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Next-generation sequencing of newborn screening genes: the
accuracy of short-read mapping
C. Trier1✉, G. Fournous1, J. M. Strand1, A. Stray-Pedersen1, R. D. Pettersen1 and A. D. Rowe 1

Newborn screening programs are an integral part of public health systems aiming to save lives and improve the quality of life for
infants with treatable disorders. Technological advancements have driven the expansion of newborn screening programs in the last
two decades and the development of fast, accurate next-generation sequencing technology has opened the door to a range of
possibilities in the field. However, technological challenges with short-read next-generation sequencing technologies remain
significant in highly homologous genomic regions such as pseudogenes or paralogous genes and need to be considered when
implemented in screening programs. Here, we simulate 50 genomes from populations around the world to test the extent to which
high homology regions affect short-read mapping of genes related to newborn screening disorders and the impact of differential
read lengths and ethnic backgrounds. We examine a 158 gene screening panel directly relevant to newborn screening and identify
gene regions where read mapping is affected by homologous genomic regions at different read lengths. We also determine that
the patient’s ethnic background does not have a widespread impact on mapping accuracy or coverage. Additionally, we identify
newborn screening genes where alternative forms of sequencing or variant calling pipelines should be considered and
demonstrate that alterations to standard variant calling can retrieve some formerly uncalled variants.
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INTRODUCTION
The expansion of newborn screening (NBS) programs is among
the great achievements in public healthcare systems in the past
two decades1. The main aim of NBS is the early diagnosis of life-
threatening or debilitating disorders whose outcomes can be
dramatically improved upon immediate, pre-symptomatic treat-
ment. NBS began in the early 1960s with the development of NBS
for phenylketonuria (PKU) to prevent severe intellectual disabil-
ity2,3; and in the last 20 years has expanded to include 20+
disorders through a combination of technological advancements4

and improved scientific knowledge. NBS programs vary by country
and predominantly include testing for a range of inborn metabolic
errors, endocrine disorders, primary immunodeficiency disorders,
congenital deafness, congenital heart defects and cystic fibrosis5.
Technological advances such as tandem mass spectrometry6 and
genetic sequencing7,8 have thus far formed the technological
basis of blood sample dependent NBS programs, and the
imminence of relevant gene therapies and routine use of next-
generation sequencing (NGS) in clinical laboratories means that
significant opportunities for NBS have arisen.
The NBS process typically entails metabolic and/or genetic

analysis of dried blood spots taken within the first few days of life.
Most commonly, a multi-tier system is implemented where a first-
tier metabolic analysis is performed, and further confirmation is
sought for abnormal results through repeated, more fine-tuned
metabolic testing. Depending on the laboratory and suspected
disorder, follow-up genetic analysis may be performed by
sequencing of the relevant gene/genes on DNA extracted from
the dried blood spots. It is imperative that the screening process is
performed quickly, as rapid diagnosis can save lives. With the
decreasing costs of NGS technology, wide-scale implementation
for confirmatory testing is becoming an alluring possibility for
NBS9. Through its massively parallel capacity, NGS allows for the
rapid analysis of genomic data on a large scale. It is now feasible

to analyze numerous genes associated with heterogenous genetic
disorders from many patients simultaneously, an approach which
would be prohibitively labor intensive and costly with traditional
Sanger sequencing. Hence, NGS is capable of quickly generating a
large amount of genomic data that can be examined to identify
pathogenic mutations, which would be an asset for NBS9,10 and
allow for further expansion of programs to include additional
disorders that can be diagnosed and treated presymptomati-
cally11. NGS is increasingly being utilized in clinical diagnostics
through targeted gene panels, whole-exome sequencing (WES)
and whole-genome sequencing (WGS), and can even be
performed on DNA extracted from the dried blood spots12. NBS
programs have also begun to integrate NGS technology for
genetic analysis to confirm diagnoses10. As the cost-effectiveness
of NGS technology continues to rise, its use is being suggested for
NBS at the whole population level13–16.
Though decreasing costs and improved accuracy and efficiency

of genome sequencing technologies have ushered in a new era of
clinical diagnostics, NGS technology is not without its short-
comings. It is therefore critical moving forward that the technical
challenges associated with NGS technology are taken into account
when used for clinical verification and diagnostics in NBS
programs. The most common form of NGS used in clinical
laboratories is short-read NGS, which to date is more accurate
than long-read NGS17. Yet, one of the major challenges of short-
read NGS is that short reads may be difficult to place in a genomic
context. As their sequences are by nature short, regions with
repeat sequences or of high homology in the genome are
particularly problematic since they cannot be uniquely mapped to
a reference genome. Paralogous genes or pseudogenes therefore
present a challenge, as short reads may not uniquely map to the
correct gene of interest18. Consequently, incomplete coverage or
mismapping of reads in the genome may occur, potentially
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leading to false negative or positive diagnoses if not handled
carefully.
There are a number of factors that may influence mapping

