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Machine learning-aided first-principles
calculations of redox potentials
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Ryosuke Jinnouchi1 , Ferenc Karsai2 & Georg Kresse 2,3

Wepresent amethodcombining first-principles calculations andmachine learning topredict the redox
potentials of half-cell reactions on the absolute scale. By applying machine learning force fields for
thermodynamic integration from the oxidized to the reduced state, we achieve efficient statistical
sampling over a broad phase space. Furthermore, through thermodynamic integration from machine
learning force fields to potentials of semi-local functionals, and from semi-local functionals to hybrid
functionals using Δ-machine learning, we refine the free energy with high precision step-by-step.
Utilizing a hybrid functional that includes 25%exact exchange (PBE0), this method predicts the redox
potentials of the three redox couples, Fe3+/Fe2+, Cu2+/Cu+, and Ag2+/Ag+, to be 0.92, 0.26, and 1.99 V,
respectively. These predictions are in good agreement with the best experimental estimates (0.77,
0.15, 1.98 V). This work demonstrates that machine-learned surrogate models provide a flexible
framework for refining the accuracy of free energy from coarse approximation methods to precise
electronic structure calculations, while also facilitating sufficient statistical sampling.

Green energy and a circular economy are some of the key paradigms that
our human society needs to realize in the next fewdecades. This implies that
we need to give up on the combustion of fossil fuels. A key element to
achieve this paradigm shift is the use of electrochemistry, be it for batteries
and fuel cells, to convert electrical energy to hydrogen or other valuable
chemicals, or to convert hydrogenback to energywithout direct combustion
in air.

The redox potential of electron transfer (ET), Ox+ ne−→Red in
liquids, is an essential property for a variety of electrochemical energy
conversion devices, such as batteries, fuel cells, and electrochemical fuel
synthesis. It determines the alignment of redox levels relative to the Fermi
level of a metal, or valence band maximum (VBM) and conduction band
minimum (CBM) of semiconductor and insulator electrodes. It also
determines the stability windows of ions and molecules in solutions, that is
the range of voltages within which a specific ion or molecule can undergo
electrochemical reactions. This information is vital to designing redox
species and solvent molecules, such as redox couples for redox-flow
batteries1, solvents andadditives for Li-ionbatteries2–4, radical scavengers for
fuel cells5 and electrocatalysts for fuel synthesis6,7.

Unfortunately, to date, accurate first-principles (FP) predictions of this
crucial property remain challenging, with typical prediction errors around
0.5 V. Sprik and co-workers developed a thermodynamic integration (TI)
method utilizing the computational standard hydrogen electrode (CSHE)8,9

and applied this method to several redox reactions in aqueous solutions10,11.

They discovered that the use of a semi-local functional leads to errors
exceeding 0.5 V. This discrepancy arises because the functional inaccurately
yields the shallow valence band edge and the deep conduction band edge,
resulting in incorrect hybridization with the redox levels. Similar magni-
tudes of errors have also been observed in other FP calculations that employ
semi-local approximations12,13. As a result, Sprik and co-workers opted for a
hybrid functional. Nonetheless, they observed a significant spread of values
for two metal ion couples, with the Cu2+/Cu+ couple ranging from− 1.13
to− 0.20 V (experimental value 0.16 V) and the Ag2+/Ag+ couple ranging
from 0.90 to 1.72 V (experimental value 1.98 V)11,14. These variations were
attributed to differences in the pseudopotential and the computational code
base (CMPD versus CP2K). While the ”best” values obtained using the
hybrid functional and highly accurate pseudopotentials are relatively close
to experimental values (− 0.20 V for Cu, and 1.72 V for Ag), the agreement
is still far from being quantitative. Due to the high computational cost of
hybrid functionals, most calculations have been performed using approxi-
mated methods, such as continuum solvation models15–18 and QM/MM
models19,20. Although these models can reproduce the experimental redox
potentials of ions and molecules with convenient accuracy, the computa-
tional results heavily rely onmany approximations,making it unclearwhich
predictions are strictly correct. Here, we briefly note that these FP and
approximated methods have been extended to electrochemistry at liquid-
solid interfaces21–29. Nowadays, these methods have become indispensable
for elucidating electrochemical interfacial phenomena and designing
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advancedmaterials30–35. However, even in the calculation of redox reactions
at interfaces, approximations are made in most applications, such as
representing the motion of atomic nuclei with simple statistical models like
the harmonic oscillator model21,22,30,31,33,36,37, modeling solvents by reference
interaction site model based on the integral equation theory26, or modeling
by continuummediums23–25,27,29. A rigorous FPmethod that eliminates these
approximations is also desired in the field of interfacial electrochemistry.

