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Can one overcome “unhealthy genes”?
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“A book is not an isolated being: it is a
relationship, an axis of innumerable
relationships”―Jorge Luis Borges, Ficciones

Like a book, our genome is not isolated from innumerable
relationships, including those with the environment and conscious
lifestyle choices.1 Furthermore, an axis of complex interactions
between individual genes underlies the phenotype at any point in
time. In atherosclerotic cardiovascular disease (ASCVD), the
predicted deleterious effect of single gene variant and polygenic
susceptibility can be offset by external factors and counter-
balancing genetic effects. Given that our experience is in the field
of lipidology, we will make that the focus of this piece. For
instance, individuals with heterozygous familial hypercholester-
olemia (FH) most often due to loss-of-function variants in the LDLR
gene2 have markedly elevated levels of low-density lipoprotein
(LDL) cholesterol and are strongly predisposed to develop
premature heart attacks and strokes. Observational studies show
that daily statin use by FH patients reduces their ASCVD risk by
44%.3 Furthermore, the onset of adverse ASCVD events in FH
appears to be delayed by at least two decades by attention to
physical activity and moderating intake of saturated fat.4

The effects of a deleterious variant can also be canceled out
by rare genomic variants. For instance, the phenotypic mirror
image of elevated LDL cholesterol levels in FH are low
cholesterol levels in heterozygous hypobetalipoproteinemia,
which can result from dominant rare variants in several genes,
including APOB, PCSK9, and ANGPTL3.5 In a large Utah kindred, a
rare FH-causing LDLR variant on chromosome 19p13 segregated
independently of a second rare hypobetalipoproteinemia-
causing APOB variant on chromosome 2p24.6 In a nuclear family
with a parent with each type of heterozygous variant, offspring
could have very low or high cholesterol levels consistent with
simple heterozygosity for each variant. However, some indivi-
duals also had normal cholesterol levels; this was due to either
inheriting wild-type alleles from both parents, or concurrently
inheriting the cholesterol-raising and -lowering variant.6 A
similar family was reported from Holland, in which the father
and mother carried, respectively, a heterozygous cholesterol-
raising and -lowering variant, with some children having normal
cholesterol levels due to concurrent inheritance of both
rare variants.7 More recently, heterozygous truncating APOB
variants were shown in Mendelian randomization studies in
unrelated populations to be associated with reduced cholesterol
and ASCVD risk.8 Such observations inspired the development of
mipomersen, an antisense oligonucleotide targeting APOB
that was approved in the US for treatment of increased
LDL cholesterol levels in homozygous FH patients,9,10 although
sales were discontinued in May 2018 because of safety concerns.

Similar “experiments of nature” involving rare variants of large
effect have motivated development of other medications for elevated
cholesterol. Mendelian randomization studies showed reductions of
both LDL cholesterol levels and ASCVD risk in heterozygous carriers of
loss-of-function variants in the PCSK9 gene. This gave rise to
development of both antibody and antisense strategies to reduce
proprotein convertase subtilisin kexin 9 (PCSK9) levels.11 The
monoclonal anti-PCSK9 antibodies alirocumab and evolocumab were
approved for clinical use in 201512,13; both drugs also significantly
reduce ASCVD events such as strokes and heart attacks.14 These drugs
are especially effective in heterozygous FH patients.15–17

Another beneficial drug target identified by genetics is angio-
poietin like 3 protein (ANGPTL3). Mouse studies showed that
deleting Angptl3 protected against atherosclerosis,18 while studies in
human pedigrees showed very low lipid levels in family members
with recessive ANGPTL3 loss-of-function variants.19 A subsequent
Mendelian randomization study established that individuals with
heterozygous ANGPTL3 loss-of-function variants had reduced lipid
levels and were protected from heart attacks.20 This encouraged the
development of agents targeting ANGPTL3, including evinacumab,
an investigational monoclonal antibody that strikingly reduces LDL
cholesterol levels.21

Finally, genetic susceptibility to ASCVD most frequently results
from the aggregated burden of common small effect variants,
typically single nucleotide polymorphisms. The cumulative impact
on ASCVD risk of numerous small effect variants per genome is
quantified using polygenic risk scores (PRSs).22 Individuals in the
highest decile of the PRS distribution have approximately threefold
increased risk of ASCVD compared with individuals in the lowest
decile.23 Because these scores appear to add prognostic information
above and beyond traditional variables, they are poised to be
adopted clinically. Furthermore, it appears possible to overcome
polygenic predisposition to ASCVD: a study of 55,685 individuals
showed that among those with the highest risk (top quintile of PRS),
a favorable lifestyle was associated with ~50% lower relative risk of
coronary artery disease than was an unfavorable lifestyle.24

Thus, for a complex condition such as ASCVD, substantial evidence
shows that strong genetic predisposition, both from rare large effect
variants and accumulated small effect variants, can be overcome by
relatively simple interventions. These include risk factor modification,
such as proper diet and increased level of activity, and where
appropriate, use of established safe generic statin medications.
Furthermore, understanding of how secondary genetic factors have
reduced risk in predisposed individuals has led to development of
several novel drugs that are either already approved or in the late
stages of development. Finally, despite its unique genetic and
pathogenic features, ASCVD is one example of a complex medical
condition for which genetic susceptibility can be overcome.
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