quality and accuracy to genes of interest in NBS, particularly in the
presence of high homology regions. For instance, some of the
genes related to NBS disorders are in highly variable areas of the
genome where alternate scaffolds have been created to account
for haplotype diversity in the current human genome assembly19.
Thus, genetic diversity not associated with pathogenic variation
may affect read mapping, and the accuracy of diagnoses may
depend on how similar a given individual is to the reference
genome. Additionally, the length of short reads being sequenced
is also expected to affect the extent of the problem homologous
regions pose. Longer reads have been shown to improve mapping
in homologous regions20, but the impact to which differing read
lengths may affect sequencing results of the selection of genes
included in an NBS gene panel has to our knowledge yet to be
tested. Hence, highlighting areas that may be problematic and
understanding the best ways to treat them is essential moving
forward with NBS in the era of NGS data.
Here, we first identify high homology regions that may affect

diagnosis during NBS with the use of short-read NGS. We then
examine the effect homologous regions may have on clinical
diagnoses by assessing mapping performance with differing NGS
read lengths and patient’s ethnic backgrounds. Furthermore, we
test multiple variant calling strategies on a NBS gene with
extensive homology to a pseudogene to determine whether
difficulties with pseudogene homology can be overcome with
adjustments to the bioinformatic pipeline.

RESULTS
Identification of homologous regions to NBS exons
BLAST+21 analysis of NBS exons identified widespread homology
with 525 matches of exonic regions to other areas of the genome
when filtered for ≤10 mismatches and a difference in alignment
length ≤10 (Supplementary Table 1), identifying 17 genes as most
problematic for short read mapping (Fig. 1). The 75 k-mer CGR
Alignability track identified 141 genes with exonic regions with
mappability values ≤0.5. The results of the BLAST+ analysis and
alignability track which were combined to conservatively include
all NBS genes that may have regions of poor alignability, resulted
in 144 NBS genes being included for simulation analyses
(Supplementary Table 2).

Population structuring and differentiation
Principal component analysis (PCA) revealed evidence for
population structuring among the mapped reads of simulated
individuals indicating that there is genetic variation associated
with differing ethnic backgrounds in the NBS genes. The Gambian
(GWD) population separated from the other populations on PC1
and the Southern Hahn Chinese (CHS) population separated on
PC2 (Fig. 2a). However, when mapped reads were filtered for only
exonic regions, a single individual separated out along PC1, while
the GWD population separated from the other samples along PC2
(Fig. 2b). Therefore, while population-specific genetic variation is
evident in NBS genes, this pattern is driven primarily by intronic
regions. In exonic regions, while there is still evidence of
population level structuring, the primary axis of differentiation is
at an individual level.
Global FST estimates of population differentiation in simulated

NBS genes were overall low (FST range: 0.047–0.165, Table 1). The
highest FST estimates were found between the GWD population
and all others (Table 1), consistent with the PCA analyses. Overall
depth of mapping coverage was highly similar between all
populations across all simulated NBS genes (Table 2). Furthermore,
differences in mapping coverage between populations was not

significantly correlated to FST estimates for most population
comparisons, though there were weak positive correlations in the
Gujarati Indian (GIH)-Finnish (FIN) and GIH-Colombian (CLM)
comparisons (Fig. 2b). Together, the FST and depth results indicate
that genetic variation from different ethnic backgrounds does not
create widespread disparities in depth of coverage when mapped
to the human reference genome in NBS genes. This is further
supported by overall mapping accuracy which was nearly identical
between populations at mapping quality (MQ) thresholds of 10
and 20 (Supplementary Table 3).

The effect of read length on mapping accuracy
As expected, mapping accuracy and depth improved with longer
reads (Table 3: One-way ANOVA; p-value < 2e-16, Tukey HSD all
comparisons; p-value < 2e-16, Supplementary Table 4). With all
read lengths, >99% of reads mapped correctly. However, there
was a higher percentage of correctly mapped reads, fewer
incorrectly mapped and fewer unmapped reads at longer read
lengths (Supplementary Table 4). The average depth of coverage
across simulated NBS genes also increased with read length while
standard deviation decreased (Table 3).
There were 43 NBS genes with low depth regions below 20X

once reads were filtered for a MQ ≥ 20. Of these genes, the impact
of longer read lengths was dependent on the extent of homology
to regions outside the gene. Therefore, there were 35 genes that
had low depth regions with the shorter read lengths which were
remedied by longer read lengths (Fig. 3a and Supplementary
Table 5). Moreover, there were eight NBS genes with large regions
of high homology which 250 bp read lengths were unable to span,
leading to low coverage due to nonspecific mapping (Fig. 3b and
Supplementary Table 5). Of the genes with low coverage, ten had
low coverage regions within exons, and of the eight genes with
low coverage across all read lengths, four had low coverage
exonic regions (Supplementary Table 6). We found that the genes
that had low coverage exon regions across all read lengths all had
a high degree of similarity to another genomic region with zero
mismatches and very few differences in alignment length
according to the BLAST+ results, when compared to the other
simulated genes (Supplementary Table 1). This suggests that
degree and length of homology are the key factors impacting
mapping success.
The four genes found to have low coverage regions within

