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A map of copy number variations in the Tunisian population:
a valuable tool for medical genomics in North Africa
Lilia Romdhane 1,2✉, Nessrine Mezzi1, Hamza Dallali1, Olfa Messaoud1, Jingxuan Shan3,4,5, Khalid A. Fakhro6,7, Rym Kefi1,
Lotfi Chouchane3,4,5 and Sonia Abdelhak1

Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can
act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations
remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations.
In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-
nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares,
PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were
performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb
of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the
identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are
reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on
genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights
into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized
medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.
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INTRODUCTION
Copy number variations (CNVs) are considered as genomic
structural variations ranging from 1 kb to multiple megabase
pairs in length1–3. CNVs are likely caused by one single or a
combination of multiple genomic rearrangements, such as
unbalanced translocation, deletions, insertions, and duplications.
Therefore, CNVs are generally observed as a gain or a loss of DNA
segment copies that deviate from the normal diploid state. CNVs
may influence phenotypes by changing gene dosage, interrupting
coding sequences, creating novel fusion genes, or by altering the
distance of a gene from its regulatory elements4–6. It has been
assessed that up to 60% of the human genome encloses CNVs,
which generally range in size from 100 to 500 kb7. These CNVs are
major contributors to human genetic diversity.
Two models of CNV–phenotype associations have been

suggested8. The first model encompasses common copy number
polymorphisms (CNPs) with a frequency exceeding 1% in the
general population. Genes spanned by CNPs are mainly enriched
for biological functions and pathways related to drug response,
immunity, and sensory perception9,10. They alter phenotypes by
changing the dosage of genes or other functional elements, thus
influencing complex traits such as HIV-1/AIDS susceptibility (MIM
609423), Crohn’s disease (MIM 266600,) and glomerulonephritis in
systemic lupus erythematosus (MIM 152700). CNVs also occur in
genes encoding drug-metabolizing enzymes, including the
cytochrome P450s (CYP2B6 and CYP2D6), which are susceptible
to structural variations due to highly homologous pseudogenes.
CNV distribution influences drug metabolism and are important in
pharmacogenomics screening11. The second model involves rare

and highly penetrant CNVs. These CNVs are responsible for the
deletion or the duplication of large genomic segments resulting in
genomic disorders such as Prader–Willi syndrome/Angelman
syndrome (MIM 176270/105830, 15q11-q13 deletion),
Williams–Beuren syndrome (MIM: 194050, 7q11.23 deletion),
Potocki–Lupski syndrome (MIM:610883, 17p11.2 duplication),
and Charcot–Marie–Tooth disease, type 1A (MIM:610098, 17p12
duplication)12.
In order to understand the extent to which CNVs influence

phenotypes, deep analyses in both patient and healthy individuals
are required. Different approaches, including quantification of
hybridization to specific oligonucleotides13, clone arrays14, direct
genome sequencing15,16, and single-nucleotide polymorphism
(SNP) array17–19, allowed to explore CNVs, thus providing their
global estimates of frequencies, distribution, and functional
features in large population cohorts and HapMap sam-
ples1,2,4,16,19–29. Although medical and clinical genetic studies
have been widely performed in the Arab World known to display
high rates of consanguinity and endogamy, little attention has
been paid to potential variations linked to health in the
region30,31. Therefore, information related to molecular pathogen-
esis and knowledge of gene variants segregating in the Arab
genome is lacking as well as genotype–phenotype correlation of
genetic conditions for both monogenic and multifactorial
diseases.
Studies focusing on the characterization of CNVs in the Arab

World are not available, except one on the Qatari population16. In
this study, we applied Affymetrix Genome-Wide Human SNP Array
6.0, which was designed for both SNP and CNV detection, to
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explore genome-wide CNV in the Tunisian population. Tunisia is a
North African country with 11 million inhabitants. The native
background population is Berber and the genetic properties of the
present population are shaped by the multiple invasions and the
migratory waves of allogenic populations and ethnic groups
mainly from the Middle East and Europe32. In addition, like other
countries from North Africa and the Middle East, the Tunisian
population depicts high rates of consanguinity and endogamy,
leading to the expression of recessive genetic diseases at relatively
high frequencies and in several cases leading to comorbid-
ity30,33,34. Because of the relatively high inbreeding rates in this
population35, it is likely that CNVs, alongside SNPs and indels, play
a role in the inherited disease risk burden. In the present study, we
provide the first comprehensive Tunisian CNV map and performed
functional analysis on CNV overlapping genes in order to
understand their role in conveying disease risk.

RESULTS
Characteristics of CNVs identified by PennCNV
A total of 4591 CNV calls on 102 individuals (73 males and 29 females)
were merged into adjacent CNVs leading to 4573 CNVs. CNV carrier
rate was 75.5%. After filtering unreliable CNV calls from telomeric,
centromeric, and immunoglobin regions and removing CNV with <10
probes and according to length, 3964 CNV events were obtained. In
this dataset, an average of 38.86 CNV per individual with a ratio of
deletions to duplications of about 2:1 was identified (Supplementary
Table 1). The number of CNVs per individual ranged from 17 to 63
(Supplementary Fig. 1). The mean size of a CNV was 96.7 kb. The
median size of duplications is ~57.170 kb, which is larger than that of
deletions (Wilcoxon test, p value < 2.2e− 16) (Supplementary Table 1
and Supplementary Fig. 2a, b).

Characteristics of CNV loci (CNVR) identified by PennCNV
By merging overlapping CNVs into CNV regions (CNVRs), we
identified 751 CNVRs with sizes ranging from 1.02 kb to 3.184 Mb
and an average size of 104 kb (Supplementary Table 2). Among
these CNVR, we identified 469 loci containing only deletions (loss-
loci), 173 loci containing only duplications (gain-loci), and 109 loci
containing both deletions and duplications (mixed loci). These 751
CNVRs are covering 78.072 Mb of the genome with a sum of loss-
loci length of 23.102 Mb, which is slightly larger than that of
gain-loci (22.458 Mb). Nevertheless, the CNVR deletion length
median (19.380 kb) was significantly lower than that of gain-loci
(61.430 kb) (Wilcoxon test p value < 2.2e− 16) similarly for the
individual CNVs. Moreover, ~40% of CNVR were <20 kb and the
majority of these segments were <100 kb (78.5%) (Supplementary
Table 3 and Supplementary Fig. 3a). About 60% of the CNVR in this
size range (100 kb) were loss-loci, whereas duplication loci
represented only 14.24%.

Characteristics of CNVs identified by Birdseye (Birdsuite)
After filtering spurious CNVs, a total of 6263 segments have been
called with an average of ~61.4 CNV per individual (Supplemen-
tary Table 1). The count of deletions was nearly three times that of
duplications. The number of CNVs per individual ranged from 38
to 325. The mean size of a CNV was 46.770 kb (Supplementary
Table 1). The median size of duplication is ~42.770 kb, which is
larger than that of deletions (Wilcoxon test, p value < 2.2e− 16)
(Supplementary Table 1 and Supplementary Fig. 2c, d).

