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Emerging strategies to bridge the gap between
pharmacogenomic research and its clinical implementation
Volker M. Lauschke 1* and Magnus Ingelman-Sundberg 1

The genomic inter-individual heterogeneity remains a significant challenge for both clinical decision-making and the design of
clinical trials. Although next-generation sequencing (NGS) is increasingly implemented in drug development and clinical trials,
translation of the obtained genomic information into actionable clinical advice lags behind. Major reasons are the paucity of
sufficiently powered trials that can quantify the added value of pharmacogenetic testing, and the considerable
pharmacogenetic complexity with millions of rare variants with unclear functional consequences. The resulting uncertainty is
reflected in inconsistencies of pharmacogenomic drug labels in Europe and the United States. In this review, we discuss how
the knowledge gap for bridging pharmacogenomics into the clinics can be reduced. First, emerging methods that allow the
high-throughput experimental characterization of pharmacogenomic variants combined with novel computational tools hold
promise to improve the accuracy of drug response predictions. Second, tapping of large biobanks of therapeutic drug
monitoring data allows to conduct high-powered retrospective studies that can validate the clinical importance of genetic
variants, which are currently incompletely characterized. Combined, we are confident that these methods will improve the
accuracy of drug response predictions and will narrow the gap between variant identification and its utilization for clinical
decision-support.
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INTRODUCTION
The past several decades of research have seen a dramatic
increase in our understanding of how inter-individual genetic
variation can impact drug pharmacokinetics, response, and
toxicity. However, the clinical application of this knowledge has
progressed only slowly. A variety of reasons have been identified
to contribute to this latency in clinical implementation.1–3

Arguably among the most important factors is the substantial
amount of underpowered preliminary studies that report interac-
tions between specific variants and pharmacological phenotypes
without replication in independent cohorts or corroborative
mechanistic data. Such associations are not useful to guide
prescribing and fuel the frequently stated concerns with clinical
utility as a key barrier for the clinical use of pharmacogenomics.
Partly as a consequence of this vast body of literature, clinicians
and service providers feel insecure and insufficiently educated in
pharmacogenomics to promote further clinical implementation.
In addition, pharmacogenomic biomarker discovery is compli-

cated by the remarkable pharmacogenetic complexity. Specifi-
cally, recent next-generation sequencing (NGS) have identified
thousands of novel pharmacogenetic variants that are overlooked
when using conventional analysis methods for single nucleotide
polymorphism and copy number variation (CNV) profiling.4,5

Importantly, many of these rare variants putatively affect the
function of the corresponding gene product and are likely to
contribute to inter-individual differences in drug disposition and
response. Although statistical tests such as burden or variant-
component tests provide important frameworks for the analysis of
rare variant associations, their suitability for pharmacogenomic
applications is limited due to the large number of causal variants
whose effects can differ in directionality.6 Interpretation of NGS-
based data is thus suggested to use a two-pronged approach.
Experimental or clinical information is used for variants for which

such data are available, whereas the interpretation of unchar-
acterized variants has to rely on computational predictions.
Importantly, it is evident that the success of such a strategy
strongly depends on both solid experimental data as well as
accurate computational prediction tools. Finally, there is a lack of
clear consensus guidelines in product labels and recommenda-
tions from different pharmacogenomic expert groups for utilizing
genomic data to guide personalized prescribing.
The field of pharmacogenomic biomarker-guided drug therapy

has mainly advanced in the field of oncology where drugs are
commonly targeted to specific genetic variations in the somatic
tumor genome. However, also germline variants can guide the
choice and optimal dosing strategy for various chemotherapeutic
agents, including fluoropyrimidines or thiopurines. By contrast, the
implementation of pharmacogenomics in other therapeutic areas
is lagging behind. In order to enhance the reliability and value of
predictive pharmacogenomic information in the clinics, there is a
need to expand the genetic information retrieved by considering
the entire genetic landscape into clinical decision-making and to
directly assess the outcome and cost benefit of sequencing-
guided therapy. In this matter, retrospective studies based on
previous available therapeutic drug monitoring (TDM) data have
provided important contributions.
In the following sections, we summarize the state-of-the-art of