exons at all read lengths are SMN1, SMN2, CBS, and CORO1A. SMN1
and SMN2 are two paralogous genes well known to be
problematic for sequencing and mapping as they are nearly
identical22,23. Deletions encompassing exon 7 in SMN1 are the
most frequent molecular cause of spinal muscular atrophy (SMA),
while the number of SMN2 copies has been associated with
severity and onset time of SMA24–26. CBS deficiency is the most
common cause of homocystinuria, and the biochemical screening
marker used as first-tier screening test is methionine27. CBS is used
to confirm homocystinuria when high levels of methionine are
detected by mass spectrometry. CORO1A is included in the NBS
panel as it is one of the multiple genes related to severe combined
immunodeficiency (SCID)28–30, and panel tested on the DNA
extract when first-tier screening for SCID detects zero or low levels
of T cell receptor excision circles (TRECs) by qPCR quantification7.
The mapping results for these four genes containing the most
problematic exonic regions with low mapping coverage are
consistent with existing genomic data in gnomAD (.v3), which
includes sequencing and mapping data from 71,702 whole
genomes (https://gnomad.broadinstitute.org/). For each of the
low coverage exon regions we identified, we find that gnomAD
reports a mean coverage below 10X across most of the region in
contrast to ~30X throughout most of the genome. Consequently,
these genes can only be successfully NGS sequenced and mapped
with an alternate strategy to standard short-read NGS workflows.
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For each read length, we generated BED files that can be used
as a resource indicating NBS gene regions potentially camou-
flaged by high homology regions and indicate where they may
alternately map in the genome based on our simulation analyses
(https://github.com/cntrier/NBS_short-read_mapping_paper/tree/
master/Problem_Region_Bed_Files/Final_Bed_Files; also see Sup-
plementary Tables 7–10 for lists of low coverage regions at each
read length).

Pathogenic variant calling on CYP21A2
Despite extensive homology with CYP21A1P, variant calling of
pathogenic variants on CYP21A2 at 150 bp read lengths was
accurate for 10 out of 11 simulated single nucleotide polymorph-
isms (SNPs) with default GATK31 HaplotypeCaller settings for both
homozygous and heterozygous variants (Supplementary Tables 11
and S12). This is consistent with the results from depth analysis

that found no bases in CYP21A2 with depth <20 at 150 bp read
lengths (Supplementary Table 5). There was however one
pathogenic SNP variant on CYP21A2 that was not called by
HaplotypeCaller when the MQ parameter was set to the default 20
or lowered to 10 (Supplementary Tables 11–13). Inspection of
depth of coverage across the region, revealed that once the
pathogenic variant was inserted, reads in the vicinity mapped to
the pseudogene as well, lowering the coverage below the
threshold for detection (Fig. 4). This indicates that some regions
of NBS genes affected by pseudogene homology are sensitive to a
very small amount of variation, thereby reducing the chance of
variant detection in the region. When homologous regions in
CYP21A1P were masked and CYP21A2 was variant called with a
ploidy of four as suggested in Ebbert et al., the variant was called
with the genotype 1/1/1/1 (Supplementary Table 14). Therefore,
masking regions of the pseudogene and increasing the ploidy
during variant calling can recover variants that cause reads to map

0MB 60MB
120MB

180MB

240MB
0MB

60M
B

120M
B

180M
B

240M
B

0M
B

60
M

B
12

0M
B

18
0M

B

0M
B

60
M

B

12
0M

B

180MB

0MB

60MB

120MB
0MB60MB

120MB

0MB

60MB

120MB
0M

B

60M
B

0M
B

60M
B

0M
B

60
M

B
0M

B
60

M
B

0M
B

0M
B

6M
B

0M
B

0MB

0MB

60MB
120MB

1

2

4

5

X

22

6
7

10
13

15

16
17

19
20

21

+

SLC16A1 +

**

SMN1

SMN2

SLC6A
8

A
BCD

1

+IGLL1

**

CYP21A2

*

SB
D
S

PS
PHCF
TR **

D
CL
RE
1C**

SL
C2
5A
12

+

EFL1CYP11
A1*

CORO1A
**

STAT5B

STAT5A

+

*

CBS

*
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to the pseudogene once introduced if sequencing depths are
stable in the sample. However, this also creates many extra
variants in CYP21A2 (Supplementary Table 15) and should only be
used as a secondary means of variant calling when no variant
could previously be found. In this instance, the variant formerly
lost was the only called variant with a 1/1/1/1 making it easy to
distinguish from variants only found in the pseudogene which had
0/0/1/1 genotype (Supplementary Table 15).
Additionally, increasing the inner distance between read pairs

also recovered the initially uncalled variant and correctly variant
called all other inserted pathogenic variants (Supplementary Table
16). Since BWA-MEM maps paired-end reads jointly, if one read

Table 1. Global FST estimates across simulated NBS genes between
populations.