Characteristics of CNV loci (CNVR) identified by Birdseye (Birdsuite)
We also merged Birdseye output that overlapped into CNVR
similarly to the PennCNV output analysis. The 6263 called CNVs
were collapsed into 1236 regions, of which 546 were loss-loci,
603 were dup-loci, and the remaining were 87 mixed loci

(Supplementary Table 2). The 1236 CNVRs identified by the
Birdseye data cover 65.607 Mb of the nucleotide sequence. The
sum of the loss-locus lengths (18.971 Mb) is lower than that of
duplication loci (29.068 Mb) (Supplementary Table 2). As for the
PennCNV data, the median of the loss-locus lengths (13.330 kb) is
lower than that of the duplication loci (16.140 kb) in the data
generated by Birdseye (Supplementary Table 2). However, this
difference is not significant (Wilcoxon test p value= 0.8451).

Comparison of CNVRs generated by both algorithms (PennCNV
and Birdsuite)
Significant differences were found when comparing CNVR para-
meters of data generated by PennCNV and Birdsuite (Supplemen-
tary Tables 2 and 3 and Supplementary Fig. 3a, b). The proportion of
loss-loci (62.4%) identified by PennCNV data was higher than that
for the Birdseye data (44.2%). Nevertheless, the proportions of the
duplication (48.8%) were higher in the Birdseye data than that of
PennCNV (23%). This difference was significant (χ2 test p value <
2.2e− 16). In addition, the median length of CNVRs generated by
PennCNV (28.010 kb) data is twice higher than that of Birdsuite data
(16.1 kb) (Wilcoxon test p value < 2.2e− 16). In addition, PennCNV
tends to call CNVs that collapse into deletion regions longer than
those of Birdsuite (Wilcox test p value= 3.873e− 06). Similarly,
the duplication CNVRs of PennCNV data are longer than that of
Birdsuite (Wilcoxon test p value < 2.2e− 16). No significant differ-
ence was noted for mix-loci lengths between the two algorithms. In
addition, CNVR length distributions between the two algorithms
were significantly different (Kolmogorov–Smirnov test p value=
9.992e− 16). This was also the case for loss-loci and dup-loci
lengths (Kolmogorov–Smirnov test p value= 4.987e− 05 and
p value < 2.2e− 16, respectively) (Supplementary Tables 2 and 3).

Concordance of PennCNV CNVR
As CNV detection using microarrays is usually plagued with poor
specificity or a high false-positive rate, and as there is a significant
difference between the performance of CNV detection algorithms
as shown earlier (Supplementary Tables 1, 2, and 4), we aimed to
look for overlapping regions between these two datasets as a
concordance and an in silico validation step. Only those detected
by both algorithms have been considered. Seventy-eight percent
of PennCNV loci overlapped with those of Birdseye (Supplemen-
tary Fig. 4a). Consequently, we found 586 loci with 50% reciprocal
overlap with Birdseye data on the 22 autosomes called validated
CNVR (vCNVR) (Supplementary Fig. 4b). Moreover, deletion and
duplication states of PennCNVR output were consistent with
Birdseye data in 79% loci. The vCNVR length ranged from 1.02 kb
to 2.074 Mb with an average of 90.3 kb. In all, 78.32% of the vCNVR
were <100 kb (Supplementary Fig. 5). About 56% of these
segments were deletions (del-loci) and 23.2% duplications
(dup-loci). Indeed, these 586 vCNVR comprise 102 homozygous
deletions (CN= 0), 424 single-copy deletions (CN= 1), 187 single-
copy duplications (CN= 3), and 82 amplifications (CN= 4).
The frequencies of these vCNVR genomic segments ranged

from relatively uncommon (0.98%) to polymorphic (98%) (Supple-
mentary Table 5). About 56% of these validated CNVRs were
singleton loci, thus reported only in one individual (0.98%).
Therefore, 259 vCNVR (44.2%) were polymorphic (frequency ≥ 1%).
Among these, 150 (25.6%) were exclusively deletions (CN= 0 or
CN= 1) and 21 (3.6%) exclusively duplications (CN= 3 or CN= 4).
Eighty-eight (15.02 %) were reported as “mixed” loci.

Characteristics of CNPs identified by Canary (Birdsuite)
In addition to the identification of CNV segments by PennCNV and
Birdseye, we also genotyped previously reported CNPs. Among
the 1291 autosomal CNPs, 683 (52.9%) were allelic in the Tunisian
population (meaning being deletions and/or duplications) and
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530 (41.05%) were bi-allelic. CNPs were genotyped on all the
autosomes (Supplementary Fig. 6). The CNP frequencies ranged
from relatively uncommon (0.98%) to polymorphic (99%) (Supple-
mentary Table 5). Therefore, 650 (95.2%) of these allelic CNPs were
polymorphic (allelic frequency > 1%).
The CNP length ranged from 1.017 to 487.878 kb with an

average of 22.827 kb. In all, 94.87% of the genotype CNPs are
<100 kb (Supplementary Fig. 7). About 61.05% of these segments
were exclusively deletions (417 del-loci) and 16.54% exclusively
duplications (113 dup-loci). The count of the CNP loci deletions
was therefore near 3.69 times that of duplications (Supplementary
Table 6). Similarly, the gain CNP loci are longer than loss CNP loci
(Wilcoxon test p value= 3.8 × 10−08). In addition, CNP length
distributions between the two types of loci were significantly
different (Kolmogorov–Smirnov test p value= 4.43 × 10−07).
These 683 allelic CNP comprise 235 homozygous deletions

(CN= 0), 559 single-copy deletions (CN= 1), 223 single-copy
duplications (CN= 3), 92 amplifications (CN= 4), 5 amplifications
(CN= 5), and 4 amplifications (CN= 6). About 96.78% (661) of
these CNPs were non-singleton loci, thus polymorphic (fre-
quency ≥ 1%).

Characteristics of the global CNV map
As vCNVR and CNP overlapped (169 overlapping vCNVRs), we
merged them by union together and checked them manually in
order to provide a global CNV map of the Tunisian population.
After removing likely false-positive segments with frequency
>90% that were absent from the 1000 Genomes project and
Genome Aggregation database (gnomAD) databases, the global

