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Pitfalls of exome sequencing: a case study of the attribution of
HABP2 rs7080536 in familial non-medullary thyroid cancer
Glenn S. Gerhard1, Darrin V. Bann2, James Broach2 and David Goldenberg2

Next-generation sequencing using exome capture is a common approach used for analysis of familial cancer syndromes. Despite
the development of robust computational algorithms, the accrued experience of analyzing exome data sets and published
guidelines, the analytical process remains an ad hoc series of important decisions and interpretations that require significant
oversight. Processes and tools used for sequence data generation have matured and are standardized to a significant degree. For
the remainder of the analytical pipeline, however, the results can be highly dependent on the choices made and careful review of
results. We used primary exome sequence data, generously provided by the corresponding author, from a family with highly
penetrant familial non-medullary thyroid cancer reported to be caused by HABP2 rs7080536 to review the importance of several
key steps in the application of exome sequencing for discovery of new familial cancer genes. Differences in allele frequencies across
populations, probabilities of familial segregation, functional impact predictions, corroborating biological support, and inconsistent
replication studies can play major roles in influencing interpretation of results. In the case of HABP2 rs7080536 and familial non-
medullary thyroid cancer, these factors led to the conclusion of an association that most data and our re-analysis fail to support,
although larger studies from diverse populations will be needed to definitively determine its role.
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INTRODUCTION
Next-generation sequencing using exome capture, commonly
referred to as whole exome sequencing, has become a common
approach used for the identification of single nucleotide variants
(SNVs) associated with familial cancer predisposition syndromes.
Exome sequencing targets essentially known annotated exons,
while some versions of the library preparation reagents will also
include coverage of untranslated regions and non-coding RNAs,
and in some cases also allows the addition of custom contents.
Exome sequencing has quickly emerged from its original
application as a tool for gene discovery in research settings to
an important diagnostic tool for clinical purposes,1 especially for
diseases that may have significant genetic heterogeneity and
require a multiplexed approach,2 such as inherited cancer
syndromes.3 However, the entire exome sequencing process is
highly complex with many uncontrollable variables contributing
to both false positive and false negative results. Accordingly, the
diagnostic rate for unselected patients undergoing exome
sequencing is approximately 25%,4, 5 although much higher rates
have recently been reported for certain conditions.6

For many cases in which exome sequencing has been used to
identify variants associated with disease, the veracity of the
association and the potential clinical significance of the variant are
unclear, particularly when identified in a research setting. Even
more worrisome is the assumption that such published research
results often serve as de facto gold standards for translating to
clinical practice. These concerns have been exemplified in a recent
report by Gara et al. in which rs7080536 in the HABP2 gene was
identified as the causative variant in a kindred with familial non-
medullary thyroid cancer (FNMTC),7 a disorder for which no causal

variants/genes have yet been identified.8 This result was brought
into immediate question by several investigators,9–13 with a single
positive association14 and a number of other contradictory follow-
up studies described below. We used the data from Gara et al.,7

generously provided by the corresponding author, as a case study
to discuss the aspects of exome sequencing that are particularly
germane for the identification of genes underlying inherited
disorders.

Patient ascertainment and genetic model
Careful evaluation of the pedigree structure to generate
hypotheses regarding the mode of inheritance of a presumed
disease-causing allele is vitally important for exome sequencing. In
the kindred identified by Gara et al.,7 the proband and five other
family members were affected by non-medullary papillary thyroid
cancer documented by thyroidectomy and pathological analysis
of the thyroid tumor tissue. Given that disease was present in the
proband and one brother out of seven total siblings, and was
transmitted by the proband to one of two children and by the
affected brother to all four of his children, an autosomal dominant
mode of inheritance was postulated, consistent with available
information on the familial transmission of non-medullary
papillary thyroid cancer.15