CHS GIH GWD FIN

GIH 0.071

GWD 0.165 0.141

FIN 0.104 0.058 0.152

CLM 0.076 0.051 0.120 0.047

      

Fig. 2 Population structuring and the effect of population-specific genetic variation on read mapping coverage. a PCA analysis of genetic
variation in each simulated individual of the five tested populations across all NBS genes (left) and exonic regions of NBS genes (right) for
150 bp read lengths. b The difference in mapping depth for 1 kb stepping genomic windows across all NBS genes between two tested
populations plotted against pairwise FST values for the same genomic windows and populations.

Table 2. Average depth of mapping coverage across simulated NBS
genes by population.

Population Average depth Standard deviation

GIH 39.997 3.801

CLM 39.995 3.803

CHS 39.990 3.800

FIN 39.992 3.799

GWD 39.994 3.807

Table 3. Average depth of mapping coverage across simulated NBS
genes by read length.

Read length Average depth Standard deviation

70 38.029 4.060

100 38.214 3.594

150 38.394 3.231

250 38.636 2.929
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does not map to the genome uniquely, a uniquely mapped mate
read will rescue the pair, mapping both to the best alignment32.
Therefore, if one read maps to both the NBS gene and its
pseudogene while the mate maps uniquely to the NBS gene, both
reads will be given a higher MQ score on the NBS gene than the
pseudogene. Elongating the inner distance could lead to reads
being sequenced outside of the high homology region rescuing
the nonspecifically mapped mate and resulting in higher coverage
of the homologous region. We found this to be the case as the
read mapping depth with a MQ filter ≥10 was higher with the

longer inner distance compared to the shorter (Fig. 4 and
Supplementary Fig. 1).

Variant simulation and calling on low coverage genes
None of the simulated variants in low coverage regions of SMN1,
CBS, and CORO1A were successfully variant called using the
standard GATK31 variant calling pipeline using the default settings,
or when the inner distance between read pairs was increased.
When homologous regions were masked and variant calling was
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performed with increased ploidy, three of the 11 simulated
variants were called (Supplementary Table 17). Of these three
called variants, additional variants were also called in other
genomic positions. In addition, one variant that was not called
generated calls at other locations (Supplementary Table 17).

DISCUSSION
High homology genomic regions are problematic for short-read
mapping as the reads cannot be mapped uniquely to the
reference genome. Efforts have been made previously to
determine which areas of the human genome are highly
homologous, likely presenting a challenge for short-read map-
ping18,20; yet there has been no detailed analysis of NBS-specific
genes to examine how clinical diagnoses may be affected. As
clinical laboratories are now routinely implementing NGS for
diagnostics33 and it is being gradually integrated into NBS
laboratory algorithms, the technical challenges associated with
NGS need to be assessed and addressed.
Here, we perform a detailed analysis mapping the landscape of

bioinformatic challenges associated with genes related to
disorders relevant for NBS programs. We examine which regions
are problematic given different short-read lengths while incorpor-
ating a range of background genetic variation. This serves to
highlight which genes/regions may need to have alternative
strategies in place to achieve accurate genetic diagnoses. We
demonstrate that there are NBS genes containing regions with
high homology to pseudogenes or paralogous genes which result
in reads not mapping uniquely to these regions, causing low
mapping coverage. Low coverage can make it difficult to call
variants as variant calling softwares rely on mapping coverage.
This could result in false negative results because a variant simply
could not be identified. With this in mind, we examined the effect
of different ethnic backgrounds and read lengths on read
mapping of these NBS genes in the presence of high homology
regions.
Different ethnicities have population-specific genetic variation34

which should be taken into account when designing screening
programs for the general population. For this panel of NBS genes,
we found little evidence that ethnic background has an effect on
short-read mapping. The PCA analyses revealed evidence for
population level structuring of genetic variation across NBS genes
in their entirety, as well as when only exons were considered,
however the main axis of differentiation was on the individual
level for exonic reads. We did not find evidence for large
disparities in the mapping accuracy or depth in NBS genes
between populations, and little to no correlation between
population differentiation and differences in mapping coverage.
This suggests that in the selected genes for the NBS panel,
population-specific genetic variation is small enough that it does
not produce differences in read mapping on a large scale. This
may be due to selective pressure against variation in disease
related genes, or simply that the sample size simulated did not
allow for all possible population-specific variation to be taken into
account. It is also noteworthy that the genetic variation in this
study is likely an underestimate as any variants that greatly affect
mapping to the reference genome may not have been correctly
variant called in 1000 Genomes Project which we used to simulate
reads. However, the very similar mapping coverage and accuracy
across all populations, even in regions with high levels of
population differentiation, suggests that BWA-MEM is a robust
enough mapping software to handle population-specific variation
in NBS genes. While we did not detect a widespread effect of
ethnic background on mapping performance, it will still be
important to account for population-specific variation when
designing NBS gene panels and evaluating variants. Also, the fact
that mapping in high homology regions may be affected at a finer
scale should be considered.