CNV map is composed of 1083 CNVs (Supplementary Fig. 8 and
Supplementary Dataset). The deletions represent 57.43% of the
identified CNVs, while the duplications and the mixed loci are less
represented (21.79% and 20.77%, respectively) (Supplementary
Fig. 8 and Supplementary Dataset). The CNV length ranged from
1.017 Kb to 2.074 Mb with an average of 56.734 kb. The genome
coverage has been evaluated to 61.443 Mb. The overall length
distribution of the global CNV map showed that most of them
(80.24%) were small in length (60 kb) (Fig. 1). The lengths of
amplifications (median= 29.943 kb) were significantly greater
than those of deletions (median= 10.084 kb) (Wilcoxon test
p value < 2.2 × 10–16) (Supplementary Table 7). Homozygous
loss segments represent 25.3% of the identified CNVs and are
shorter than heterozygous deletions (median 8.904 vs. 10.490 kb,
Wilcoxon test p value= 0.04). Approximately 28% (27.97%) of all
the reported CNVs were singleton segments, meaning, identified
in one individual and therefore having a frequency <1%.
The pairwise correlation between the CNV frequency of our

dataset overlapping with those of the 1000 Genomes was positive,
high, and significant (Pearson correlation r= 0.70, 95% confidence
interval (CI)= [0.67;0.73], p value < 2.2e− 16) (Fig. 2). The pairwise
correlation was also positive, high, and significant at the population
level among the five continental groups of the 1000 Genome
project: Africa (AFR): r= 0.6, 95% CI= [0.57,0.63], p value < 2.2e− 16;
the America (AMR): r= 0.69, 95% CI= [0.67,0.72], p value < 2.2e− 16;
Europe (EUR): r= 0.72, 95% CI= [0.69,0.74], p value < 2.2e− 16; East
Asia (EAS): r= 0.63, 95% CI= [0.6, 0.66], p value < 2.2e− 16; South
Asia (SAS): r= 0.65, 95% CI= [0.64,0.70], p value < 2.2e− 16
(Supplementary Fig. 9a–e). These results suggest that the CNV
profile of the Tunisian population is similar to the European
population and different from the African.
In addition, in order to identify novel CNVs, we queried the

following databases: Database of Genomic Variants (DGV) (http://
dgv.tcag.ca/dgv/app/home), 1000 Genomes, dbVar (https://www.
ncbi.nlm.nih.gov/dbvar/), and gnomAD, as well as the Deciphering
Developmental Disorders (DDD) and Ira M. Hall’s lab studies
for 50% overlapping segments. Seven “novel” CNVs were found,
of which one is a deletion and the remaining are duplications
(Table 1). All these “novel” segments are singletons. The length of
these “novel” CNVs ranges from 7.155 to 700.721 kb with an
average of 250.699 kb (Table 1).

Functional effect of CNV overlapping genes and pathway
enrichment
The 524/1083 (48.38 %) CNVs overlap with 1018 RefSeq genes (597
protein coding genes, 421 non-coding genes) (Fig. 3 and Supple-
mentary Dataset). Deletions spanning genes were more frequent (261
genic deletions vs. 151 genic duplications) (Table 2, Supplementary
Table 8, and Supplementary Dataset). Homozygous deletions are

Fig. 1 Global map CNV size distribution. Overall length distribution of the global CNV map.

Fig. 2 Scatter plot of frequencies of CNVs in Tunisia identified
in the 1000 Genome project. A positive and high correlation is
shown (Pearson correlation r= 0.70, 95% CI= [0.67;0.73], p value <
2.2e – 16).
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Table 1. Novel CNVs identified in the Tunisian population.

CNV ID Chr:start–end CNV
length (kb)

CNV type Frequency (%) RefSeq gene OMIM
phenotype

CNVR_2_19 2:66,077,241–66,249,560 172.319 DEL 0.98

CNVR_4_8 4:38,841,353–39,120,619 279.266 DUP 0.98 FAM114A1; KLHL5; MIR574; TLR6; TMEM156 No

CNVR_11_27 11:111,478,291–111,677,695 199.404 DUP 0.98 ALG9; PPP2R1B; SIK2 Yes

CNVR_11_29 11:128,374,712–128,381,867 7.155 DUP 0.98 ETS1 No

CNVR_13_8 13:61,040,537–61,741,258 700.721 DUP 0.98 LINC00378; TDRD3 No

CNVR_13_15 13:112,804,834–113,081,675 276.841 DUP 0.98 LINC01043; LINC01044; LINC01070;
LOC100506016; LOC101928730; SPACA7

No

CNVR_14_11 14:50399836–50519022 119.186 DUP 0.98 LINC01588; LINC01599; MIR6076 No

Gene in bold indicates genes involved in OMIM phenotype.

Fig. 3 Circular plot showing a chromosomal view of the global CNV map of the Tunisian population. The innermost circle with vertical
lines represents all the CNV from chromosomes 1 to 22: blue, red, and green color lines represent deletions, duplications, and mixed loci,
respectively. The frequency of each CNV is depicted by the second track. The third concentric circle represents the genomic distribution of
CNV genes overlapped according to the type of the CNV.
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significantly gene poor (Kruskal–Wallis χ2= 37.202, d.f.= 2,
p value= 8.348e− 09) (Fig. 4). Rare CNVs (frequency < 1%) seem
not to harbor more genes than common events (Wilcoxon rank-
sum test p value= 0.1972). The longest CNV in our dataset is a
heterozygous deletion at the long intergenic non-protein coding
RNA 290 (LINC00290) locus reported in three different healthy
individuals.
Among the novel CNVs, 6 are overlapping with 20 RefSeq

genes (10 protein coding genes and 10 non-protein coding
genes) (Table 1).
Pathway analysis of these genes revealed 16 significant

enriched pathways of potential concern for public health
(Table 3). Furthermore, standard functional annotation using
the GO terms and pathways showed significant cellular compo-
nent terms relating to the nervous system (Supplementary Table
9). Biological processes and molecular functions of genes bearing
CNVs were also related to physiology of the nervous system, drug
metabolism, carbohydrate metabolism, immunological system,
cardiac and lung organs, and olfactory and auditory systems
(Supplementary Table 9).

Mapping CNV genes to diseases and phenotypes
In order to determine whether CNV might play a role in disease
expression in the Tunisian population, we queried the 597 RefSeq
genes affected by the CNV segments against the GAD database36,
which is an archive of human genetic association studies of
complex diseases. We found genes associated with 255 diseases
clustered in 10 disease classes in this database (Supplementary
Table 10). Significant disease classes include diseases of the
immune and blood systems and metabolic diseases (Supplemen-
tary Table 10). Diseases of the nervous system are also present.
CNV genes seems also to underlie or to be associated with aging
and ocular disorders.
In addition, these RefSeq genes were compared to the database

of Online Mendelian Inheritance in Man (OMIM). One hundred and
three genes were reported to cause 155 Mendelian diseases/
phenotypes (Supplementary Dataset). According to the World
Health Organization international classification of diseases (WHO
ICD), genic CNVs are responsible for three major disease groups:
(1) diseases of the nervous system (20%), (2) the congenital
malformations, deformations, and chromosomal abnormalities
(19.35%), and (3) endocrine, nutritional, and metabolic diseases
(13.55%). Mental and behavioral disorders as well as neoplasm
represented 7.74% and 6.45% of the diseases, respectively (Fig. 6).
Among the CNV predisposing diseases, 41.93% are autosomal
recessive (AR) and 30.32% autosomal dominant (AD) (Fig. 5).
In order to identify genes that have evidence of disease, we

