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Prioritising the application of genomic medicine
Brett Doble 1,2, Deborah J. Schofield1,3,4, Tony Roscioli5 and John S. Mattick 1,6

The clinical translation of genomic sequencing is hampered by the limited information available to guide investment into those
areas where genomics is well placed to deliver improved health and economic outcomes. To date, genomic medicine has achieved
its greatest successes through applications to diseases that have a high genotype–phenotype correlation and high penetrance,
with a near certainty that the individual will develop the condition in the presence of the genotype. It has been anticipated that
genomics will play an important role in promoting population health by targeting at-risk individuals and reducing the incidence of
highly prevalent, costly, complex diseases, with potential applications across screening, prevention, and treatment decisions.
However, where primary or secondary prevention requires behavioural changes, there is currently very little evidence to support
reduction in disease incidence. A better understanding of the relationship between genomic variation and complex diseases will be
necessary before effective genomic risk identification and management of the risk of complex diseases in healthy individuals can
be carried out in clinical practice. Our recommended approach is that priority for genomic testing should focus on diseases where
there is strong genotype–phenotype correlation, high or certain penetrance, the effects of the disease are serious and near-term,
there is the potential for prevention and/or treatment, and the net costs incurred are acceptable for the health gains achieved.
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INTRODUCTION
Genomic sequencing is revolutionising research into human
diversity and the causes of disease, resulting in improved
diagnoses through the identification of molecular etiologies and
the ability to manage many costly and disabling conditions. This is
leading to increased investment by governments in genomic
medicine, focussing initially on rare diseases and cancer, with the
longer-term intent of incorporating genomic information into a
new data ecology for biomedical discovery, more precise medical
treatment, better stratification of patient populations and more
efficient/cost-effective use of healthcare resources.
Currently genomic sequencing has achieved diagnostic rates for

individually rare, but collectively common, monogenic diseases as
high as in excess of 50%1 (with whole genome sequencing (WGS)
typically producing a higher diagnostic rate than WES or earlier
technologies),2 with the potential to reduce lengthy and
expensive diagnostic pathways,3 as well as generate lifetime
health benefits through application of appropriate treatments,4

when available. Clinical guidelines for pharmacogenomic testing
are also available for a number of gene–drug pairs,5 while clinical
genomic testing in the context of common complex diseases is
more limited, with few robust polygenic risk scores being
available.6

The clinical translation of genomic sequencing is further
hampered by the limited information available to guide invest-
ment into those areas where genomics is well placed to deliver
improved health and economic outcomes. There is a need for
identification of the key elements of a framework for distinguish-
ing applications of genomics that are likely to have demonstrable
value and meet current effectiveness and cost-effectiveness

evaluation guidelines, by prioritising the most pertinent genomic
information to ensure genomic sequencing is most productively
and efficiently applied in clinical practice.

FIRST STEPS IN IMPLEMENTING GENOMIC MEDICINE
Advancements in genomic sequencing enable more accurate
diagnoses, rational disease prevention strategies, better treatment
selection, and the development of novel therapies. This approach
to medical care has been called many different names, such as
genomic, personalised or precision medicine (see Table 1), but
here we refer to genomic medicine as “the use of genomic
information and technologies to determine disease risk and
predisposition, diagnosis and prognosis, and the selection and
prioritisation of therapeutic options”.7

When individuals with a condition with high penetrance (with
near certainty the individual will develop the condition) are
identified, there is a greater likelihood of preventative or
mitigating interventions being successful. Accordingly, genomic
medicine has achieved its greatest successes through applications
to high penetrance monogenic diseases. Significant health
benefits from the provision of genomic information using this
criterion are already demonstrable, even when the behavioural
modification required is arduous.
There are, as yet, few examples of the use of genomic

sequencing with accompanying costs of the impact of change
in disease trajectory, thus we will draw lessons from available
studies, including in some cases conditions identified with older
technologies such as biochemical or single gene tests.
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Phenylketonuria (PKU) is autosomal recessive disorder, caused
by mutations in both alleles of the gene for phenylalanine
hydroxylase. Although it is more cheaply diagnosed with a
biochemical test, the management of this inborn error of
metabolism is an important example of substantial therapeutic
benefit being successfully achieved as a result of significant
behavioural modification following the provision of genetic
information. Delay in dietary treatment can have significant
impacts on a child’s intellectual development. Maintaining a
phenylalanine-restricted diet is quite onerous, yet despite this
burden, the incidence of the cognitive impacts of PKU has been
markedly reduced (by 92%) as a result of newborn screening and
dietary advice8 (Table 2). Genomic testing in the context of PKU is
most likely to be most relevant as either a prenatal or
preconception carrier screening test to restore reproductive
confidence, however, this would also necessitate identifying the
disease-causing mutation in the affected child first using genomic
testing.
Molecular testing can also have an immediate and effective