The extent of the problem high homology regions pose for
short-read mapping of NBS genes is dependent on the size of
homologous regions and the degree of similarity. As expected,
longer read lengths improved mapping coverage and accuracy
across NBS genes as they were better able to span the
homologous regions. However, some NBS genes have homo-
logous regions so large that 250 bp short-reads are not sufficiently
long. We identified which genes have regions with reduced
mapping coverage at each tested read length making it easier to
plan an appropriate NGS sequencing strategy. For most of the NBS
genes, satisfactory coverage can be achieved with standard
150 bp read lengths. In the cases of NBS genes with very large
homology regions, ample mapping coverage with NGS will require
an alternate strategy to standard short-read sequencing.
Currently, qPCR is used as an initial first-tier screening test for

SMA. Whenever SMN1 exon 7 is found to be deleted in the sample,
quantification of SMN2 with another method such as digital
droplet PCR is performed on the same sample. To be able to
properly identify and quantify SMN1 exon 7 and SMN2 dosage in
the same run using a universal NBS gene panel would be
desirable, but is not yet achievable.
Third generation long-read sequencing technologies have been

shown to successfully cover large homologous regions such as in
paralogous SMN1 and SMN2 genes20, yet they have notoriously
high error rates which are not yet suitable frontline clinical
diagnostics. However, the accuracy of long-read sequencing is
continually improving as well as the tools for handling long reads.
Accurate variant calling on consensus sequences of long reads can
be achieved35,36 and may be an avenue to explore in NBS
laboratory algorithms. A more labor-intensive long-range PCR
strategy uniquely targeting the gene of interest and subsequent
NGS short-read sequencing and mapping solely to the NBS gene
has alternatively been shown to overcome problems caused by
pseudogene homology37.
While nonspecific mappings due to high homology regions can

be largely remedied by the use of longer reads in many instances,
this does not necessarily mean these regions are free from issues.
CYP21A2 is the gene for 21-hydroxylase deficiency which is the
most common cause of congenital adrenal hyperplasia (CAH)38.
CAH is included in NBS since it can be life-threatening within a few
days of birth in its severest clinical forms. First-tier screening for
CAH is based on immunoassay measurements of 17-hydroxypro-
gesterone, the steroid precursor proximal to the defect. Whenever
17-OHP is elevated in the sample, further measurement of other
steroids in the related pathways (21-deoxycortisol, 11-deoxycorti-
sol, cortisol, androstendion and their ratios) are performed as
secondary tests on the same dry blood spot. We show that
inserting a known pathogenic variant in CYP21A2 makes reads
more similar to a pseudogene CYP21A1P since the pathogenic
variant is the same as the pseudogene sequence, leading to the
reads mismapping to the pseudogene. In this instance, lowering
the mapping coverage threshold in the variant calling pipeline
was not enough to successfully call the variant. A work-around has
been suggested that includes the masking of homologous regions
in the pseudogene and variant calling with increased ploidy20,
which we found to be successful for this variant in CYP21A2 and in
three of the 11 simulated variants within low coverage exonic
regions we identified in SMN1 and CBS. Therefore, this may be a
supplementary method to implement if standard variant calling
cannot successfully identify a pathogenic variant for a disease
suspected based on first-tier analyses or symptoms. In general,
masking of pseudogenes during mapping does not solve
mapping issues associated with high homology regions because
primers and probes may bind to both the functional genes and
the pseudogenes39. This could easily create false positives, or
mask true variants due to effectively increased ploidy making
molecular analysis unreliable. Indeed, the masking of the
pseudogene in our simulation analyses created additional variants
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in all but one of the recovered variants. Since CYP21A2 and its
pseudogene were both homozygous for the same variant, it was
the only variant with a 1/1/1/1 genotype making it easy to isolate
among variants only present in the pseudogene. However, this
was not the case for SMN1 and CBS indicating that interpretation
of variants may be difficult with this method if many additional
variants are called.
While we evaluated variant calling by genotyping single

samples individually, joint variant calling of multiple samples
may improve its genotyping accuracy by identifying true variation
when it is observed across multiple individuals in a cohort40.
However, as NBS diseases are rare, the likelihood that the same
pathogenic variant would be observed in multiple samples during
a sequencing run is small and therefore improvement of accuracy
is likely limited and conversely, it is possible that rare variant
detection may be hindered. Multi-sample variant calling does
however have the added benefit of ensuring all sites are reported
in the output making it possible to distinguish from homozygous
reference and missing data which would prove helpful in
interpreting variant calling results.
The level of uncertainty around the type of genetic variation