performed a manual annotation of CNV-overlapped genes listed in
OMIM to determine the number of exons and introns that were
potentially disrupted by these CNVs. Consequently, we focused on
functional deletions that affect exons as well as functional
duplications that either overlap at least one entire gene, thus
likely leading to an increased dosage, or those that are internal to
the gene that potentially could disrupt the protein Heterozygous
deletions leading to the loss of genomitranslation frame. In
addition, we discarded all intronic events. Sixty-three (63) disease
genes were identified as harboring 54 CNVs (Table 4). The list of
OMIM disease genes was then split into two groups. The first one
includes CNVs that have been previously reported in the 1000
Genome project, gnomAD, the DGV, and dbVar databases, as well
as those identified in the studies of DDD and Ira’s lab. The second
one contains disease genes affected by the novel, likely Tunisian-
specific CNV, that were not reported by the mentioned queried
databases.
In the former group, we reported 56 genes affected by 53

known CNV segments (13 deletions, 27 duplications, and 13 mixed
loci) (Table 4). Frequency of these segments range from 0.98 toTa
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100% (Table 4). Among these CNV known segments, heterozygous
deletions in two individuals have been detected spanning from
exons 6 to 7 in the ABO gene. Three exons have been deleted at
the heterozygous state in the STRC gene known to cause deafness.

Two exons are also deleted at the heterozygous state in the COX10
gene responsible for the Leigh syndrome. Heterozygous deletions
leading to the loss of genomic segment spanning from the start of
the transcript to intron 21 in the spermatogenic failure disorder

Fig. 4 CNV length, gene content and frequency distributions. CNVs were plotted according to event type (color), size (y-axis), frequency in
the Tunisian population (x-axis, number of individuals), and number of RefSeq genes affected (circle size).

Table 3. KEGG pathways enriched in genes affected by CNVs in the Tunisian population.

KEGG pathway Number of genes Fold enrichment P value

Olfactory transduction 37 3.16 7.66 × 10−10

Chemical carcinogenesis 15 6.38 5.81 × 10−8

Drug metabolism—cytochrome P450 14 7.01 5.86 × 10−8

Metabolism of xenobiotics by cytochrome P450 14 6.44 1.67 × 10−7

Drug metabolism—other enzymes 7 5.18 0.002

Starch and sucrose metabolism 6 6.19 0.002

Retinol metabolism 8 4.26 0.002

Glutathione metabolism 7 4.67 0.003

Antigen processing and presentation 8 3.58 0.006

Carbohydrate digestion and absorption 6 4.86 0.007

Steroid hormone biosynthesis 6 3.52 0.026

Biosynthesis of unsaturated fatty acids 4 5.92 0.028

Porphyrin and chlorophyll metabolism 5 4.05 0.033

Osteoclast differentiation 9 2.34 0.037

Mineral absorption 5 3.87 0.039

Ascorbate and aldarate metabolism 4 5.04 0.043

Fig. 5 WHO ICD-10 classification of diseases caused by CNV genes. Three major disease groups are caused by CNV genes. Disease classes
are colored according to the inheritance mode.
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gene have also been reported. As these disorders are AR and the
individuals harbor these deletions at the heterozygous state,
consequently, they do not express the corresponding phenotypes.
In addition, homozygous deletions (in 13% of the sample) and

heterozygous deletions (in 23%) overlapping from intron 15 to the
end of the CFH gene known to cause three diseases have been
identified. These diseases are: basal laminar drusen (AD),
complement factor H deficiency (AR, AD), and atypical hemolytic
uremic syndrome (AR, AD). Unfortunately, no additional pheno-
type data are available to check if these CNVs were causative of
one of these phenotypes in the genotyped individuals of our
cohort. Moreover, 16 CNVs completely delete 18 genes including
RHD. Complete gene deletions affect, for example, the CFHR1,
CFHR3, and PMP22 genes known to predispose to hemolytic
uremic syndrome and to cause Charcot–Marie–Tooth disease type
1A, Charcot–Marie–Tooth disease type 1E, Dejerine–Sottas disease,
and Roussy–Levy syndrome (Table 4).
Heterozygous deletion leading to the disruption of the coding

sequence of the FRRS1L gene has been identified. This gene is the
cause of the early infantile epileptic encephalopathy, an AR
disease. Complete gene duplication in AR genes like CARS2
responsible for combined oxidative phosphorylation deficiency
has been observed (Table 4).
We also examined OMIM-gene-containing likely novel CNVs. In

this group, we identified one singleton duplication affecting the
ALG9 gene and the complete PPP2R1B gene (Table 4). The two
genes are known to be the causes of the congenital disorder of
glycosylation type II and lung cancer, respectively (Table 4).

Linkage disequilibrium (LD) analysis of CNV with nearby SNP
We investigated the “taggability” (measuring the CNVs that are in
high LD with flanking SNPs) of SNPs to CNVs in the Tunisian
population. We restricted our LD analysis to polymorphic bi-
allelic deletions identified in at least four individuals (frequency ≥
3.9%). Therefore, 223 bi-allelic deletions (bi-deletions) were
retained for this analysis (Supplementary Dataset). The LD
analysis between bi-deletions and flanking SNP was performed
within five windows (200 kb, 500 kb, 1 Mb, 2 Mb, and 3 Mb). As
expected, all the bi-deletions had at least one neighboring SNP
within the genomic region of either breakpoint. The maximum
number and the median of SNPs in LD with CNVs were 15 and 4,
respectively. This result indicates that half the bi-allelic deletions
could be tagged by >4 SNPs and that some of these deletions
could be tagged by 15 SNPs. Nevertheless, only 47 CNVs (21.07%)
were in strong correlation (r2 ≥ 0.8) with at least one SNP in all
five tested windows. A total of 111 SNPs was in strong correlation
(r2 ≥ 0.8). Consequently, these findings highlight that the
Affymetrix 6.0 SNP array is not adapted to identify bi-allelic
deletion as the majority of them were not well tagged by the
nearby SNPs. Furthermore, we evidenced that the strength of the
r2 value decreases as the distance of the CNVs and the SNP
increases (Fig. 6). In order to bring out whether not well-tagged
bi-allelic deletions tend to be located in the genomic regions
where SNP markers are sparse, we performed a correlation
analysis. The Spearman test result suggests the absence of any
pattern (Spearman’s rank correlation rho p value= 0.56) (Sup-
plementary Fig. 10). Nevertheless, a weak association is present
between the correlation (r2) and the distance of SNP from the
CNVs (Spearman’s rank correlation rho= 0.1; p value= 1.16 ×
10−3). However, smaller-sized CNVs were generally in strong
correlation (Spearman’s rank correlation rho=−0.21, p value=
1.08 × 10−2) with more SNPs (Spearman’s rank correlation rho=
−0.3, p value= 2.09 × 10−6) (Supplementary Fig. 11).
The 111 tag-SNPs have been analyzed with RegulomeDB to

assess their potential functional effect. Only eight variants (7.14%)
are considered known expression quantitative trait loci (eQTL)
for genes and thus have been shown to be associated with

