectable by a given metabolomic system (e.g., sodium, ATP). As
an example, the gene OTC has direct enrichment for citrulline, ornithine, and carbamoyl phosphate. DME is possible when one of these
metabolites is differentially abundant. However, when these three metabolites are not differentially abundant (typically due to measurement
limitations), metPropagate theoretically has the capacity to prioritize the OTC based on DME of other genes in its local neighborhood. b
Boxplot of percentile rank of causative gene after ranking with DME and metPropagate algorithms. If the causative gene exhibited DME, the
causative gene was prioritized in the top 20th percentile with both the ME and metPropagate algorithms. If the causative gene did not exhibit
DME, the ME algorithm failed to prioritize the causative gene in all cases, but metPropagate was able to prioritize the causative gene in 79%
of cases.

Fig. 4 Overlay of initial scores, Exomiser-Phenotype and metPropagate rankings of all candidate genes from a single TIDEX patient with
a causative mutation in SCN2A. In the panel on the left, genes that were found to have an ME score are red, genes that were identified as
candidates by Exomiser’s variant filtering pipeline are blue, and genes that are both candidate genes and have DME are yellow. The causative
gene is brown. The size of the node corresponds to its ME score. In the panel on the right, the size of the gene is proportional to the
metPropagate score after label propagation. In this particular patient, although the causative gene (SCN2A) was not directly metabolically
enriched, SCN2A received some metabolomic signal from its enriched neighbors through label propagation, facilitating its prioritization.
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prioritization, therefore the complete STRING was used in all
analyses (see “Methods” section on propagating metabolomic
seed labels).
In the application of metPropagate to the TIDEX study,

singleton exomes were analyzed, resulting in long lists of

candidate genes. This was done to simplify comparisons between
Exomiser and metPropagate; however, in reality, trio WES is
performed whenever parental samples are available, which
simplifies prioritization and shortens the candidate gene list. In
the current study, candidate gene lists for a single patient
included between 281 and 609 genes, meaning that the top 20th

percentile included 55–115 genes. Reducing the number of
candidate genes examined by incorporating parental genomes
into the variant filtering process would improve the interpret-
ability of prioritization results.
Many recent meta-studies of the efficacy of WES in diagnosing

rare genetic diseases have revealed that its yield is usually less
than 50%17. As such, for unsolved cases, researchers and clinicians
are increasingly turning to WGS to identify candidate causal
genes; however, the expansion into the rest of the genome causes
a dramatic increase in the number of candidate variants. This is in
part due to difficulties interpreting the effect of variants beyond
the exome. As such, supplemental information regarding dysre-
gulated candidate genes that can be obtained via epigenomic,
proteomic and metabolomic information is crucial18. We envision
applying the metPropagate approach to highlight sets of
candidate genes which may be metabolically impacted, thereby
helping to identify causal candidate variants in the noncoding
regions of the genome.
In summary, propagating metabolomic enrichment data across

a protein functional linkage networks is a novel approach for
prioritizing candidate genes in the context of suspected genetic
metabolic disease. It improves upon existing gene-based direct
metabolic enrichment tests and exhibits comparable performance
to existing phenotype-based prioritization tools such as Exomiser’s
hiPHIVE phenotype algorithm. Combining metPropagate and
Exomiser rankings resulted in improved prioritization, suggesting
that metPropagate can complement orthogonal gene prioritiza-
tion approaches. Expansion of gene to metabolite associations
and the use of multiple types of metabolomics platforms may help
expand the number and type of genes that can be prioritized
through this method.

METHODS
In this section, we will describe the data sets used in this study, the pre-
processing applied to each data set, and the metPropagate algorithm. A
complete outline of the metPropagate analysis pipeline is provided (Fig. 2).

Table 2. Comparison of raw ranking between metPropagate, Exomiser’s phenotype score, the weighted metPropagate+ Exomiser score and
ME score.