Disease incidence also plays an important role in the design of
studies. Gara et al.7 regarded non-medullary papillary thyroid
cancer as an uncommon disease. With an incidence of ~13.1/
100,000 in the United States,16 and ~5% of cases familial,17 the
estimated frequency of a presumed dominant acting familial
mutant allele is about 1/300,000. However, the incidence of non-
medullary papillary thyroid cancer appears to be increasing due to
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diagnosis of asymptomatic disease subsequent to improved
diagnostic technology and increased surveillance, predominantly
in young or middle-aged populations.18 In addition, a large meta-
analysis of autopsy studies of thyroid cancer found that rate of
incidental differentiated thyroid cancer based on partial thyroid
gland histological analysis was 4.1% and of whole gland analysis
was 11.2%.19 The relationship of this form of occult thyroid disease
to highly penetrant FNMTC is not clear, but if the incidence of
FNMTC is actually much higher then different study designs and
methodologies should be used, as reported by others.20 Interest-
ingly, three of the autopsy studies were from Japan, in which the
rates of incidental differentiated thyroid cancer based on
histological whole thyroid gland analysis were 15, 26, and 28%,
much higher than most of the studies from European populations.
HABP2 rs7080536 is not present in the 1000 genomes Japanese
population, suggesting a low population allele frequency (AF)
despite a potentially high rate of occult thyroid disease.
Interpretation of association should therefore be based on
accurate estimates of disease prevalence and allele frequencies.

DNA sequencing
A number of different DNA sequencing platforms are now
available for exome sequencing, although the field has generally
coalesced around Illumina-based sequencing used by Gara et al.7

and in several recent large series.21–23 Illumina-based sequencing
appears to have a relatively lower error rate among current
sequencing platforms,24 although the occurrence of such errors is
often not acknowledged, and for which methods for correcting
sequencing errors have been developed.25 Within the Illumina
technology platform, the specific instrument used is also
important. Deletions are more common than insertions using
the HiSeq platform,26 while insertions occur more often than
deletions when using the MiSeq platform.27

Errors may also be introduced during library construction from
polymerase chain reaction (PCR) amplification. The presence of
PCR-induced sequencing errors has led to the practice of
confirming the results from exome sequencing using an
orthogonal technology, especially for diagnostic applications.28

The pipeline used by Gara et al.7 filtered low-quality sequence
reads using criteria consistent with recent exome sequencing
studies,22, 23 and then validated selected results using Sanger
(automated fluorescence dideoxy) sequencing, considered the
gold standard for exome sequencing validation.

Data sharing and re-analysis
Though usually associated with genome-wide association studies,
initial reports of genetic analysis often suffer from the “winner’s
curse” phenomenon,29 with subsequent studies failing to replicate
the initial finding. This has been the case for HABP2 rs7080536 and
FNMTC, in which multiple reports found no association,9–12, 20, 30–35

and one found a positive association.14 Because of the multiple
studies failing to replicate the association of HABP2 rs7080536
with FNMTC, we re-analyzed the raw sequencing data published
by Gara et al., whose corresponding author graciously provided
complete access to the primary data, to determine whether we
could obtain similar results. Data sharing is also extremely
important in exome analysis because of differences in raw data,
data processing, and analytical pipelines.
The raw FASTQ sequencing files were processed according to

the Genome Analysis ToolKit (GATK) best practices pipeline,36, 37 a
workflow similar to that used by Gara et al. who used an earlier
version of GATK (v2.7.4 vs. v3.3.0) and a 2013 version of Annovar.
Raw FASTQ files were obtained for patients II.2, II.3, III.1, III.2, III.3,
III.4, III.5, III.6, III.7, III.8, IV.1, IV.3, IV.4, IV.6, and IV.7 based on the
nomenclature used in the pedigree diagram7 and processed for
analysis (Supplementary Methods). We found a high level of
coverage, with an average of 94% of targeted bases covered to