how to include the entire pharmacogenetic makeup of an
individual, including rare variants, into personalized pharmacoge-
nomic advice. Furthermore, we highlight novel strategies and
tools to improve the quality of such drug response predictions.
Lastly, we provide examples how retrospective analyses of large
existing pharmacokinetic TDM data sets can improve the reliability
of conclusions regarding the clinical importance of genetic
variations.
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HOW TO IMPROVE THE FUNCTIONAL INTERPRETATION OF
RARE PHARMACOGENETIC VARIABILITY
Inter-individual differences in drug response and toxicity are partly
due to heritable factors, with common estimates suggesting that
the genetic component might explain 20–30% of this variability.
Each individual genome contains around 25,000 genetic variations
in exons, including 10,000–12,000 missense variants and 100
putative loss-of-function variants.7,8 Genes involved in drug
absorption, distribution, metabolism, and excretion (ADME) are
particularly complex, and analyses of whole exome and whole
genome sequencing data from more than 100,000 individuals
indicated that CYPs9,10 and drug transporters of the SLC11 and
SLCO12 gene families harbor tens of thousands of different single
nucleotide variants (SNVs) and indels. Importantly, the overwhelm-
ing majority of these variants (>98%) are rare with minor allele
frequencies in the general population below 1%.13–16 Moreover,
analyses of CNVs in ADME genes revealed that of the 208 genes
analyzed, 201 (97%) carried deletions and duplications, most of
which were rare, spanning one to multiple exons.17 Similarly, rare
SNVs and CNVs were highly prevalent in genes encoding G-protein-
coupled receptors, one of the most important families of drug
targets.18

The identification of rare variants requires the use of methods
that can comprehensively profile genes of importance for drug
pharmacokinetics and response. Genetically mediated modulation
of pharmacokinetic profiles can furthermore translate into altered
risks for adverse drug reactions, particularly for chemotherapeutic
drugs. Specific examples include variants in DPYD that increase
fluorouracil toxicity and variations in TPMT and UGT1A1, which
predispose to thiopurine- and irinotecan-induced myelosuppres-
sion, respectively. The increase in speed and accuracy of NGS,
combined with decreasing sequencing costs, facilitates the use of
sequencing for routine applications. Importantly, however, a
considerable number of genes with importance for drug response
and toxicity (up to 50, including CYP2D6, CYP2A6, and HLA genes)
are located in complex loci that feature low complexity regions,
segmental duplications, and variable numbers of tandem repeats.
Analysis of the genetic variability within such genes requires the
use of specialized sequencing technologies and variant calling
pipelines. Promising emerging methods in this space include
single-molecule real-time sequencing and Nanopore sequencing,
which have both been successfully used for whole genome
sequencing applications,19,20 as well as for targeted haplotyping
and CNV profiling of the complex CYP2D621–24 and HLA loci.21,25

To characterize the functional effects of common genetic
variants, a variety of methods and tools are available, including
genetic association studies, in vitro characterizations, and
computational predictions. However, for multiple reasons this
toolbox is not directly applicable for rare variant assessments:

i. Genetic association studies require a substantial number of
variant carriers to be sufficiently powered to identify effects
of a variant of interest on a clinical phenotype, which,
depending on the experimental design and phenotypic
heterogeneity, can require tens to hundreds or thousands of
individuals. However, recruitment of these numbers of
carriers for rare alleles is most often unfeasible or
impractical.

ii. Functional characterization of tens of thousands of variants
using heterologous expression systems is not feasible using
conventional protocols.

iii. Most computational algorithms to predict the functional
consequences of genetic variants have been trained on
pathogenic data sets and use, at least in part, evolutionary
conservation as the basis for decision-making. However, for
genes involved in drug disposition, evolutionary constraint
is generally low and thus conservation at the nucleotide

level constitutes only a poor proxy for functional conse-
quences of the encoded gene product.

Importantly, in the last few years a variety of methodological
and technological advances have opened exciting avenues to
overcome these challenges. In the following two sections, we will
provide an overview of computational (“Computational analysis of
pharmacogenomic variation”) and experimental (“Experimental
high-throughput characterization of pharmacogenomic variants”)
strategies to improve the functional interpretation of rare
pharmacogenetic variants.