Patient Gene IEM status Biofluid
analyzed

Number of
candidate genes

Metabolic
enrichment (ME)

metPropagate Exomiser’s
phenotype score

Weighted
metPropagate+
Exomiser score

1 CPT1A IEM CSF 579 1/15* 2* 26* 1*

2 NANS IEM CSF 390 5/7* 5* 207 12*

3 SCN2A Non-IEM CSF 500 NA 35* 132 26*

4 DYRK1A Non-IEM CSF 281 NA 38* 14* 27*

5 CACNA1D Non-IEM Plasma 378 1/23* 1* 52* 1*

6 CNKSR2 Non-IEM Plasma 443 NA 75* 59* 50*

7 HAL IEM Plasma 383 NA 128 60* 18*

7 IDS IEM Plasma 383 NA 252 20* 99

8 CHRNA1 Non-IEM Plasma 520 NA 153 143 84*

8 DHFR IEM Plasma 520 9/17* 7* 293 46*

9 ATP8A2 Non-IEM CSF 609 NA 136 28* 73*

10 MYO5B Non-IEM CSF 395 NA 65* 123 85

11 KCNQ2 Non-IEM CSF 350 NA 15* 3* 24*

Asterix (*) indicates prioritization in the top 20th percentile of candidate genes.

Fig. 5 metPropagate prioritization in the TIDEX dataset. Relative
percentile prioritization of candidate gene with metPropagate
(gold), Exomiser’s phenotype score (black), metabolic enrichment
score (blue) and combined metPropagate and Exomiser score
(green). The ME algorithm places the causative gene in the top 20th

percentile in only 4/11 patients (blue), as the causative genes in the
remaining patients did not exhibit DME. metPropagate places the
causative gene in the top 20th percentile of candidates in 9/11
patients. Exomiser-Phenotype places the causative gene in the top
20th percentile of candidates in 7/11 of patients. The combined
metPropagate+ Exomiser-Phenotype score places the causative
gene in the top 20th percentile of candidates in 10/11 patients.
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Data
Blood plasma samples from 117 patients diagnosed with 21 different IEMs
underwent three different types of untargeted metabolic screening: (1) gas
chromatography coupled mass spectrometry (GC-MS), (2) liquid chroma-
tography coupled mass spectrometry (LC-MS) in positive ion mode and (3)
LC-MS in negative ion mode. GC-MS analysis was performed using a Trace
DSQ fast-scanning single-quadruple mass spectrometer (Thermo-Finni-
gan), and LC-MS analysis performed using an Orbitrap Elite high-resolution
mass spectrometer (Thermo-Finnigan). Raw analyte intensity values
(features) were calculated as the area under the chromatographic peak.
Features underwent median-scaling and missing value imputation with the
minimum detected intensity value and filtering which removed any feature
not found in at least 10% of all samples. Each feature was assigned a z-
score based on the intensity of the feature relative to a control population
of 70 non-IEM individuals (not age or sex matched). Features were mapped
to metabolite identities using a library containing the chromatographic
and spectral signatures of over 2500 metabolites originating from human
metabolic processes. Full details of the analysis are provided in Miller
et al.10. Only IEMs that were diagnosed in Miller et al. were included,
reducing the total size of this data set to 107 patients (all patients with
Guanidinoacetate methyltransferase deficiency were removed in Miller
et al. due to lack of detected biomarkers). To simulate ranking of the
causative gene from a list of candidates, 1000 permutations of 300-n
random genes (where n is the number of possible causative genes
annotated to a particular IEM, e.g., MCCC1 and MCCC2 for 3-methylcrotonyl
CoA carboxylase deficiency) were selected from 19,354 genes annotated in
STRING (v11, stringdb.org)12; for each patient, the median rank of each
IEM-associated gene was recorded across all 107 patients (Supplementary
Data Set 1). For analysis purposes, an IEM was considered prioritized when
at least one IEM-associated causative gene was prioritized in the top 20th

percentile (i.e., rank is <=60).
This study also analyzed WES and LC/MS data from 11 patients

genetically diagnosed through the TIDEX neurometabolic gene discovery
project, hereby referred to as the “TIDEX project” (UBC IRB approval H12-
00067) (Supplementary Table 1). Parents and caregivers provided written
informed consent for the study. Details of this investigation have
previously been published6 as well as in separate case reports2–4,19,20.
Supplementary Table 1 summarizes the clinical characteristics of the
patients and their previously identified genetic diagnoses. Patient inclusion
criteria consisted of (1) a confirmed or potential neurodevelopmental
disorder and (2) a metabolic phenotype. A metabolic phenotype could be
reflected by (1) a pattern of abnormal metabolites in urine, blood or CSF,

(2) abnormal results on biochemical functional studies or (3) typical
abnormalities in clinical history or physical exam. Each individual in the
TIDEX project underwent WES and untargeted metabolomic profiling of
either CSF of plasma, depending on availability. WES analysis included data
from the patients, their parents, and any other affected family members.
DNA from unaffected members was used to confirm segregation with
disease through Sanger analysis. Untargeted LC-MS metabolomic profiling
was only performed on the proband.