application to other common monogenic diseases that meet our
recommended criteria of high penetrance and significant health
effects (see below). Identifying patients with familial hypercholes-
terolaemia via genetic testing allows for the application of
prophylactic therapy (statins), which has resulted in a reduction
of death and major adverse cardiovascular events of 66 and 51%,
respectively.9 Similarly, a reduction in the incidence of serious and
costly monogenic conditions such as fragile X syndrome, cystic
fibrosis, and β-thalassaemia of 47–90%10–12 has been reported as
a result of informed family planning following preconception
genetic testing (Table 2), with the added benefit of restored
reproductive confidence. This is a remarkable step forward from
the time when a majority of families, even those with a family
history (FH) of a serious genetic disorder, did not have a molecular
diagnosis to inform reproductive management. With genomic
testing, many more families could obtain an accurate assessment
of their risk of having a child with a severe genetic disorder, and
have their reproductive confidence restored through preconcep-
tion carrier screening and preimplantation genetic diagnosis or
invasive testing in pregnancy.
Additional examples demonstrate an emerging capacity to

obtain a molecular diagnosis and offer treatment particularly in
rare childhood diseases as new causal genes (e.g., there are more
than 1000 monogenic causes of intellectual disability now known)
are identified.13 New therapies are emerging such as a study
reporting on 81 inborn errors of metabolism, with therapies
including diet, co-factor/vitamin supplements, small molecule
substrate inhibition, bone marrow and hematopoietic stem cell

transplantation and gene therapy.14 With the exception of gene
therapy and stem cell transplantation, these treatments may be
relatively accessible and affordable. While there are no published
studies yet of the long-term impact in terms of a molecular
diagnosis on health outcomes and cost of change of manage-
ment, there are a small number of published studies in clinical
cohorts demonstrating that the diagnostic costs are lower when
using genomic sequencing in childhood syndromes and neuro-
muscular disorders such as Stark et al.,3 Tan et al.15 and Schofield
et al.16 and while another by Tsiplova et al. reported similar
findings for autism spectrum disorder, but using a hypothetical
cohort.17 Sagoo et al. on the other hand reported a higher
diagnostic rate, but at higher cost for a series of cohorts.18

There is also potential for genomic sequencing to reduce the
significant economic burden associated with adverse drug
reactions (Table 2), which can potentially be reduced by
4–30%.19 The annual cost of medical care associated with this
group of preventable conditions is so high that the implementa-
tion of one genomic test early in life may be a cost-effective use of
limited healthcare resources (Table 2).19

In cancer too we are beginning to see evidence of cost-effective
interventions particularly in relation to screening, where the cost
of prophylactic screening is much lower than treatment of the
cancer itself. For example, Gallego et al.20 reported screening for
Lynch syndrome using next generation sequencing panels was
cost effective, while Li et al.21 reported screening women at risk of
hereditary breast cancer with prophylactic intervention was
similarly cost-effective.
Thus, we argue, the priority for genomic testing should be to

identify individuals at high risk of imminent, serious, preventable
(or reversible) disorders that are cost effective to treat. These
patients and their families are well placed to benefit from genomic
medicine through sequencing of affected children and provision
of targeted therapies where available. There are already
population-specific screening programmes demonstrated to be
effective in identifying parents at high risk of having children with
such disorders,12 but there is a need to assess the feasibility and
cost-effectiveness of expanded genomic carrier screening. Existing
genomic medicine and carrier screening programmes are not
universally available. They are often still within a research context,
which in time, will provide evidence on incremental health gains
and cost-effectiveness, which is valuable for making the case for
universal access and public funding.

Table 1. Nomenclature and definitions

Personalised medicine—“the tailoring of medical treatment to the individual characteristics of each patient”33 This term was originally used to
describe the shift in focus in clinical decision making to a more individualised approach, largely supported by molecular information. At present the
term is still used widely by the media, governments and lay community, but its use has been criticised by experts as it is often misinterpreted as
implying unique treatment could be designed for each individual.34 Preference is, therefore, now given to alternative terms listed below depending
on jurisdiction and context

Precision medicine—“an approach to disease treatment and prevention that seeks to maximise effectiveness by taking into account individual
variability in genes, environment, and lifestyle”35 Precision medicine can be considered an all-encompassing term that includes more specific
components related to the use of specific technologies and/or information, including the three terms listed below