Computational analysis of pharmacogenomic variation
The translation of personal genomic information into actionable
advice requires predictions about the functional consequences of the
identified genetic variability for which no experimental or epide-
miological characterization data are available. In the past decades,
more than 60 different prediction tools have been developed.26

SIFT,27 PolyPhen2,28 PROVEAN,29 and MutationTaster230 constitute
the most widely used models. However, they are restricted to the
interpretation of variants that cause amino acid exchanges.
Prediction tools that are suitable for the interpretation beyond
missense variants include FATHMM,31,32 CADD,33 and Eigen.34

The vast majority of tools are based on machine learning, often
used synonymously with artificial intelligence, to optimize predic-
tions. Training of such models relies on data sets of deleterious and
neutral variants in which variations are annotated regarding their
functional consequence. As deleterious data sets, most studies use
variants implicated in Mendelian disorders, mined from publically
available collations such as OMIM, HGMD, or UniProtKB. For neutral
variants, the most common approach is to consider all variants as
neutral whose frequency is above a certain threshold (e.g., 1% or
5%) in the general population, as revealed by large-scale
sequencing projects, such as the 1000 Genomes Project. This
selection is based on the rationale that common variants that are
present in a considerable fraction of the population are apparently
not sufficient to cause clinically manifest heritable disease. From
these training sets, the algorithm aims to identify patterns of
statistical associations among features, including information
about the sequence context of the affected nucleotide, evolu-
tionary conservation, or physicochemical consequences of the
amino acid exchange on protein level, and, based on these rules,
predict the functional consequence of unannotated variants.
Importantly, although this approach is promising for the

prediction of a variant’s pathogenicity, this approach is linked to
multiple problems when the functionality of pharmacogenomic
variants should be analyzed. First, pharmacogenes harbor a multi-
tude of variants that alter function without being pathogenic.
Common examples of variations with minor allele frequencies > 10%
that reduce gene function and have established effects on drug
pharmacokinetics or toxicity include CYP2C9*2 (rs1799853), CYP2
C19*2 (rs4244285), CYP2D6*4 (rs3892097), CYP3A5*3 (rs776746),
UGT1A1*28 (rs34983651), and SLCO1B1*5 (rs4149056). Using the
approach illustrated above, all these variants are included in the
neutral training set. Second, the statistical associations between
features are different between pathogenic and functional but non-
pathogenic variants. In particular, evolutionary conservation is
different between variants within genes associated with con-
genital diseases that are under purifying selection and those
which are not disease associated, such as most pharmacogenes.35

As a consequence, application of the relationships between
conservation scores and functional impacts that were established
on pathogenic vs. non-pathogenic training sets is not suitable to
provide reliable predictions in the context of pharmacogenes.
To overcome these limitations, we recently developed a

computational tool specifically tailored towards the functional
interpretation of pharmacogenetic variations. To this end, we
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leveraged quantitative, experimentally determined high-quality
activity data from 337 variants distributed across 43 genes
involved in drug metabolism and transport as training data.36 In
a first step, we optimized the parameterization of 18 current
prediction methods and then integrated the best performing
methods into one ensemble score. Using cross-validations, the
resulting score achieved sensitivity and specificity of 93% for loss-
of-function and functionally neutral variants, respectively, and,
importantly, can provide quantitative estimates of the functional
consequences of a pharmacogenetic variant. Notably, this
predictive power was achieved despite the low number of
pharmacogenomic variants available for model training. We
expect that model accuracy will further improve as the number
of functionally characterized variants increases and in the
following section we highlight methods that could be instru-
mental in this process.

Experimental high-throughput characterization of
pharmacogenomic variants
Due to the sheer number of variants, experimental characterization,
the gold standard for functionality assessment, of the entire
portfolio of rare pharmacogenetic variants has not been feasible. As
a result, the impact of rare variants encountered in the genome of a
given patient can currently only be estimated using computational
tools, which impairs personalized medicine. Deep mutational
scanning constitutes a state-of-the-art technology that combines
large-scale parallel mutagenesis with phenotypic selection and
deep sequencing to assess the activities of more than 100,000
mutant versions of a protein in a single experiment.37