Whole-exome sequencing data processing
WES data from 11 patients meeting the aforementioned criteria was
generated using the Agilent SureSelect capture kit and the Illumina HiSeq
2000 or 2500 sequencer. The WES data was filtered for variant frequency
and quality using the pipeline described in Tarailo-Graovac et al.6. A team of
bioinformaticians and medical geneticists then examined the resulting list
of candidate genes and identified the causative variant(s) based on
predicted pathogenicity of the causative variant as well as known disease/
phenotype associations. Diagnoses were made for each of these patients
prior to use within this study, integrating additional family members in a
subset of the cases. For fairness of comparison across patients, the data was
reprocessed using an updated pipeline as follows: read mapping with BWA
mem (v. 0.7.5)21. Samtools for file format conversion (v. 1.3.0)22. Picard for
duplicate read marking (v. 1.139) (http://broadinstitute.github.io/picard).
GATK for indel realignment (v. 3.4-46)23–25 and DeepVariant (v. 0.8.0) for
variant calling26. Owing to the improved accuracy of DeepVariant over
previous methods, raw variant calls were not filtered using additional tools.
We used Exomiser’s (v. 11.0.0) variant filtering pipeline to identify a list of

candidate genes for each of 11 patients analyzed through the TIDEX
project. Singleton WES data from 11 patients was processed (described
above) before being input to Exomiser, which applied variant frequency
filters to remove common variants, annotated functional impact against
genes and then categorized by inheritance pattern: autosomal recessive,
autosomal dominant and mitochondrial. In this study, gene scores from all
inheritance patterns were combined. In the case where a single-gene
harbored variants of more than one inheritance pattern, the variant with
the highest variant prioritization ranking was retained for further analysis.
The resulting list of genes was considered the candidate gene list for that
patient. To prioritize each gene, Exomiser’s hi-PHIVE phenotype algorithm
(Exomiser-Phenotype) relied on user-specified patient-specific Human
Phenotype Ontology (HPO) terms (v. 1807) to generate a “phenotype”
score. HPO terms were generated for each patient manually based on deep

Fig. 6 Gene-based and patient-based factors that affect prioritization at the gene and patient metabolome level. a This analysis only
included patients with causative genes that did not exhibit DME (n= 42). Separately, generalized linear models were used to assess the
relationship between a gene’s median rank and the number of first-degree neighbors and percentage of them annotated in HMDB, and the
relationship between the percentile ranking of an individual’s causative gene and the number of and distance between seed labels. b Genes
with large percentage of first-degree neighbors annotated in HMDB have a higher prioritization rate. The number of seed labels, as well as the
distance between the causative gene and seed labels, did not significantly impact the rank of the causative gene.
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clinical phenotyping write-ups. For genes that had been studied using a
knockout mouse, zebrafish model, or that were known Mendelian disease
genes, the phenotype score represented the similarity between the
patient’s HPO terms and the mouse, zebrafish or human ontology terms
associated with that knockout model or disease cohort. Additional
information about the algorithm and databases used to calculate this
phenotype score can be found in Smedley et al.13.

TIDEX LC/MS metabolomics data generation and processing
High-resolution untargeted metabolomics analysis of CSF and plasma was
performed using UHPLC-QTOF mass spectrometry. Due to sample
availability, plasma was analyzed for four of the IEM patients and 10 of
the controls, and CSF was analyzed for seven of the IEM patients and 15 of
the controls. Only samples profiled in the same bio-fluid were compared.
CSF and plasma samples were de-proteinized in methanol:ethanol solution
(50:50; 100 microlitres of each sample plus 400 microlitres of methanol:
ethanol solution). Samples were profiled in duplicate, however, only one of
each duplicate pair was analyzed in this study. A 2-microlitre sample was
applied to an Acquity HSS T3 reverse-phase column (100mm× 2.1 mm;
100 Angstroms; 1.8 micrometer), and an Agilent 6540 UHD accurate mass
UHPLC-QTOF mass spectrometer with acquisition in positive and negative
modes was used. The buffers in positive mode consisted of buffer A (0.1%
(v/v) formic acid in water) and buffer B (0.1% (v/v) formic acid in water:
methanol solution (1:99)); in negative mode, the buffers consisted of buffer
A (10 mM acetic acid) and buffer B (10mM acetic acid in water:methanol
solution (1:99))11.
Once MS data had been generated, the centwave and obiwarp methods