expression as their RegulomeDB score has been estimated to 1f,
affecting significantly the expression of many genes in different
tissues (data not shown). Three other tag-SNPs are putative
functional variants but without eQTL data, and thus no known
direct effect on binding was reported. Their scores were low (2a,
2b, and 3a). Among these 11 functional tag-SNPs, only one
(rs7542235) has been described to be associated with advanced
age-related macular degeneration, age-related macular degenera-
tion with geographic atrophy, and age-related macular degenera-
tion with neovascularization. Due to the unavailability of clinical
information on the participants, these phenotypes could not be
confirmed.
Furthermore, only 22 genic CNVs (22/223= 9.9%) were tagged

by array SNPs (r2 > 0.8). Four bi-allelic deletions are overlapping
with OMIM genes known to predispose to the hemolytic uremic
syndrome, albinism, hereditary neuropathy, mental retardation,
and ventricular fibrillation (Table 5). The CNP147 is in high LD with
the rs7542235 SNP. This 71-kb deletion spans the entire CFHR1
and CFHR3 locus that is associated with an increased risk of the
hemolytic uremic syndrome and a decreased risk of age-related
macular degeneration. The one-copy deletion frequency is 44%
and the homozygous deletion frequency is 14%.
We also investigated the potential role of bi-allelic deletions

in their etiology of complex diseases or traits. Therefore, we
calculated the correlation r2 between bi-allelic deletions and
the SNPs available on the NHGRI-GWAS catalog. Only one
GWAS-SNP (rs4704970) was found to be in high correlation with
one CNP (CNP877) among the SNPs that have been found to be
associated with various complex diseases and traits in the
NHGRI-GWAS catalog. Therefore, we redefine our threshold to
r2 > 0.5. Only three SNPs in high correlation (r2 > 0.68) with
three CNVs were identified to be correlated with three diseases
or phenotypes, such as high-density lipoprotein cholesterol and
triglyceride levels, multiple sclerosis, and obesity (Table 6). One
SNP was in perfect correlation (r2= 1) with one CNP. The
rs4704970 was in perfect correlation with the CNP877. This CNV
locus is a 5.957-kb deletion located in chromosome 5 and is
located 18.263 kb from the SNP. No RefSeq genes overlap with
this locus. The frequency of this deletion in the Tunisian
population was high (24.75%), of which 23.76% were one-copy
deletions and 0.99% were two-copy deletions. The remaining
CNVs, CNP158 and CNVR_16_6_CNP2150, were also found in
high LD with two SNPs (rs4844913 and rs11639988, respec-
tively) known for their association with metabolic phenotypes.

Fig. 6 The correlation between the r2 and the distance between
CNV deletion and single-nucleotide polymorphism (SNP). The
decrease of the r2 strength as the distance of the CNVs and the SNP
increases is shown.
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DISCUSSION
We present a pioneering study of the CNVs in the Tunisian
population and provided for the first time a comprehensive map
of these structural variations. In agreement with previous studies
available from various cohorts and populations, our findings
suggest that a high proportion of individuals (75.5%) carried at
least one CNV21,27,37. We consistently identified reliable 1083 loci
spanning 61.443 Mb of the Tunisian genome. It was shown to
have more deletions than gains, while deletions seem to be
shorter than duplications. Similar results have also been detected
in other reports using different arrays, methods, and algo-
rithms8,23,27,38. Such patterns have been associated partially with
the bias of SNP genotyping arrays for detecting a greater number
of deletions than duplications39,40. In addition, many detected
CNVRs were featured by both losses and gains. These “mixed” loci
potentially reflect recurrent copy number changes at the
same locus.
The two used programs, PennCNV and Birdseye, implementing

the hidden Markov model (HMM) algorithm, show better
detection performance among the tools tested on the Affymetrix
platform41. Nevertheless, we observed large variations in the
generated calls, on which we applied a number of quality filtering
criteria to minimize false positives and identify high-quality calls. It
has been recommended that using multiple CNV calling
algorithms and softwares designed for a genotyping platform
instead of just one is a better strategy to decrease the false-
negative rate as well as to consider subsequently overlapping
regions for downstream analysis37,42. In addition, for multi-allelic
CNVs like those encompassing the salivary amylase and UDP-
glucuronosyltransferase genes, obtaining accurate genotypes is
particularly challenging. This is observed not only for genotyping
array technologies but also using sequencing techniques43. The
availability of high-throughput sequencing (or next-generation
sequencing (NGS)) projects would produce improved CNV calling
standards, like the 1000 Human Genomes project and other new
efforts16,44–46. Large inconsistencies in the outputs of diverse CNV
calling algorithms draw special attention to the importance to
standardize array data collection, assessment of quality, and
experimental validation. Consequently, in order to shed light on
the burden of the CNVs on both disease susceptibility and normal
phenotype variability, cautious experimental designs as well as
accurate data filtering would be required. Hybrid approaches
combining NGS and complementary analysis tools will help
undoubtedly and correctly define the CNV structure and clear
up its function.
In the absence of a Tunisian reference genome, our study gave

important insights on CNV distribution that could be of a great
impact on public health in Tunisia. In our sample, seven of the
reported CNVs, which were all singleton CNVs, were not present in
former data submitted to databases such as DGV, 1000 Genomes,
gnomAD, and dbVar databases. Taking into consideration the
relatively modest size of the studied sample, it is difficult to
confirm the specificity of the identified events to the Tunisian
population and to determine whether these singleton CNVs are
true “rare event” or not.
Furthermore, the comparative analysis of our data with 1000

Genomes data gives insights on the Tunisian population structure.
The pairwise correlation analysis suggests that the CNV profile of
the Tunisian population is similar to the European and different
from the African. Population stratification using principal compo-
nent analysis with CNP genotype data shows that the Tunisian
population clusters with European populations and differs from
the African (Romdhane et al., unpublished). These results are in
agreement with previous studies on the Tunisian population
structure using different autosomal, Y chromosomal, and mito-
chondrial markers highlighting the heterogeneity of the TunisianTa
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population and the contribution of the European in its genetic
background47–51.
In general, CNVs can be categorized as pathogenic or benign.