that may be encountered and how this will affect short-read
mapping in the presence of high homology genomic regions,
underscores the importance of the multi-tier system in NBS
programs. It has been shown that solely relying on NGS
sequencing in NBS results in fewer true positives detected and a
higher number of variants of unknown significance (VUS) than the
multi-tier metabolic analysis9. Additionally, biochemical and
molecular analyses were found to be complementary9. Our results
from variant calling on CYP21A2, SMN1, CBS, and CORO1A
demonstrate that an accurate diagnosis would not have been
made with NGS sequencing alone. Only a known suspected
diagnosis based on first-tier analyses could direct further
supplementary methods of variant calling in the specific gene to
recover the lost variants. Though this study focuses on single
nucleotide variants, it is also important to consider that structural
variants, such as insertions, translocations and inversions, which
can also be difficult to map to the reference genome and variant
call41, could easily be missed with NGS sequencing alone.
Additionally, as read lengths increase, novel variants will be found
upon sequencing42,43, potentially confounding diagnoses and
first-tier biomarker analyses may help determine if such variants in
NBS genes result in a disease phenotype. Thus, multi-tier testing
adds a higher level of certainty to molecular diagnoses.
It is also important to note that our simulation analyses

represent a best-case scenario which does not account for various
errors that may be encountered depending on the sequencing
strategy and methods. In this study, we simulated uniform
coverage across NBS genes for the sake of comparison but in
practice if targeted amplicons are used in sequencing, coverage is
rarely uniform across amplicons44 which greatly exacerbates
problems associated with homologous regions. A capture bias of
high GC exons is also expected to result in differential sequencing
coverage45, potentially affecting analyses. With the continued
decrease in the cost of NGS, WGS may become a better and more
cost-effective alternative in the future as it allows for more
uniform coverage46. In fact, WGS has been shown to overcome
issues with variant detection attributed to pseudogene homology
in polycystic kidney disorder through its elimination of capture
bias and uniform coverage at 150 bp read lengths47. WGS would
also provide many opportunities for the expansion of NBS. NGS
strategies typically focus on exons of genes, yet it is becoming
increasingly apparent that deep intronic, intergenic regulatory
elements, copy number variants and other structural variants can
play a significant role in different diseases48–50. Enabling the
investigation of introns and structural and copy number variation
would enhance the sensitivity of NGS and provide more flexibility
for further expansion of the NBS program to encompass disorders

lacking first-tier biomarkers. However, WGS would also present a
new set of challenges including a high demand on computational
and bioinformatic resources, sensitive data security and ethical
considerations related to identification of VUS and incidental
findings in newborns without clinical phenotypes. Overall, NGS
provides many exciting opportunities for the improvement and
expansion of NBS programs, but during its integration it will be
important to keep in mind its shortcomings to ensure that
screening programs are designed appropriately.

METHODS
Data collection and BLAST+ analysis
The panel of 158 NBS genes investigated in this study is comprised of 152
genes used in the early 2017 newborn genetic screening panel at Oslo
University Hospital, as well as six genes not included in the screening panel
but with indications of NBS interest (Supplementary Table 18). The Oslo
University Hospital newborn genetic screening panel currently screens for
25 disorders nation-wide (Supplementary Table 18) and was customized to
include genes associated with disorders from the Recommended Uniform
Screening Panel (RUSP) (https://www.hrsa.gov/advisory-committees/
heritable-disorders/rusp/index.html), their differential diagnoses, as well
as disorders likely to be included in the NBS program in the near future.
While some screening disorders are related to multiple genes and can
follow multiple traits (such as SCID with autosomal recessive, X-linked,
autosomal dominant de novo occurrence), the majority of the inherited
metabolic disorders are autosomal recessive and one homozygous
pathogenic variant in any one of the associated genes can be found
causal. A BED file of exonic positions for each gene was retrieved from
GRCh38 on the Ensembl database Release 9451 using biomaRt52 (v.3.8) and
a 70 bp buffer region was added up- and down-stream from each exon.
To identify genomic regions highly homologous to exonic sequences of

the NBS genes, a BLAST+21 (v.2.8.1) analysis was performed. The human
reference genome GRCh38.p12 (RefSeq accession GCF_000001405.38) was
downloaded from NCBI53 and was first made into a repeat masked
database using dustmasker54. FASTA sequences were retrieved for all NBS
exons using BEDTools55 (v.2.17.0) -getfasta function from GRCh38.p12. The
FASTA sequences were then each queried against the repeat masked
human genome database with BLAST+ using the default settings. The
locations of BLAST hits that were not the query sequence itself were
recorded including the length of the match and number of mismatches
from the query.
The 75 k-mer CGR Alignability track, which displays the extent to which

75 k-mer sequences uniquely align to a genomic region was downloaded
from the UCSC depository (http://rohs db.cmb.usc.edu/) in BigWig format
and converted to a BED file with mappability values using UCSC’s
bigWigToWig tool followed by BEDOPS56 (v.2.4.35) wig2bed. Mappability
values were binned into the coordinates of NBS exons and an average
mappability value of each exon was calculated. An exon was conservatively
considered potentially problematic for short-read mapping if the mapp-
ability index was <0.5 or if there was an alternate hit in the BLAST analysis
with ≤10 mismatches and a difference in alignment length ≤10.