Principally, deep mutational scanning requires a cell-based
selection assay as well a diversity library of plasmids in which
every amino acid is substituted individually to every other amino
acid (Fig. 1). Although the selection assay is highly protein specific,
metabolic activation of a substrate into a toxic metabolite or
transport of toxins into or out of cells is likely applicable in the
context of pharmacogenes. Diversity libraries can be constructed
using parallelized oligonucleotide-directed mutagenesis, which
avoids the bias in the introduction of mutations that occur when
using alternative mutagenesis methods, such as error-prone
PCR.38 One-pot saturation mutagenesis offers an elegant and
efficient method for the construction of comprehensive mutagen-
esis libraries within few days with minimal hands-on time.39 The
assembled library is then transfected into cells in amounts that
result in transformants only harboring a single variant. Subse-
quently, the selection assay is applied, resulting in the specific
selection of transfectants with neutral or deleterious variant,
depending on the selection assay configuration. For instance, if
deep mutational scanning is used to characterize a drug
transporter and the selection assay comprises the export of
cytotoxic compounds, variants that reduce the transport activity
will be depleted after selection, whereas the frequency of neutral
variants will increase accordingly. Variants detected by NGS in the
initial diversity library that are over- or underrepresented following
selection indicate increased and reduced function variants,
respectively. Moreover, the extent of variant representation in
the pool directly correlates with resistance to the applied agent,
thus providing a quantitative readout of variant function.
This method has been successfully used for the comprehensive

evaluation of variant effects on organismal fitness as well as for
domain characterizations and the mapping of protein interaction
sites, primarily in bacteria, yeast, and rodent.40–43 Recently, these
analyses were also extended to disease-associated human
proteins, including BRCA,44 YAP,45 and PPARG,46 thus providing
an appealing methodology to experimentally characterize the
entire catalog of possible genetic variability affecting a protein’s
amino acid sequence for a given human gene. Notably, however,

the workflow has to be tailored to each gene individually,
resulting in the protocol to be work- and cost-intensive.
To overcome this difficulty, Matreyek et al.47 developed VAMP-

Seq, which systematically probes the effects of all variants on
protein abundance rather than function per se. Using the clinically
actionable genes PTEN and TPMT as targets, the authors identified
1138 and 777 variants that alter protein levels, respectively. For
those PTEN variants for which abundance scores could be
obtained, VAMP-Seq correctly flagged 64% of pathogenic variants
as low abundance and 12% as possibly low abundance. However,
the specificity of VAMP-Seq could not be accurately quantified
due to a lack of PTEN variants with confirmed functional neutrality.
For TPMT, the well-characterized alleles TPMT*2 and TPMT*3
account for 95% of TPMT loss-of-function variants and, thus, the
immediate clinical impact of the additional variants affecting
TPMT abundance is likely limited.
Importantly, such comprehensive functionally annotated data

sets provide powerful tools that can be leveraged to improve
computational predictions of genes not yet covered by deep
mutational scanning. An interesting recent seminal study pro-
vided proof-of-concept that training of a decision tree-based
model using available large-scale mutagenesis data resulted in
superior performance compared with pathogenicity-trained var-
iant predictors.48 Specifically, the authors used a total of 21,026
experimentally determined variant effect scores from eight
proteins to train a supervised, stochastic gradient boosting
learning algorithm. The resulting tool, termed Envision, could
predict quantitative variant effects and outperformed the previous
predictors SIFT, PolyPhen2, SNAP2, and EVmutation also on
protein data that were not used for model fitting. Interestingly,
structural features were found to contribute more to model
performance compared with evolutionary features, indicating the
importance of feature completeness. As expected, inclusion of
data from more proteins increased Envision’s predictive perfor-
mance. However, the tool has not yet been used for systematic
pharmacogenetic predictions.
These developments are paralleled by recent advances in the

variant effect prediction using deep learning. By leveraging
variation data from non-human primate genomes for model
training, deep neural networks have been successfully used to
predict pathogenic variation in rare disease patients.49 Further-
more, training of deep neural networks using available genome-
wide association study data or phenotype similarity metrics can
facilitate the identification of causative pathogenic variation
within and outside of the coding regions.50,51 Although the
abovementioned tools focus on the identification and interpreta-
tion of disease-associated variation, the application of deep
learning for pharmacogenomic variant effect prediction is
currently limited to specific applications, such as the prediction
of metabolic activity of CYP2D6 genotypes and haplotypes,
primarily due to the scarcity of available training data.52

For the near future, we foresee that the integration of
pharmacogene-specific experimental characterizations with
model training based on the resulting quantitative data provides
a promising strategy to drastically improve the quality of
functional predictions, which constitutes one of the key
challenges of personalized pharmacogenomics (Fig. 1).