These latter CNVs are not often associated with detectable
phenotypic outcomes as they overlap with non-functional
genomic segments. Functional annotation of the reported CNVs
has unveiled notable features as approximately half of the CNV in
the Tunisian genome (48.38 %) affected known genes, suggesting
that they could contribute to key traits in Tunisian individuals and
might affect population health. Mapping genic CNVs to diseases
highlighted the enrichment of three major diseases groups, which
suggests that Tunisians are likely at risk of developing diseases of
the nervous system, congenital malformations, chromosomal
abnormalities, and endocrine, nutritional, and metabolic diseases
if we take into account our previous results on genetic disease
spectrum in the Tunisian population33.
The genic CNV segments were found to encompass coding and

functional elements, several disease-related genes, and important
drug-metabolizing genes that might contribute to the burden of
chronic diseases. Homozygous deletions in our dataset are
significantly gene poor as it has been previously reported8. It
has also been shown that rare CNVs harbor more genes than
common events8. Such relationship was not found in our study
mainly due to the modest sample size that underpowered
discovering such a pattern. We have also noticed an increased
burden of CNVs in some Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways involved in infectious disease suscept-
ibility. Among these genes, the KIR3DL1 gene that encodes killer
cell immunoglobin-like receptors (KIR) was identified in a “mixed”
locus. It has been reported that the counts of individual genes in
the KIR locus directly influence early aspects of HIV-1 control52.
This finding deserves further investigations in order to understand
different degrees of susceptibility and resistance to HIV infection
in Tunisia and other the Middle East and North African (MENA)
populations53,54.
Furthermore, we noted enrichment in other medically relevant

pathways, including starch and sucrose metabolism, carbohydrate
digestion and absorption, and biosynthesis of unsaturated fatty
acids. Among genes involved in such pathways were the salivary
amylase gene AMY1 and the pancreatic amylase gene AMY2 for
which copy number changes were previously shown to be
determinant of metabolic states, such as body mass index, obesity,
and insulin resistance55,56. These metabolic markers are present in
diabetes, a serious population health problem that shows the
highest prevalence in the MENA region with >10% of the
population being diabetic57. Therefore, it would be preferable to
investigate whether the amylase genes associated with diabetes
in our population in addition to the predisposing genetic factors
already described in Arabs58,59. Moreover, MGAM is another gene
involved in such metabolic pathways and was associated with
non-syndromic oral clefts, a common birth defect60. Deletions
found at this gene should be further investigated as biomarkers of
such congenital malformations in our population.
In addition, CNV genes are also enriched in drug metabolism

and detoxification, as well as chemical carcinogenesis pathways.
The most common example is UGT2B17, where CNV has been
correlated with pancreatic, prostate, and colorectal cancer, in
addition to other diseases related to differential testosterone
concentrations61–63. UGT2B17 gene deletion (UGT2B17*2) has

been associated with the pharmacokinetics of aromatase inhibitor
drugs such as exemestane, as well as in bone health64.
It is important to recall that all genotyped individuals were

phenotypically healthy at the moment of recruitment. Therefore,
the possibility that the carried CNV might be responsible for a
disease cannot be excluded in the absence of complete prospective
phenotypic data as we observed a high proportion of deletions in
coding sequences, even complete gene losses at homozygous
states. Common polymorphic deletions have been essentially
identified in coding exons of genes involved in sex steroid
metabolism (UGT2B28 and UGT2B17), olfactory receptors such as
OR51A2 and OR4F5, and drug response, namely CYP2A6, GSTT1, and
GSTM165. It has been suggested that these common deletion
polymorphisms generally depict ancestral mutations being in LD
with nearby SNPs65. Interestingly, non-coding sequences such as
microRNAs and introns were found to overlap with several of our
CNV loci. Consequently, they could affect different biological
process regulation such as cell apoptosis, proliferation, and
differentiation. MicroRNAs have also been linked to human
diseases. Indeed, some studies have evidenced downregulation of
microRNAs in tumors when compared with normal tissues as well
as their upregulation expression due to CNV in lymphoma66,67.
Moreover, it has been recently evidenced that intronic CNVs
influence gene expression variability and splicing68. Therefore, the
CNV overlapping coding genes, introns, and microRNAs found in
our study could not only contribute to genetic diversity but also in
disease susceptibility in our population.
The presence of CNVRs spanning functional sequences, includ-

ing those associated with the disease, challenges the discrimina-
tion between benign and pathogenic CNVs69. Apparently, healthy
individuals harboring deletions of partial and/or complete coding
exons in genes known to be responsible for severe genetic
diseases remain to be understood, as medically relevant genes
harboring homozygous deletions have been identified in our
study. Homozygously deleted genes have also been reported in
the CNV map generated by Zarrei et al.69, involving OMIM genes
such as UGT2B17, RHD, KIR3DL1, PSG1, HLA-DRB1, and HLA-DQA1.
These genes were considered as non-essential and “dispensable”
because they could be absent from the genomes of apparently
healthy individuals15,69.
The assessment of the burden of “pathogenic” CNVs on health

is challenging due to variable phenotypic manifestations between
individuals harboring similar CNVs. A “double-hit” model has been
advanced in order to explain the variable expressivity involving
the 16p11.2 microdeletions and duplications70–74. These CNVs
have been previously described in neurologic diseases like mental
retardation, schizophrenia, and autism, and even in apparently
healthy individuals70–74. In their study, the authors advanced that
a first hit, such as the 16p12.1 microdeletion, in combination with
a secondary hit like an epigenetic, environmental, or genetic insult
could result in a more severe phenotype75. Phenotypic effects of
CNVs on individuals could be influenced by several properties.
It has been reported that inherited CNVs are more likely to be

benign, while those pathogenic tend to be enriched for de novo
mutation76,77. In addition, the position of the CNV within the
genome has a significant influence on the phenotype. Indeed,
CNVs spanning genes important to development, dose-sensitive
genes or regulatory sequences, are likely contributing to disease
expression or predisposition. The production of a functional

Table 6. Correlation between bi-allelic deletions and GWAS-SNPs at r2 > 0.5.

SV ID Chr:start–end Size (kb) GWAS-SNP r2 value GWAS-SNP location Complex disease/trait

CNP158 1:2,100,816–2,100,839 2.371 rs4844913 0.79 Intergenic HDL cholesterol and triglyceride levels

CNP877 5:15,5476,772–155,482,729 5.957 rs4704970 1 SGCD Multiple sclerosis (age of onset)

CNVR_16_6_CNP2150 16:19,945,650–19,967,362 21.712 rs11639988 0.68 GPRC5B Obesity
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transcript has been evidenced after a gain or a loss of genetic
material and depends on different gene features such as the
coding phase of the non-affected exons and the presence of
alternative splicing isoforms that may counterbalance for the
depletion of the major transcript, as it has been illustrated by the
study on the NRXN1 gene involved in schizophrenia78.
Moreover, pathogenicity also appears to be proportional to the

size of the CNV, as large CNVs likely affect multiple genes, whereas
smaller CNVs affect fewer genes. Furthermore, the nature of the
CNV itself is also mandatory for pathogenesis as duplications are
noticed to have a smaller pathogenic burden than deletions79.
This is the case for the SMN1 locus known to cause AR disease
spinal muscular dystrophy. Deletions of this locus are found in
96% of SMA patients80, whereas persons harboring two or more
copies of the SMN1 gene are typically healthy81,82. Decoding the
complex relationship between CNV genotypes and apparent
phenotype is challenged by confounding elements such as
environmental factors and variable penetrance. CNV-associated
phenotypes can be impacted by haploinsufficiency, genomic
imprinting, and the presence of other genetic factors77. All these
findings emphasize the importance of decoding this type of
variation to decipher the required part of the genome for normal
human development due to the gene function loss83–86. Our study
is the first step in building a Tunisian-specific structural variation
database, thus paving the way to assess the burden of rare and
common CNV of the Tunisian “CNVariome” in a much larger
cohort87.
In an additional analysis, we examined SNPs that are in high LD