Read simulation of 50 genomes from around the world
Read simulation of the NBS genes was performed to test the unique
mappability of each potentially problematic region at differing NGS read
lengths using genomes with a representative variety of ethnic backgrounds.
Variant calls of 50 unrelated individuals from each of the five super populations
sequenced and variant called by the 1000 Genomes Project34 were retrieved
(Finland (FIN)= 10N, Gambia (GWD)= 10N, Colombia (CLM)= 10N, Gujarati
Indian in Houston TX (GIH)= 10N, Southern Hahn Chinese (CHS)= 10N;
Supplementary Table 19) (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data_collections/1000_genomes_project/release/20181203_biallelic_SNV/).
Only females were chosen as there are no NBS genes on the Y chromosome,
and this allowed for equal sample sizes among chromosomes.
A FASTA reference genome for each individual was created using

bcftools57 (v.1.9) consensus with the VCF file for the individual and the
GRCh38.p12 reference genome from the 1000 Genomes Project FTP site
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_re-
ference_genome/) as input and IUPAC coding for heterozygotes. Two
FASTA files were then made for each individual with each biallelic IUPAC
base converted to its corresponding bases in the two FASTA files, enabling
proper simulation in the next stage. Illumina paired-end reads 70, 100, 150
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and 250 bp in length with an inner distance of 50 ± 10 bp were simulated
using DWGSIM (v.0.1.11) (https://github.com/nh13/DWGSIM) for each
FASTA file of every individual at 20X coverage with a 0.0024 error rate,
no mutations or indels, and allowing for ≤5 N’s in each sequence. Reads
were simulated for every gene with an exonic region identified as
potentially problematic previously in the BLAST+ and GEM analyses and
an extra 2 kb flanking sequence was added up- and downstream allowing
for equal coverage of the differing read lengths at region boundaries. The
error rate was chosen based on recent empirical estimates of next-
generation sequencing error rates58. The two read sets for the same
sequence length and individual were then combined for a total coverage
of 40X per individual.

Alignment of simulated reads and post-processing
The simulated reads were mapped to the GRCh38.p12 human reference
genome from the 1000 Genomes Project which includes alternate contigs,
unplaced and unlocalized scaffolds and decoy sequences using BWA-
MEM32 (v.0.7.17). BWA-MEM32 (0.7.17) performs alternate scaffold aware
(ALT-aware) mapping by default which allows for multiple mappings of a
read to the primary assembly and alternate contigs with prioritization to
the primary assembly.
Mapping to the human reference genome was run with the following

command:
bwa mem -t 1 -B 4 -O 6 -E 1 -M reference_fasta_file fastq_R1 fastq_R2 |

samtools sort | samtools view -1 - > bam_file
Results from the read simulation were evaluated using the dwgsim_eval

script provided by DWGSIM (https://github.com/nh13/DWGSIM), with the
-p option to identify incorrect alignments and the -a 0 option to output
mapping quality and overall incorrect/correct read counts. Results were
evaluated separately for each population and read length for comparison,
as well as in combination. Reads with a MQ < 10 were considered
unmapped as they would typically be filtered out in downstream analyses.
The depth of all simulated regions was calculated from the BWA output
bam files using samtools depth (http://www.htslib.org) with the -q 9 and -a
parameters. Depth was calculated for each population and read length
separately for comparison and in combination for overall values.

Population structuring and differentiation
To test if there is evidence for population structuring among the simulated
regions, a PCA analysis was run for the 150 bp read length library of each
simulated individual. First, genotype likelihoods were calculated from each
individuals’ bam file using ANGSD59 (v.0.918) with the following command:
angsd -b bam.list -nThreads 10 -out $outfile_name -GL 2 -doMaf 2

-doMajorMinor 1
-doGeno 32 -doPost 1 -SNP_pval 1e-3 -nind 50 -P 8
The covariance matrix of the genotype likelihoods was calculated using

ngsTools’60 (v.3) ngsCovar tool with -nsites set to 100000. The PCA plot was
created using the plotPCA.R script provided in ngsTools with the
covariance file as input.
Genetic differentiation between the simulated populations across NBS

genes was calculated with FST estimates using ANGSD59 (v.0.918) with the
150 bp read length libraries. Per-site FST values were binned into 150 bp
stepping windows with ANGSD’s FST window function with -type 0
ensuring the genomic windows were identical between population
comparisons. To test if there was a significant correlation between
population divergence and mapping coverage, which would indicate that
genetic variation associated with ethnic background affects mapping
coverage, a Spearman correlation was performed between the 1 kb binned
FST estimates across NBS genes and average mapping coverage values
binned into the same 1 kb bins for each population pair.

Identification of low depth regions
For each simulated read length, regions of low mapping coverage were
gathered and annotated into BED files along with the alternate regions
where simulated reads mapped. To do so, per-position depth calculations
from samtools -depth were filtered for bases with a depth <20.
Consecutive low coverage bases were combined into a single larger
region if they were within 50 bases of each other using BEDTools55

(v.2.17.0) merge -d 50. Regions were annotated using annotation
information from the RefSeq GRC38.p12 annotation file
(GCF_000001405.38_GRCh38.p12_genomic.fna.gz) using BEDOPS56 bed-
map (2.4.35). The alternate regions that simulated reads mapped to were
extracted from the dwgsim_eval -p -q 0 output analysis of bam files. Each

region was also annotated using BEDOPS56 bedmap (v.2.4.35) and was
merged in the low coverage region BED file with the corresponding region
it was simulated. The total number of reads for each low depth region, as
well as the number of reads in each region that were not uniquely mapped
(MQ < 10) were calculated using a custom script (See Code Availability).