≥10× across all patients (range 85.5 to 97.7%; data not shown). We
identified a total of 230,495 variants across all of the family
members. Gara et al. did not provide this number and it is not
certain which individuals were included in their analyses.
We then utilized filtering criteria similar to the approach

outlined by Gara et al. However, we did not include patient III.2,
the unaffected daughter of the proband, due to the long latency
period and high rate of occult disease associated with thyroid
cancer, which makes it difficult to definitively classify this
individual as unaffected. In addition, no individuals in Generation
IV were used as they were likely too young for their disease status
to be accurately ascertained. Exclusion of these individuals should
not impact the identification of a causative variant but could
decrease the number of potential candidates.

Variant filtering by AF
Variant filtering also requires decisions regarding AF, genetic
model, and expected disease prevalence. Gara et al. first filtered
for variants at ≤1% AF in commonly used, publicly accessible
population databases. This is a common initial step in an exome
sequencing bioinformatics pipelines that permits a systematic
evaluation of one or more genetic models using ethnicity-based
stratification for AF and the exclusion of variants for which the AFs
in available databases are not consistent with the genetic model.22

Thus, AF threshold data in reference databases are extremely
important. The 1% AF selected by Gara et al. is a commonly used
conservative initial threshold for a highly penetrant familial
disorder with an autosomal dominant pattern of inheritance that
will result in a significant reduction in numbers of variants without
risking excluding a potential low-frequency causative variant.
The databases Gara et al. used for filtering included the 1000

Genomes Project38 and HapMap39 data (Table 1). The National
Heart, Lung, and Blood Institute Grand Opportunity Exome
Sequencing Project database (http://evs.gs.washington.edu/EVS/),
which includes data on a set of DNA samples from 2203 unrelated
African-American and 4300 unrelated European-American indivi-
duals analyzed by exome sequencing that is easily accessible,
highly utilized for exome sequencing,21–23 and provides robust
data on AFs (Table 1), was not used. In addition, the Exome
Aggregation Consortium (ExAC) database,40 which includes data
from 60,706 unrelated individuals and is becoming the de facto AF
reference database, was also not utilized. Despite the strength of
such large databases, they have significant limitations that may
lead to erroneous attributions.41

Unfortunately, no details were provided in Gara et al. as to
whether the global AFs from each database were used or whether
the queries were population specific. The HABP2 rs7080536 AF in
the HapMap database, obtained before the recent retiring of the
database (which is now available only through archival down-
load),42 indicated that the global AF across the eight populations,
including its absence in two of them, was 1.25%. Similarly, the AF
for HABP2 rs7080536 is 3.8% in the Exome Variant Server
database, 3.3% in the ExAC database, and was 4–5% in a large
genetic association study.43 The AF in several association studies
cited by Gara et al. ranged from 2 to 5%.44, 45 The HABP2
rs7080536 global 1000 Genomes AF is <1%, although there is
significant variation across populations. Indeed, the allele was not
present in the Asian and African populations, but had a frequency
of >1% in the European populations. Based on the HapMap and
1000 Genomes European AFs, as well as AFs reported in the
reports cited by Gara et al., the HABP2 rs7080536 should have
been excluded by the initial filtering threshold of the analysis
pipeline.
The HABP2 rs7080536 thus appears to have slipped under the AF

filtering criterion threshold due to the large differences in AF across
populations, a major factor when translating results from a small
group of individuals to larger populations, especially across races/

Pitfalls of exome sequencing
GS Gerhard et al

2

npj Genomic Medicine (2017)  8 Published in partnership with the Center of Excellence in Genomic Medicine Research

http://evs.gs.washington.edu/EVS/


Table 1. Allele frequencies for HABP2 rs7080536 in HapMap, 1000 genomes, Exome Variant Server and ExAC databases