with CNVs. We took only 223 bi-allelic deletions. These variants
(tag-SNPs for CNV) would serve to predict CNV alleles when
genotyped and proxy CNVs in investigating associations between
CNVs and disease. Such an approach would reduce genotyping
costs because SNPs are presently much easier to genotype than
CNVs. Some reports supposed that deletion polymorphisms
are commonly in strong LD and segregate on ancestral SNP
haplotypes65,88. Tagging SNPs were found for only 146 CNVs
(65.76%). By this analysis, we aimed also to determine the
usefulness of the Affymetrix 6.0 SNP chip to identify CNVs in the
Tunisian population. The efficacy of this array was rather poor,
with 40.54% of CNVs that were tagged at r2 > 0.5 and 21.17% in
strong LD. Similar findings were observed in the CNV study in the
Qatari population when using the Illumina OMNI2.5M array16. This
taggability gap could be attributed to the local SNP density
paucity, thus influencing the LD level. A comparative LD analysis
using two different SNP sets genotyped by different SNP arrays
revealed that ~80% of CNVs are in high LD (r2 > 0.8) when HapMap
phase 2 SNP set was used compared to ~50% of CNVs that were in
high LD with commercial SNP array sets18. An improvement of this
taggability has been obtained with whole-genome sequencing
SNPs as >70% of the deletions have been tagged by at least one
SNP at r2 > 0.5 and over 50% at r2 > 0.8 in the Qatari dataset in
agreement with LD data generated using 1000 Genome
dataset15,16. Consequently, this fact suggests that CNV genotyping
could be challenging using this or other commercial arrays in
North African populations. Furthermore, correlation analysis
between bi-allelic deletions and GWAS-SNP indicates that these
loss segments could be likely causal variants because of their
strong LD with GWAS-SNP. Notably, the high correlation between
the CNP877 and the GWAS-SNPs near the SGCD gene involved in
multiple sclerosis is consistent with a previous study27. Conse-
quently, data on LD between SNPs and deletions highlight the
advantage of a unique database integrating findings on SNP
genotypes and structural variations and could be combined in
eventual arrays conceived to genotype Tunisian cohorts, in
addition, to imputing these deletions in Tunisian or in ancestrally
and/or ethnically similar populations.
In summary, we provided the first genome-wide study of CNVs

leading to a CNV map of the Tunisian population by generating a

highly dense catalog of 1083 CNVRs in a cohort of 102 Tunisians
using stringent QC criteria for CNV detection. Our study
contributes to shedding light on this unstudied kind of variation
in the Tunisian population. CNV genes reported here are involved
in biological pathways relevant to public health. In addition, we
brought out the first assessment of LD between bi-allelic deletions
and SNPs in the Tunisian population, thus allowing their
imputation in future studies of a matched cohort. Knowing the
prevalence and characteristics of recurrent CNVs is clinically
invaluable. Consequently, they should deserve further character-
ization and be systematically assessed in a larger cohort in order
to assess significance and associations with the relevant diseases
or traits in the Tunisian population. This specificity will be
informative for the design of a population-specific clinical copy
number array, the interpretation, and the assignment of the
pathogenicity of such variations within our population. These
findings gave first insights into the CNVariome of the Tunisian
population and raise many questions regarding their contribution
to health issues in the Tunisian population and ethnically similar
North African populations, thus paving the way to precision
medicine implementation in the MENA region.

METHODS
Study population sample preparation and genotyping
A total of 135 healthy (free from any genomic disorder) unrelated Tunisian
individuals (103 males and 32 females) originating from Northern, Central,
and Southern Tunisia has been recruited. Participants’ mean age is 48 ± 10
years. All individuals gave informed consent. Identities of the participants
were kept anonymous and no personal identifiers were used. According to
the Declaration of Helsinki Principles, ethical approval was obtained from
the biomedical ethics committee of Pasteur Institute of Tunis (PV09/06,
IRB# 0,000,000,044).
All samples have been genome-wide scanned using the Affymetrix

Genome-Wide SNP Array 6.0 as mentioned in a previous study89. This array
contains 906,600 polymorphic probes designed to detect both SNPs and
CNVs as well as 946,000 non-polymorphic probes to call CVNs only. CNV
probes were basically chosen for their genomic spacing and based on
known CNVs available in the DGV (Affymetrix Inc.: Genome-wide human
SNP array 6.0 Datasheet. Available at www.affymetrix.com 2009). Sixteen
individuals were excluded from subsequent analysis as they had QC
contrast values >0.4. The remaining 119 individuals were used for CNV
detection.
Affymetrix Power Tool (APT) v1.8.6 was used to obtain genotype calls

required for copy number estimation. Called SNPs were excluded if they do
not fit the following criteria: minor allele frequency (MAF) >1%, genotype
rate >95%, and p value for Hardy–Weinberg equilibrium (HWE) test over
10−4. This quality control step was performed using PLINK v1.0790 leaving a
total of 782,392 SNPs for subsequent analysis.

CNV detection algorithms and analyses
The two most used CNV detection algorithms, namely PennCNV v.1.0.391

and Birdsuite v1.5.592, were used for both CNV detection and validation. In
this study, we only focused on CNVs in the 22 autosomes because of the
inaccuracy of CNV detection in sex chromosomes. Genomic coordinates for
all CNVs detected in this study were mapped to the human genome
assembly build 37 (hg19).
In the first step, CNV segments were identified using the HMM algorithm

implemented in PennCNV. We followed the PennCNV-Affy Protocol
available at this link (http://www.openbioinformatics.org/penncnv/
penncnv_tutorial_affy_gw6.html). The Log 2R and B-allele frequency
values were obtained. PennCNV provided CNV-specific quality control
(QC) metrics in order to find potentially poor CNV samples. Individuals with
poor quality of signal intensity were removed if they had >100 CNV
segments detected, along with wave factor >0.05 or Log 2R standard
deviation >0.4 and B-allele drift >0.0125. The wave factor consists of the
overall “waviness” or variation of signal intensity and the B-allele drift is the
fraction of “abnormal” markers not clustering in the usual positions (0, 0.5,
and 1). This value represents the median of all chromosomes and it is
useful for detecting genotyping failure42.
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In order to assess the copy number changes, we used the HMMmodel. It
mainly executes segmentation of the log 2 ratio intensity data. In addition,
it predicts copy number states for each segment. There are up to five
delineating the following states: CN state= 0 (homozygous deletion), CN
state= 1 (heterozygous deletion or single-copy loss), CN state= 2 (neutral
copy number of normal diploid), CN state= 3 (single-copy gain), and CN
state= 4 (amplification). CNVs with a normal copy (state= 2) are not
incorporated in the final CNV report. In addition, we used a minimum
number of ten SNPs overlapping with the CNV in order to prevent false-
positive CNV. We used also the same algorithm to merge adjacent CNVs
because it splits large CNV (>500 kb) into smaller parts between 100 and
150 kb CNV calls. Spurious CNV calls in specific genomic regions
(immunoglobulin, telomeric, and centromeric) were removed.
Along with PennCNV, we used the Birdsuite package92 to detect copy