Pathogenic variant simulation and variant calling on CYP21A2
Sequence similarity between CYP21A2 and CYP21A1P and paralogous
genes SMN1 and SMN2 was calculated by first running a MUSCLE pairwise
alignment in Geneious (v. 2019.1.3) (https://www.geneious.com) under the
default settings. The exported alignment file was plotted using AlignFigR
(https://github.com/sjspielman/alignfigR) followed by custom alterations.
To assess how clinical diagnosis of NBS genes may be affected by highly

homologous sequences in the genome, pathogenic variants on CYP21A2
which shares 97.7% sequence homology with its pseudogene CYP21A1P
were simulated and variant calling was performed. First, a VCF file of
human variants and disease associations was downloaded from ClinVar61

VCF (v.20181217). The VCF file was filtered for pathogenic variants within
exonic regions of CYP21A2 using VCFtools62 (v.0.1.13). A homozygote and
heterozygote VCF file was created for each pathogenic variant. Addition-
ally, a random individual (HG02763) was selected to serve as the reference
for pathogenic variant simulation so that non-disease related human
variation could also be incorporated in the analysis. Using bcftools57(v.1.9),
each pathogenic variant VCF was applied to the reference FASTA to create
a consensus FASTA with IUPAC coding. DWGSIM (v.0.1.11) (https://github.
com/nh13/DWGSIM) was run separately for each homozygote and
heterozygote FASTA sequence for every pathogenic variant with Illumina
paired-end 150 bp read lengths, an inner distance of 50 ± 10 bp, 40X
coverage with a 0.0024 error rate, no mutations or indels and allowing for
≤5 N’s in the sequence. The BED file of all previously simulated NBS genes
with 2 kb up- and downstream flanking sequences was provided as input
to restrict regions of simulation. As DWGSIM outputs heterozygote IUPAC
codes as N, the FASTQ files were altered so that half of the reads had the
alternate allele and the other half had the reference allele. Simulated reads
were then mapped to the GRCh38.p12 human reference genome used
previously with BWA-MEM32 (v.0.7.17) and the same parameters as
previously.
Variant calling was performed on the processed reads with GATK31

(v.4.0) Haplotypecaller using the -ERC GVCF parameter and subsequently
genotyped with GenotypeGVCFs using the default settings. Variant calling
was also performed using the same general pipeline with modifications to
see if accuracy could be improved which included (1) increasing inner
distance of read pairs (2) decreasing the MQ quality cutoff (3) masking
homologous regions and variant calling with increased ploidy. To test for
improvement with increased inner distance, the same pipeline as
previously was run with the exception of the inner distance set to
255 bp in DWGSIM (v.0.1.11) (https://github.com/nh13/DWGSIM) (the
largest distance the software can simulate). To decrease the MQ cutoff
for reads considered in variant calling, the -mq 10 option was input when
Haplotypecaller was being run. Finally, homologous regions on CYP21A1P
identified during BLAST+ analysis of CYP21A2 were masked in the
reference genome using BEDTools55 -maskfasta. Reads were simulated for
both CYP21A2 and CYP21A1P since even when CYP21A2 is targeted,
residual amplification or capture of the pseudogene may occur and should
be considered. Simulated reads were then mapped to the masked
reference genome and variants called using the default settings with the
exception of the ploidy being set to 4.

Pathogenic variant simulation and variant calling on low coverage
genes
In order to test how applicable the alterations to the variant calling
pipeline tested on CYP21A2 are to other genes in the NBS panel, we also
tested variant calling with increased ploidy and increased inner distance
on the genes we found to have low coverage exonic regions. To do so, five
variants classified as pathogenic according to the ClinVar61 VCF
(v.2020052) within regions identified with low coverage were included
from both SMN1 and CBS in the analysis, as well as the one variant in the
low coverage region of CORO1A which has previously been classified as
likely benign (Supplementary Table 17). Variants were simulated and
variant called using the standard GATK31 pipeline using the default
settings, with an increased inner distance and with increased ploidy and
the masking of homologous regions. The same variant simulation and
variant calling methodology was performed as on CYP21A2 with the
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exceptions that only homozygous variants were considered, and an
updated software version of GATK31 (v.4.1.2.0) was used. To mask the
reference genome, regions homologous to the low coverage exonic
regions within the gene of interest, which were identified in our mapping
analysis, as well as 2 kb up- and downstream flanking sequences were
masked.

Ethical compliance
Ethical approval was not deemed necessary in this study as simulations
were run from already published and publicly available data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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1000_genomes_project/release/20181203_biallelic_SNV/.
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