Population Allele A Allele G Genotype A|A Genotype A|G Genotype G|G

HapMapa

CSHL-HAPMAP:HapMap-CEU 0.018 0.982 0.036 0.964

CSHL-HAPMAP:HapMap-HCB 0.012 0.988 0.023 0.977

CSHL-HAPMAP:HAPMAP-MEX 0.031 0.969 0.061 0.939

CSHL-HAPMAP:HAPMAP-CHB 0.000 1.000 0.000 1.000

CSHL-HAPMAP:HapMap-JPT 0.012 0.988 0.024 0.976

CSHL-HAPMAP:HapMap-YRI 0.000 1.000 0.000 1.000

CSHL-HAPMAP:HAPMAP-TSI 0.023 0.977 0.047 0.953

CSHL-HAPMAP:HAPMAP-GIH 0.006 0.994 0.011 0.989

1000 Genomesb

1000GENOMES:phase_3_CDX 1.000 1.000

1000GENOMES:phase_3_JPT 1.000 1.000

1000GENOMES:phase_3_CEU 0.020 0.980 0.040 0.960

1000GENOMES:phase_3_PUR 0.019 0.981 0.038 0.962

1000GENOMES:phase_3_TSI 0.014 0.986 0.028 0.972

1000GENOMES:phase_3_YRI 1.000 1.000

1000GENOMES:phase_3_KHV 1.000 1.000

1000GENOMES:phase_3_SAS 0.004 0.996 0.008 0.992

1000GENOMES:phase_3_GIH 0.010 0.990 0.019 0.981

1000GENOMES:phase_3_AMR 0.014 0.986 0.029 0.971

1000GENOMES:phase_3_MXL 0.008 0.992 0.016 0.984

1000GENOMES:phase_3_EUR 0.027 0.973 0.002 0.050 0.948

01000GENOMES:phase_3_ALL 0.008 0.992 0.000 0.016 0.984

1000GENOMES:phase_3_PEL 0.006 0.994 0.012 0.988

1000GENOMES:phase_3_GBR 0.055 0.945 0.011 0.088 0.901

1000GENOMES:phase_3_MSL 1.000 1.000

1000GENOMES:phase_3_CHS 1.000 1.000

1000GENOMES:phase_3_AFR 1.000 1.000

1000GENOMES:phase_3_FIN 0.035 0.965 0.071 0.929

1000GENOMES:phase_3_BEB 1.000 1.000

1000GENOMES:phase_3_CHB 1.000 1.000

1000GENOMES:phase_3_STU 1.000 1.000

1000GENOMES:phase_3_IBS 0.014 0.986 0.028 0.972

1000GENOMES:phase_3_ASW 1.000 1.000

1000GENOMES:phase_3_ESN 1.000 1.000

1000GENOMES:phase_3_ASN 1.000 1.000

1000GENOMES:phase_3_ACB 1.000 1.000

1000GENOMES:phase_3_LWK 1.000 1.000

1000GENOMES:phase_3_GWD 1.000 1.000

1000GENOMES:phase_3_PJL 0.005 0.995 0.010 0.990

1000GENOMES:phase_3_ITU 0.005 0.995 0.010 0.990

1000GENOMES:phase_3_CLM 0.021 0.979 0.043 0.957

Exome Variant Serverc

EVS EuropeanAmericanAlleleCount 0.038 0.961 0.001 0.075 0.923

EVS AfricanAmericanAlleleCount 0.007 0.993 0.000 0.013 0.987

Exome Aggregation Consortiumd

European (non-Finnish) 0.033 0.967 0.001

European (Finnish) 0.029 0.971 0.001

South Asian 0.009 0.991 >0.001

East Asian 0.000 1.000 0.000

African 0.005 0.995 >0.001

Latino 0.007 0.993 >0.001

Other 0.030 0.970 0.000

a http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=rs7080536
b http://browser.1000genomes.org/Homo_sapiens/Variation/Population?r=10:115347546-115348546;source=dbSNP;v=rs7080536;vdb=variation;vf=4906750
c http://evs.gs.washington.edu/EVS/ServletManager?variantType=snp&popID=EuropeanAmerican&popID=AfricanAmerican&SNPSummary.x=29&SNPSum-
mary.y=11&SNPSummary=Display+SNP+Summary
d http://exac.broadinstitute.org/variant/10-115348046-G-A
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ethnicities.41 That non-European populations have much lower AFs
for HABP2 rs7080536 likely explains the results of Gara et al.7 that
the frequency of HABP2 rs7080536 was 4.3% in The Cancer
Genome Atlas (TCGA) samples, which were obtained from
individuals largely of Caucasian/European ancestry,20 but was
only 0.7% in a multiethnic population. What was thus interpreted
as enrichment in individuals with thyroid cancer likely represents