HOW TO INCREASE THE RELIABILITY OF PHARMACOGENOMIC
STUDIES
The low power and reliability of many studies in the published
pharmacogenomic literature constitutes a key bottleneck for the
translation of pharmacogenomic markers into clinical practice. The
most important shortcomings are the limited power, often caused
by a low number of patients in relation to the frequencies of the
genetic variants studied, unbalanced inclusion and erroneous
definition of the patients cohorts studied, analytical bias due to a
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Fig. 1 Schematic depiction of how deep mutational scanning aspires to improve the translation of pharmacogenomic information into
actionable advice. Cells are transfected with a diversity library of expression plasmids covering many (ideally all possible) amino acid
substitutions for a given pharmacogene of interest and a protein-specific selection assay is applied. Deep sequencing of the transfected cells
before and after selection, and comparative analysis of the obtained data can provide enrichment scores for each variant, thus enabling the
massively parallelized experimental characterization of thousands of variations. Importantly, this data provides a powerful resource for the
training and optimization of computational algorithms, including but not restricted to random forests and deep neural networks, which in
turn can be applied to the integrated analysis of a patient’s entire pharmacogenome.
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nonrandomized selection of the patient groups, and lack of result
validation in independent cohorts. The resulting uncertainty is
reflected in the limited consensus between pharmacogenomic
labels as considered by different regulatory agencies.53,54

Large prospective randomized clinical trials would be most
informative to cope with these problems. However, there is very
limited public funding for such pharmacogenomic trials and only
few examples without corporate sponsorship have been reported in
the literature, such as the EU-PACT study for warfarin gene–dose
relationships.55 Thus, the field has tapped into the vast resource of
available TDM data to analyze the impact of pharmacogenomic
variation. Specifically, patients who were treated in the absence of
genotypic information and whose drug or metabolite levels were
monitored can be retrospectively genotyped, given that appro-
priate ethical approval is available or can be obtained.
Interesting examples that demonstrate the power of this design

include the relationship of metoprolol maintenance dose in heart
failure patients with CYP2D6 genotype56,57 (Fig. 2). Similarly, in a
study of 993 patients it was concluded that the dose-adjusted
phenytoin blood concentrations were higher and the risk for
neurologic side effects was elevated by 2.4-fold among carriers of
reduced function CYP2C9 alleles.58 A similar retrospective
approach has been applied in many studies from different
countries regarding the relative importance of VKORC1 and
CYP2C9 genotypes for warfarin maintenance doses.59 Indeed, a
multitude of dosing algorithms have been developed in different
countries for such predictions.
Large retrospective studies have been furthermore useful for

evaluating gene–dose effects of antidepressant and antipsychotic
treatment. In a study encompassing 2087 patients, a correlation
between the CYP2C19 genotype and TDM-based concentrations of
escitalopram and metabolites were found, showing that poor and
ultrarapid CYP2C19 metabolizers received escitalopram doses
above or below the therapeutic interval, respectively.60 As a
consequence, the rate of drug switching, as a proxy for lack of
efficacy or adverse reactions, among these phenotype groups,
which affected a total of 10% of patients, was 2.3- to 3-fold higher
than in extensive metabolizers.
Similar associations were observed among patients receiving the

antipsychotics risperidone or aripiprazole with both poor and
ultrarapid CYP2D6 metabolizers being more prone to drug switching

than extensive metabolizers.61 Interestingly, it was observed that
patients carrying reduced activity variants in CYP2D6 were indeed
prescribed lower doses than those with extensive metabolism,
despite the fact that the physicians were not aware of the genotype
of the patients, indicating that phenotypic peculiarities linked to the
drug concentration were noticed by the physician and doses were
adjusted accordingly. Interestingly, however, for risperidone these
dose adjustments only resulted in 50% of the optimal dose
reduction predicted by the CYP2D6 genotype (Fig. 3).
Overall, these results indicate that the retrospective genotyping

of large TDM cohorts can indeed provide with clinically useful
information regarding gene drug interactions, which in turn can
inform genotype-guided dosing in clinical routine.