in the XCMS package were used for peak detection and retention time
correction, respectively, in both positive and negative electrospray
ionization detection modes (v3.3.1)27. Data-driven parameters were
optimized using the IPO package (v1.10.0)28, and are available at https://
github.com/emmagraham/metPropagate/blob/master/XCMS_parameters.
md. CAMERA was used to annotate adducts and isotopes (v1.36.0)29. Linear
baseline normalization was applied to each feature30. In linear baseline
normalization, a baseline intensity profile is created from the median
intensity of all features across all samples (hereby referred to as “baseline”),
and all runs are assumed to be scalar multiples of the baseline intensity
profile. For each metabolite i in sample j:

y0ij ¼ βjyij (1)

Where y’ij is the normalized abundance of a particular feature and yij is the
log transformed unnormalized abundance. β is the per-sample scaling
factor defined as the mean intensity of the baseline over the mean
intensity of the sample (j):

βj ¼
ybaseline

yj
(2)

Two filtering criteria were applied before analysis: removal of (1) features
not annotated to any known metabolites in the HMDB and (2) features
annotated as non-base isotopes31. Z-scores based on the mean and
standard deviation of a given metabolite across all IEM patients and
controls were computed. Features for which the IEM patient had a z-score
greater than 2 (2 SD away from the mean) were isolated and called
“differentially abundant metabolites” (DAMs). Metabolites with positive z-
scores exhibited higher abundance than in controls, while metabolites
with negative z-scores exhibited lower abundance than in controls. All
DAMs found through both positive and negative mode analyses were
annotated with compound identities within 15 ppm of the compound
mass using HMDB. Results from both positive and negative modes were
combined for subsequent enrichment tests.

metPropagate
Though the steps described above, an LC-MS metabolomics pipeline
identified DAMs and a gene-based analysis pipeline identified a set of
candidate genes. The primary goal of subsequent analysis was to
determine whether metabolomic evidence could be used to prioritize
the causative gene from this list of candidate genes. To do this, each gene
in a patient’s candidate gene list was ranked using a per-gene
metabolomic score termed the “metPropagate score”, which represented
the likely metabolic relevance of a particular gene to each patient. Per-
gene metPropagate scores were generated by initializing a protein–protein
functional linkage network with a metabolic “enrichment” score for each

gene and propagating this score across the STRING network using a
network propagation algorithm.

Calculating the metabolic enrichment score. A Fisher’s Exact enrichment
test was performed to determine whether metabolites known to be
associated with candidate genes were overrepresented in the patient-
specific set of DAMs. Curated sets of metabolites associated with each
putative gene were parsed from files available from the HMDB web portal
(hmdb.ca, April 1st 2019)31. Enrichment was calculated using Fisher’s Exact
test. P-values were adjusted for multiple testing using the Benjamini-
Hochberg procedure, and reported as false discovery rate (FDR).
The metabolomic enrichment (ME) score was computed as follows:

ME ¼ �log2 2þ pð Þ � Z (3)

where p is the unadjusted enrichment p-value, and Z is the z-score of the
largest magnitude of any metabolite annotated to that gene.
The ME score for each gene was scaled to fall between 0 and 1.

Propagating metabolomic seed labels. Label propagation was performed
as stipulated by Zhou et al.32. The per-gene score, fi, of each node at
iteration, r, was determined by

f ðrÞi ¼ λ
Xn

j¼1

wijf
r�1
j þ ð1� λÞyi (4)

where j is a connected node, λ is a parameter between 0 and 1 that
controls the degree of propagation between a node and its neighbors, wij,
is the symmetrically normalized edge weight between node i and node j
and yi is the label of node i, which is the ME score for a particular gene. This
implementation of label propagation was adapted from an implementa-
tion found at https://github.com/yamaguchiyuto/label_propagation.
Initial label values, y, were continuous between 0 and 1 and defined as