Stratified medicine—“the grouping of patients according to disease risk or likely treatment response, as determined by diagnostic tests, to determine
the course of care”36 This term is most commonly used within the UK

Genomic medicine—“the use of genomic information and technologies (e.g., genomic sequencing, which includes whole genome and exome
sequencing and multi-gene panels) to determine disease risk and predisposition, diagnosis and prognosis, and the selection and prioritisation of
therapeutic options”5 This term is the focus of this paper and has a limited focus on genomic information as opposed to consideration of variability in
other factors such as environment and lifestyle

Genomic sequencing—includes the use of whole genome sequencing, whole exome sequencing and gene panels

Pharmacogenomics—“a polygenic or genome-wide approach to identifying genetic determinants of drug response, capitalising on information from
the Human Genome Project and on advances in technology”37
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EXPANDING GENOMIC MEDICINE TO COMPLEX DISEASES
There has been considerable hope for the successful application
of genomic medicine to common complex diseases, such as heart
disease, cancer, obesity, diabetes and lung disease. It has been
suggested that adding personal genetic risk (usually based on a
combination of low penetrance alleles) to general risk information
(i.e., lifestyle factors, medical and FH) could impact on individual
behaviour and potentially prevent such diseases from developing,
however evidence for the utility of genomic testing in this context
is not yet available.
However, the evidence from an updated Cochrane review and

meta-analysis22 provides little support for behavioural change
when healthy individuals are presented with genetic information
compared to general risk information concerning their risk of
various complex diseases. Since the publication of the Cochrane
review in 2016 evidence of behavioural change has been noted in
individual studies, but generally the impact on disease incidence is
small. For example, one study indicated that the use of statins with
the provision of both genetic and general risk information for
coronary heart disease (CHD), compared to only general risk
information alone, would result in a reduction in CHD incidence
over 10-years in a high genetic risk population of only ~5%,23

assuming a ~45% relative-risk reduction from high-intensity statin
therapy.24

In another recent study, individuals receiving genetic risk
information for Alzheimer’s disease and coronary artery disease
together (compared to only receiving genetic risk information for
Alzheimer’s disease alone) reported more health behaviour
changes related to diet, exercise, medications, dietary supple-
ments and stress reduction.25 This one study alone indicates a
greater likelihood of behavioural change when multiple genetic
risks are presented together and at least one of the disease risks
are modifiable through medical intervention. Although this study
did not report long enough follow-up to determine whether the
intervention reduced Alzheimer’s disease or coronary artery
disease incidence and does not supersede the negative effect
noted in the majority of the evidence synthesised in the updated
Cochrane review.22 Similarly, Vassy et al. report on the use of WGS
plus FH over FH alone in primary care for health adult patients
with new clinical actions in 34% of the WGS plus FH patients
compared 16% for FH alone. Only 2 out of the 11 patients with an
identified Mendelian allele manifested a phenotype consistent
with at least 80% non-penetrance. The study was also limited by a
small sample size (100 patients) with no follow-up data reporting
on whether patients obtained a significant health benefit.26

Currently there is limited clinical and economic evidence of the
utility of genomic sequencing in common complex diseases, and
of those studies reported some have significant limitations. For
example, Dzau et al. estimated that reporting genomic variants in
these diseases would lead to modulation of health-related
behaviours with a 10–50% reduction in disease incidence, valued
at $US33–607 (£22–405) billion per condition.27 However, this
estimate was predicated on the assumption that the provision of
genomic information will overcome the limitations of current
lifestyle interventions where adherence to such programmes has
traditionally been poor on a population level. As outlined above,
the evidence does not support this assumption, and thus the
projected benefits are in all likelihood vastly overestimated.
This is not to say that genomics is not relevant to the reduction

of complex diseases, but rather it is necessary to better under-
stand the genotype–phenotype relationship in complex diseases
before effective genomic risk identification and management of
complex diseases can be implemented in clinical practice.
Furthermore, some conditions traditionally classified as complex

diseases are in fact disease clusters with many causes. For
example, there are nearly 200 genetic variants known to have an
effect on blood cholesterol, which may, in part, impact response to

lipid lowering medication.28 As an example, in some populations
receiving statins, only a small proportion of patients achieve target
reductions in plasma cholesterol levels.29 Thus, targeting group
health risk modification at a large cluster of conditions categorised
under a single heading may obscure the potential of genomic
medicine in complex diseases. Applying genomic medicine to
stratify and target specific interventions to individual genetic
variation, and along with better knowledge of the
genotype–phenotype correlations will enable better outcomes,
both in therapeutic and behavioural responses.