a discrepancy in germline AFs between populations consisting
of different ethnic compositions, a classic pitfall in SNV
interpretation.41

Because Gara et al. did not report the ethnicity of the index
family, we sought to document that the ancestry of the family was
from a population in which HABP2 rs7080536 is a common
variant. We used iADMIX46 to estimate the ancestral composition
for the family based on the HapMap v3 database.47 Our analysis
revealed that the family was primarily of Northern and Western
European Ancestry, with some similarity to the Toscani in Italia
population (Supplementary Table 1). Therefore, the family appears
to be from a Western European population where the expected AF
for HABP2 rs7080536 is estimated to be at least 1%, if not several
fold higher.
In our re-analysis of the Gara et al. data, we restricted the initial

filtering to the 1000 Genomes database, omitting use of the
HapMap data since the AF of HABP2 rs7080536 was >1%, as
described above. We also conducted a separate analysis using a
1% threshold based on the 1000 Genomes CEU (Utah Residents
with Northern and Western Ancestry) population. We identified
44,107 variants using the entire 1000 genomes data (Table 2)
somewhat less than the 53,122 found by Gara et al., which likely
results from our exclusion of the individuals described above.
Restricting our variant filtering pipeline to the 1000 Genomes CEU
data resulted in 39,996 variants (Table 2).

Predicting variant effects on protein function
After AF-based filtering, many analytical pipelines filter for variants
underlying missense substitutions that are predicted to cause a
potentially functional amino acid change. Existing guidelines to
predict potential deleteriousness have recommended that inves-
tigators “avoid considering any single method as definitive”.48 A
variety of algorithms are available, including the computational
SIFT (Sorting Intolerant from Tolerant) tool49 that Gara et al.7 used.
Surprisingly, the often used PolyPhen algorithm,50 a workhorse
application for exome sequencing,22, 23 was not used. We applied
the criteria of a SIFT score < 0.05 or not available, which excluded
553 variants vs. the 2 excluded by Gara et al. The likelihood is low
that only 2 variants out of 53,122 would have generated
exclusionary SIFT scores. The use of other prediction algorithms
may have highlighted discrepancies in the SIFT data.

Familial segregation
Evidence of segregation of a variant with disease in families is also
considered as significantly evidence of association. We deter-
mined how many variants were shared by the three initially
affected family members analyzed by Gara et al. (Table 2). We
found that just over 10% of the variants were shared by the three
family members vs. 0.66% found by Gara et al. Our exclusion of
individuals from the analysis likely contributes significantly to this
difference. We also found over twice the percentage of shared
variants predicted to be non-synonymous. These differences
further highlight the need for data sharing given the potentially
large effects upon results from seemingly reasonable and minor
differences in approach.
The filtering pipeline used by Gara et al. identified a single