the ME score of the corresponding gene. We used an iterative algorithm
for optimizing the solution to the above equation33. λ was set at 0.99, as
this is the parameter used in Zhou et al. and was not optimized for our
data set due to limited sample size. The final scores of each of the
candidate genes were ranked to generate a prioritized candidate gene list.
The homo sapiens STRING network was downloaded from stringdb.org
(v11). Each node represents a protein and an edge is present between
nodes if they physically interact or share a function. Edge weight reflects
the probability two proteins interact/share function based on multiple
sources of evidence, including genomic context prediction (proximity in
gene neighborhoods, gene fusion events, co-occurrence of proteins across
species), co-expression, experimental evidence of interactions, co-citation
analysis and presence in curated databases such as BioCarta and KEGG.
Based on these evidences, both physical and functional interactions can be
predicted to occur with high confidence (physical interactions have the
“binding” signifier in the “type” column of the protein.links.full file from
string-db.org). In order to determine whether physical interactions or both
physical and functional interacts should be used, we analyzed the ranking
of 250 causative genes from 107 patients metabolically profiled through
Miller et al. when propagated on either network, and found that the
ranking of the causative gene was higher when using both physical and
functional STRING interactions in 90% of causative genes. Further, several
causative genes in Miller et al. were not included in the network when only
physical interactions were included, limiting its sensitivity. Therefore, to
increase prioritization rate and sensitivity, metPropagate was applied to
the complete STRING network.

Combining metPropagate and Exomiser rankings. We sought to create a
combined metPropagate and Exomiser ranking that improved the
prioritization rate while accounting for metPropagate’s bias towards genes
with many metabolic first neighbors. To do this, we created a weighted
additive model:

C ¼ p � Exomiser þ 1� pð Þ �metPropagate (5)

Where p is the prior probability that a gene with a certain percentage of
metabolic first neighbors is prioritized in the top 20th percentile of
causative genes (calculation explained below). Exomiser is the per-gene
Exomiser-Phenotype score scaled between 0 and 1, and metPropagate is
the per-gene metPropagate score scaled between 0 and 1. Each term of
the equation is then scaled between 0 and 1 before being added together.
To calculate p, we first binned all 19,354 genes in STRING by the

percentage of each gene’s first-degree neighbors annotated in HMDB,
creating ten bins with percentage of metabolic first-degree neighbors
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intervals of 10% (0–10%, 10–20%, etc). Within each bin, we calculated the
percentage of genes that were ranked in the top 20th percentile of all
19,354 genes, calling this percentage p. This combined score effectively
prioritizes Exomiser’s score for genes that metPropagate has a high
likelihood of ranking highly due to their HMDB-neighborhood.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Metabolomic data from the Miller study is available through the supplement of their
publication (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626538/). Raw LC/MS data
in mzML/mzData format and patient-specific Exomiser gene lists are available at https://
zenodo.org/record/3774540#.Xqja9NNKg0p (https://doi.org/10.5281/zenodo.3774540).
The raw sequencing data for the patients in this study is not made available to the
public or stored in third party repositories in accordance with the IRB approval (UBC IRB
approval H12-00067). Details of three of the patients profiled in this study have been
profiled in previous reports2–4,6,20. In order to facilitate reproducibility of metPropagate’s
findings, all genes implicated in each TIDEX patient’s VCF are also provided at https://
zenodo.org/record/3774540#.Xqja9NNKg0p. For inquiries, please contact the corre-
sponding author or Dr. Clara van Karnebeek (c.d.vankarnebeek@amsterdamumc.nl).

CODE AVAILABILITY
Code for metPropagate can be found at https://github.com/emmagraham/
metPropagate. There are no access restrictions. Software versions are included where
referenced in the “Method” text. XCMS parameters were optimized by the IPO package,
and are listed here. Peak picking was performed using the centwave algorithm within
the findChromPeaks function, which had the following parameters: ppm= 15,
peakdwidth= 3–80, mzdiff= 0.00325, prefilter= 3–100, noise= 1000, snthresh= 10.
Peaks were grouped using the groupChromPeaks function with the sample grouping
(IEM/control) as input. Retention time correction was performed using the obiwarp
algorithm within the adjustRtime function using all default parameters except: gapInit
= 1.2736 and gapExtend= 3.3336. Peaks were grouped again with the group-
ChromPeaks with the same parameters as used previously. Peaks were filled using
the fillChromPeaks with all default parameters. An intensity matrix was extracted using
the featureValues function (method= “medret”, value= “into”).
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