CONCLUSIONS
The limited number of sufficiently powered and controlled pharma-
cogenomic association studies in combination with a lack of
functional characterization data for many thousands of genetic
variations impair our ability to fully harness a patient’s pharmacoge-
nomic information for genotype-guided prescribing. Thus, although
progress in NGS technologies has unlocked exciting possibilities to
comprehensively profile pharmacogenomic variability, the resulting
additional information is currently not clinically actionable. Novel
experimental and computational methods hold promise to improve
the functional interpretation of pharmacogenomic complexity. In
addition, various companies develop high-throughput expression
methods for functional characterizations of missense mutations.
Due to impracticalities involved in recruitment of a sufficient

number of rare variant carriers and the associated high cost, we do
not envision that assessments of the functional importance of rare
genetic variants can be conducted using conventional clinical trial
designs. Rather, we envision that retrospective analysis of the
numerous large TDM-based data sets with thousands of
individuals can increase the possibility to validate potential
pharmacokinetic phenotype–genotype relationships and to dis-
cover novel associations.
Importantly, pharmacogenomic variability differs drastically

across ethnicities. Clinically relevant examples include common
reduced function variants in CYP2B6, CYP2C8, and CYP2C9, which
are up to 20-fold less prevalent in East Asian populations

Fig. 2 Associations of CYP2D6 genotype with the achievement of guideline-recommended target doses for carvedilol and metoprolol.
Analysis comprises 98 systolic heart failure patients. Only CYP2D6*4 was considered for the definition of CYP2D6 metabolizer status. Patients
were 7.7 times more likely to be treated with lower maintenance doses of metoprolol for each CYP2D6*4 allele. For carvedilol, a trend was
observed between CYP2D6*4 and higher maintenance dose. Gray shaded box indicates the range of guideline-recommended target doses
(≥50mg). EM extensive metabolizer (no *4 alleles), IM intermediate metabolizer (one *4 allele), OR odds ratio, PM poor metabolizer (two *4
alleles). Figure modified with permission from ref. 56.
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compared with Africans, whereas East Asians carry the highest
frequency of decreased function variants in CYP2D6 and CYP1A2.62

Besides these common well-characterized alleles, rare pharmaco-
genomic variants show similar patterns of inter-ethnic variability.
By analyzing exome data from 6503 individuals with European or
African ancestry, we previously found that <9% of all rare variants
were found in both populations.13 Similarly, in an analysis of
141,456 individuals from 7 major human populations, up to 83%
of variants in SLC and SLCO genes were restricted to a single
population.11,12 These inter-ethnic differences have important
clinical implications, as exemplified by the inter-ethnic differences
in anticoagulant and antihypertensive dose requirements,63

improved gefitinib response rates in East Asians,64 increased rates
of cutaneous ADRs upon carbamazepine in South and East
Asians,53 as well as efavirenz-related ADRs in Zimbabwe.65

Furthermore, 26 drugs approved by the Food and Drug
Administration from 2008 to 2013 carry labels for racial or ethnic
differences.66 These examples demonstrate that consideration of
the specific genetic makeup of the population in question in the
framework of a precision public health strategy provides
appealing opportunities to improve clinical outcomes. African
and admixed Latin American populations are especially hetero-
geneous and are genetically variable, and, as a result, members of
these racial and ethnic groups might benefit most from high-
resolution pharmacogenomic characterizations and genetically
informed prescribing, particularly in those regions of the world
where access to individual genomic profiling is limited.
In conclusion, we think that the gap between identification and

utilization of genetic variants for truly individualized treatment
recommendations will diminish in the future. This is due to more
frequent use of large patient cohorts, which allow firm conclusions
regarding the clinical importance of genetic variations, in parallel to
the impressive development in analytical techniques and computa-
tional functionality predictions of novel variations.

Received: 25 September 2019; Accepted: 15 January 2020;
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