number change. There are two components in Birdsuite. The first one is
Birdseye, which is able to call rare copy number changes. As such,
the CNVs detected by the two algorithms could be cross-validated on the
102 samples. Birdseye called 96,177 CNVs. Those with low confidence
scores (<5), as recommended by the program, were excluded from
subsequent analysis. Similarly, only CNVs on autosomes were used and we
restricted the number of SNPs overlapping with each CNV to three
markers. Therefore, 6670 CNVs with a normal copy are not included in the
final CNV report. CNVs called in centromeric regions are likely to be false
positives because SNP coverage in these regions is very low. Consequently,
all the CNVs spanning centromeres, telomeres, and immunoglobulin
regions were excluded from the analysis for both algorithm outputs. In
addition, we excluded CNVs <1 kb or >3 Mb, leading to a final set of
6263 CNVs.
The genotype of 1316 CNPs can be defined by the second component of

Birdsuite, which is a Canary used to determine the integer copy number
state at each of these CNPs predefined on the Affymetrix 6.0 array92. These
CNPs are distributed on all the autosomes as well as the heterochromo-
somes. They were identified in more than one HapMap II individuals and
their sizes were also precisely determined92. The Canary algorithm was
performed on the 102 Tunisians. As recommended by the software, only
CNP on the 22 autosomes were kept for subsequent analysis as well as
those with integer copy numbers detected with a high confidence score
(>0.1). CNPs were filtered according to their size, only those ≥1 kb
were kept.

Construction of CNV loci using PennCNV and Birdseye outputs
The CNVs identified by both PennCNV and Birdseye overlapped across
individuals. Therefore, they were merged into discrete non-overlapping
loci called CNVR. The boundaries of each locus were assessed by the union
of all CNVs that are included in that given locus. A CNVR is then defined as
the maximum region that is shared between all individuals harboring a
CNV at the same locus. This step was achieved using the BedTools v2.25.0
utilities93. The CNVRs were classified into three classes, “loss” (loci
encompassing deletions), “gain” (loci encompassing duplications), and
“mixed” (loci encompassing both deletions and duplications). The CNV
locus construction was performed in order to assess the CNV frequencies
in the studied population.

Comparison of CNVRs detected by PennCNV and Birdseye
The CNVRs generated using the PennCNV and Birdseye outputs were
compared as a concordance and in silico “validation” step. The reciprocal
50% overlapping method was used to compare the CNVRs identified by
these two computational methods. CNVRs found to overlap with 50% of
their lengths were considered as CNV locus and kept for further analyses.
This final set of CNV was called vCNVRs.

Construction of the global CNV map and comparison to structural
variants from the 1000 Genomes Project and gnomAD
In order to construct the comprehensive autosomal CNV map in the
Tunisian population, we merged vCNVRs and Canary results to generate
the global CNV map. To further provide reliable data, we downloaded the
1000 Genomes phase 3 structural variant data in VCF format as reported in
the original publication15 (https://www.internationalgenome.org/) as well
as the structural variant dataset from the gnomAD94. We then compared
our CNVR dataset while requiring at least 50% of reciprocal overlap size
using Bedtools. When CNVR candidates in our dataset matched multiple
allele structural variants in these databases, we summed the frequency of
all alternate alleles. CNVR with frequency >90% not overlapping with any

structural variants from these databases were considered as potential false
positive and removed. Pairwise correlation analysis of frequency between
the CNV frequency was identified in the present study and that of the 1000
Genomes. The p value threshold for statistical significance is 5%.

Functional annotation of the global CNV map
Merged vCNVRs and allelic CNP of the global CNV map were searched to
find overlapping genes using the RefSeq Gene annotations (the hg19
genome version) using the reciprocal 50% overlapping threshold. These
genes were screened against the OMIM database to find out whether these
copy number segments mapped to disease and phenotype genes. In
addition, we also obtained disease–gene associations available from the
GAD through the DAVID 6.8 bioinformatics suites in order to predict
disease–metabolic pathway associations84,95. The GAD is the NIH-supported
public collection of human genetic association studies of complex
diseases36. This database includes the complete known gene–phenotype
associations as well as non-Mendelian common complex diseases36.
Furthermore, we considered gene ontology of the overlapping genes with
this CNV map in order to estimate the enrichment of these genes when
compared with other genes of the human genome using the DAVID
bioinformatics resources95. In addition, pathway analysis of these genes was
considered using the KEGG pathway database by the DAVID bioinformatics
suite. The statistical significance cutoff was 0.05. In addition, the WHO ICD-10
version 2007 was used (http://apps.who.int/classifications/apps/icd/
icd10online/) in order to determine the genetic disorders distribution
according to the affected tissue, process, system, or organ.

Identification of novel CNV loci
In order to establish whether a CNV locus is novel, we have compared our
data to those available in the following databases: DGV, dbVar, the DDD
study96, the study of Ira M. Hall’s lab (IMH)97 using the AnnotSV
v2.3 software98 in addition to those in 1000 Genomes, and gnomAD. A
CNV was designed as a novel if it did not share at least 50% of its size with
any CNV loci stored in these databases.

LD analysis
We performed a correlation analysis for CNV and nearby SNPs within five
windows (200 kb, 500 kb, 1 Mb, 2 Mb, and 3 Mb). Called SNPs were
previously subject to exclusion if they do not fit the following criteria: MAF
over 1%, genotype rate over 95%, and p value for HWE test over 10−4. LD
analysis was performed using the “--r2 --ld-snp” PLINK v1.07 command90.
In this LD analysis, a bi-allelic model was applied as we only selected
polymorphic bi-allelic deletions (frequency ≥ 4%). We used the squared
Pearson’s correlation (r2) for correlation analysis implemented in the PLINK
v1.07 software90. If an SNP with a high r2 (>0.8) for a CNV locus allele was
identified, then we designed the CNV allele as being in LD with that single-
nucleotide variant. The “tag-SNP” was selected as the variant having the
highest r2 value from such SNPs.

Functional tag-SNP annotation
We performed a functional annotation of tag-SNPs with predicted
regulatory elements using the RegulomeDB database99 (http://www.
regulomedb.org). DNA regulatory elements encompass regions of DNAase
hypersensitivity and binding sites of transcription factors, as well as
promoter regions biochemically characterized in transcription regulation.
Additional databases like Ensembl (https://www.ensembl.org), ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/), and the NHGRI-GWAS catalog
(https://www.ebi.ac.uk/gwas/) have also been queried.

Statistical analysis and data visualization
All the downstream analyses were performed using the statistical software
R version 3.6.2 (http://www.r-project.org). For data visualization, the R
package ggplot2 was used100. RCirocs was used to plot genome-wide
distribution of CNV states101.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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