A FRAMEWORK FOR DISTINGUISHING APPLICATIONS OF
GENOMICS LIKELY TO HAVE DEMONSTRABLE VALUE IN
REDUCING DISEASE BURDEN AND COSTS OF DISEASE
While there are well established guidelines for the conduct of an
evaluation of clinical and cost-effectiveness within medicine such
as those from the National Institute for Health and Clinical
Excellence,30 as well as more recent frameworks for the evaluation
of genomics,31 there is little to guide researchers on which areas
of medicine are likely to yield outcomes that might meet the
guidelines. The evidence to date suggests that based on our
current knowledge, there is greater potential for deriving value
from genomic sequencing (with its capacity to test many
conditions simultaneously) when applied to monogenic disorders,
with enormous potential to improve health outcomes through
screening,8,10–12 disease prevention and change of management.
Our synthesis of the examples included in this paper suggest that
the distinguishing characteristics of applications of genomics with
significant capacity to reduce the incidence of costly illness (Fig. 1)
are the:

● strength of the genotype–phenotype correlation,
● high penetrance,
● imminence of severe illness,
● severity of the disease impact,
● relatively high diagnostic yield,
● availability of prevention or targeted treatment, and
● the net costs incurred are acceptable for the health gains

achieved.

Promising areas that with further evidence in relation to health
outcomes and/or cost impacts meet all or most of the criteria set
out in our framework include: inborn errors of metabolism,14

neuromuscular disorders,16 neurodevelopment disorders,3,32

inherited cancer risk20,21 preconception carrier screening or
prenatal screening12 and in the paediatric and neonatal intensive
care unit.33 The importance of critical criterion in our framework
such as diagnostic rate, health outcomes due to prevention or

Fig. 1 Framework for distinguishing applications of genomics likely
to have demonstrable value
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therapy and health economic outcomes are highlighted in a paper
by Gaff et al.34

The urgent need for evidence related to cost-effectiveness that
takes account of both diagnostic rate and health outcomes as
described in our framework is highlighted by Sagoo et al.: the
main limitation of the studies to date is that while it is possible to
derive an incremental cost-effectiveness ratio from a relative
diagnostic rate and cost for genomic sequencing, there is “no
universally acknowledged willingness-to-pay threshold for a
diagnosis”, and this makes an incremental cost per additional
diagnosis difficult to interpret.18

IMPROVING ACCESS AND USABILITY OF GENOMIC
DATABASES
While existing databases such as OMIM® provide a wealth of
descriptive information concerning genomic variants, they do not
allow the effect of a specific genomic variant to be predicted. In
contrast, the ClinVar database provides specific variant informa-
tion that predicts the relationship between human genomic
variation and expressed phenotypes using supporting evidence.
These are, however, limited in their scope, in that, ClinVar is
currently largely incomplete and the ACMG list is limited to only
genes that should be reported as additional findings rather than
variants that might be of interest in the primary use of testing.35

To improve accessibility of genomic information, there is a need
for comprehensive, evidence-based, continuously curated, user-
friendly genotype–phenotype databases to aid diagnosis and
prognosis, and thereby appropriate treatment and prevention to
capitalise on the promise of genomic medicine. Applying
genomics to conditions that meet one of our main criterion for
prioritisation of receiving genomic testing (i.e., a strong
genotype–phenotype relationship) reduces the potential for false
positives, while continuous curation is important in reducing the
potential for both false positives and false negatives. With this
information readily available from such databases in the future,
numerous rare but collectively common and very costly diseases
could be prevented (such as those listed in Table 2 and others
fitting our recommended criteria), and treating patients with
expensive but ineffective treatments could be avoided, offering
large cost savings that create headroom to treat other patients
with effective targeted interventions.

FULFILLING THE PROMISE OF GENOMIC MEDICINE
We are in a period of tremendous innovation in genomic medicine
and large population studies such as Genomics England’s 100,000
Genomes Project and the All of Us programme in the United
States hold great promise in identifying further conditions where
highly penetrant variants causing serious disease might be much
more effectively treated. To facilitate rapid translation of evidence
based genomic medicine, there will also need to be increased
capacity within the health system, particularly in laboratory and
genetic services. The evidence suggests that deriving value from
genomic medicine, in the short term at least, will be a function of
the strength of the genotype–phenotype correlation (high
penetrance), the severity of the disease impact, the availability
of prevention or targeted treatment, and the net costs incurred for
the health gains achieved. Further, widely available comprehen-
sive, evidence-based, continuously curated, user-friendly
genotype–phenotype databases of genomic approaches to
treatment and prevention, which will be supported by data
collected in the large population studies currently ongoing, will
maximise the benefits from genomic medicine.
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