variant, HABP2 rs7080536, shared by the seven affected family
members, whereas we identified three variants using the entire
1000 Genomes data set in which HABP2 rs7080536 MAF is less
than 1% and two variants using the 1000 Genomes CEU data
(Table 2). Use of the 1000 Genomes CEU database excluded
HABP2 rs7080536. Of the other two variants identified, one was
absent from 1000 Genomes database because the population
frequency was not determined, whereas it has an AF of >10%
across all races/ethnicities in the ExAC database. The identification
of this variant exposes another pitfall in exome pipelines; variants
with absent data may be binned as low frequency rather than as
no data producing another hidden cause of false positive
interpretations. The other variant we identified, ZNF23
rs531705739, was also not present in the 1000 Genomes data-
set but has an AF of only 0.0001773 in the ExAC database in the
European population. The ZNF23 rs531705739 variant is predicted
to result in a potentially damaging T40R amino acid substitution.
Reagents to prepare libraries for exome sequencing target

exonic regions but may also capture reads from off-target non-
exonic genomic regions, which may be used to identify high-
quality variants.51 We initially limited our analysis to the target
regions described by Gara et al.7 and then also accounted for
variants outside of the exome target regions by using Haploty-
peCaller to implement genome-wide joint variant calling. This
strategy identified 2,048,043 genome-wide variants in the 15
individuals. Using a filtering strategy based on AF in both 1000
Genomes and ExAC resulted in the identification of the same
single missense variant, ZNF23 rs531705739, but also 39 non-
coding variants whose functional significance is not known and
difficult to determine. Another important aspect of exome
sequence analysis is that non-exonic variants may be found with
unknown genetic significance.

Table 2. Re-analysis of Gara et al. exome data

Filtering step Gara et al. 1000 Ga 1000 G CEUb

(1) Variants identified Not provided 230,495 230,495

(2) SNVs ≤1% in HapMap18c and 1000 Genomes Databases 53,122 44,107 39,996

(3) SIFT score< 0.05 or not available 53,120 43,554 38,516

(4) In exonic region 3024 6556 4486

(5) Present in all three initial affected family members 20 709 600

(6) Nonsynonymous 4 388 284

(7) SNV/Indel is not present in unaffected/unrelated spouse 2 47 35

(8) Present in all seven affected family members based on screening of additional members 1 3 2

a Global 1000 Genomes AF
b AF in 1000 Genomes CEU (Utah Residents with Northern and Western Ancestry) population
c The HapMap data was only used by Gara et al.
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Corroborative biological support
In contrast to those without a likely genetic mechanism, exome
sequencing studies often identify variants and genes for which the
in silico support is strong, but for which little biological or clinical
data exist. Studies are then undertaken to test hypotheses about
the role of the variant in the disease process. Biological support for
HABP2 rs7080536 generated by Gara et al. may have played a
major role in the conclusion that it was the causative variant. The
evidence presented was compelling from an in vitro perspective
regarding a role for HABP2 rs7080536 in cancer biology, but not as
a cancer-predisposing variant. For example, the variant was
associated with increased HABP2 protein expression in tumor
tissue from affected family members but no staining was found in
normal adjacent thyroid tissue, suggesting that the protein may
not be highly expressed in pre-malignant cells. Decreasing wild-
type HABP2 expression through siRNA in two thyroid cell lines and
HEK293 cells increased colony formation and cellular migration,
while stable overexpression in the cell lines reduced colony
formation and cellular migration. These data add further support
to observations that HABP2 gene expression is dysregulated in
various cancers, as recently suggested.52 However, similar to the
HABP2 siRNA knockdown experiments, overexpression of the
rs7080536 allele also increased colony formation, suggesting that
rs7080536 is a loss-of-function allele as previously reported53 and
not as a dominantly inherited gain-of-function allele. Balancing
suggestive biological evidence with mixed genetic results further
adds to the complexity of exome sequence analysis. ZNF23 has
previously been implicated in human cancer,54, 55 although no
mechanistic data yet links it specifically to thyroid cancer.
Biological studies that do not adequately model the initial disease
analyzed by exome sequencing should be interpreted very
cautiously.
Many genes identified through exome sequencing are subse-

quently tested in animal models, which is considered a critical
step for functional assessment and assigning of causality.41

Faithful replication of the disease/phenotype is generally
considered strong evidence for validation. However, this
may be problematic given the diversity of organisms used,
commonly drosophila, zebrafish and mice, and relies on the
relative degree of evolutionary conservation of particular proteins/
pathways.56 No data from animal models were presented by Gara
et al.7 Relying exclusively on in vitro data using transformed cells
or cells of a different lineage carries multiple risks for over-
interpretation.
Data are available in several publicly accessible databases that

could have also been used to interrogate the potential biological
relevance of HABP2 expression in thyroid cancer. We analyzed
gene expression data for normal human tissues downloaded from
the Uhlen’s Lab, GTEx, and Illumina Body Map databases within
the European Molecular Biology Laboratory Gene Expression
Atlas.57 We found that HABP2 was not expressed in the thyroid
gland but was highly expressed in the liver (Supplementary Fig. 1),
consistent with the observation of Gara et al. that normal thyroid
tissue does not stain for HABP2,7 also corroborated experimen-
tally.20 Despite its potentially compelling nature, such data can
support, but not exclude, a cancer predisposition variant.
In light of the observations by Gara et al. that HABP2 was

overexpressed in some thyroid cancers,7 we also used gene
expression data from the TCGA58 to determine whether HABP2
overexpression is a common feature of thyroid cancer. We found
that HABP2 was not expressed in >300 of the 505 thyroid tumors
included in the TCGA data set and was expressed at only low to
moderate levels in the remaining tumors (Supplementary Fig. 2),
indicating that HABP2 overexpression is not a common feature of
papillary thyroid cancer. No detectable RNA was found in the
normal thyroid tissue or thyroid cancer in the Human Protein
Database, although a low level of HABP2 protein was detected in

normal thyroid.52 In contrast, ZNF23 was expressed at low levels
by essentially all papillary thyroid cancers, consistent with its role
as a transcription factor.

Follow-up genetic studies
Replication of genetic results is perhaps the most highly regarded
criterion for determining true associations. A variety of studies
investigating the association of HABP2 rs7080536 with FNMTC
and sporadic NMTC have been reported since the Gara et al.
report. In addition to four letters responding to the initial report
that did not find an association,9–12 no associations were found in
subsequent populations from the United Kingdom,30 the United
States,20 Saudi Arabia,31 Colombia,32 Spain,33 Italy,34 or Australia.35

Zhang and Xing identified the HABP2 rs7080536 variant in 4 of 29
(13.8%) of unrelated FNMTC kindreds.14 However, no statistical
assessment was provided to determine whether this observation
was different from that expected from the population frequency
of the HABP2 G534E allele. Given the prevalence of HABP2
rs7080536 in the general population, Carvajal-Carmona et al.59

have pointed out that there is “high probability (>10%) that
HABP2 G534E will be present in 4 out of 29 families by chance”.59

Applying the Fisher’s exact test of proportions indicates that there
is less than a 5% chance that a 1/29 (a 1/58 AF) proportion is
different than 4/29. Due to differences in populations, study
designs, and other factors, careful evaluation of replication results
is warranted.

Summary
Exome sequencing has become an invaluable tool for identifying
variants associated with familial conditions. However, the com-
plexity of the entire analytical and validation process requires
rigorous application and interpretation of approaches and results.
Identification of the HABP2 rs7080536 common variant as
candidate for FNMTC was based largely on differences in allele
frequencies across populations, familial segregation within a
single pedigree, and mechanistic biological support. Follow-up
studies have largely failed to replicate the association and
application of stricter criteria in a re-analysis of the shared primary
data identified for a rare missense variant that also segregated
with disease. However, as recently proposed,34 larger studies from
populations with low HABP2 rs7080536 allele frequencies will be
needed to definitively assess its role in FNMTC. Careful attention
to the key steps in exome analysis is important to maximize
accurate interpretation of results.
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