The main goals of the present work are three-fold: First, we want to
accurately calculate the redox potential of metal ions in water for three
prototypical cases: Ag, Cu, and Fe. Ag2+ ions are among themost aggressive
oxidants with a large redox potential, whereas the redox potential of Cu2+

ions is fairly shallow, and theFe3+/Fe2+ reaction lies in between.Thefirst two
redox reactions involve large changes in the ion water coordination, which
makes the calculation challenging, whereas the redox reaction of Fe is a so-
called simple outer sphereET reaction andhas been the subject of numerous
experimental and theoretical studies38. The Fe ions are conceived to be
particularly challenging for density functional theory. Second, we want to
establish a computationally feasible pathway that yields statistically accurate
results. Last but not least, wewant to systematically explore different density
functionals to set a guideline for future studies.

Results
Free energy change of electron transfer reaction
Webeginwith an overview of the used theory andmodeling. Further details
can be found in the Methods section. The reactions evaluated in this study

are electron transfer reactions in water: Fe3+ + e−↔ Fe2+,
Cu2+ + e−↔Cu+, and Ag2++ e−↔Ag+. We assume that other side reac-
tions do not occur, and only the valency of redox species changes due to the
reaction similar to the previous study11. The redox potential Uredox is
determined by the free energy difference ΔA between the reduced and
oxidized states as

U redox ¼ �ΔA
en

; ð1Þ

where e is the elementary charge andn is thenumberof electrons involved in
the reaction.Here, we also assume that the change in volume during the one
electron-transfer half reaction is negligible similar to the previous studies8,11.
Then, the Gibbs free energy is replaced by the Helmholtz free energy (A).
The free energydifferenceΔA canbe exactly determinedby thermodynamic
integration (TI)39,40:

ΔA ¼
Z 1

0

∂H
∂λ

� �
λ

dλ: ð2Þ

Here, 〈X〉λdenotes the expectation value ofX for an ensemble created by the
Hamiltonian at coupling λ. The integral seamlessly connects the oxidized
state (λ = 0) to the reduced state (λ = 1) along a coupling path41,42. The
potential energy surface upon which atoms move is described by the grand
potential Ω of the system opened for electrons43. Consequently, the

Fig. 1 | Aligning energy levels based on the O 1s level of water molecules.
a Aligning the redox level based on the O 1s level of water molecules far from the
redox species in the bulk solution model under a periodic boundary condition, (b)
aligning the O 1s level of water molecules at the middle of the slab based on the local

potential at themiddle of the vacuum layer in the slabmodel, and (c) schematic of the
alignment. The figure inset in (b) shows the snapshot of thewater slab and computed
local potential profile across the water slab. The graphics showing bulk and inter-
facial models are made by VESTA105.
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Hamiltonian of the system is described as follows:

H ¼
XNa

i¼1

∣pi∣
2

2mi
þΩ; ð3Þ

Ω ¼ U � μN; ð4Þ

where Na is the number of atoms, mi and pi are the mass and momentum
vector of the i-th atom, and μ and N are the chemical potential and the
number of electrons. The chemical potential μ is fixed at the reservoir level,
whereas N varies by n along the coupling path. U represents the potential
energy surface at λ, equating to the sum of the Helmholtz free energy of the
electronic subsystem and the electrostatic interactions among nuclei. Fol-
lowing previous studies41,42, U can be described as

U ¼ λU1 þ 1� λð ÞU0; ð5Þ

where U0 and U1 are the potential energies of the oxidized and
reduced states, respectively. Hence, the free energy difference ΔA is
written as

ΔA ¼
Z 1

0
U1 � U0

� �
λ
dλ� μn: ð6Þ

If the structural changes are significant from the oxidized to the
reduced species — recall that this is the case for Ag and Cu — many
integration steps are required to accurately determine the energy dif-
ference. The application of this approach entails two difficulties. (i)
Clearly, it implies huge computational cost if applied directly to hybrid
functionals; if 100.000 timesteps using a complete plane wave basis set
are required to obtain good statistical accuracy, several 10 mio core
hours are necessary. (ii) Second, during the reaction one electron needs
to be transferred from the reservoir, characterizing the chemical
potential of the electrons. The vacuum level is the best-suited reference
chemical potential that allows one to align the redox levels and band
edges of the electrode in the absolute potential scale. However, in FP
calculations of bulk systems under periodic boundary conditions, the
vacuum level is a quantity that cannot be directly accessed during
simulations.

Chemical potential of electrons
We will address the second point (ii) first. Jiao and co-workers44 sug-
gested using the average electrostatic potential as a suitable reference
point, and Leung45 calculated the position of the average electrostatic
potential with respect to the vacuum level in a second independent
calculation involving a water slab. We refine this approach in a con-
ceptually easy-to-understand way that simultaneously reduces finite-
size errors. As a reference, instead of using the vacuum level, we employ
the O 1s level of water, which is fixed relative to the vacuum level and can
be conveniently calculated with the FP code used in this study. Our
approach is schematically illustrated in Fig. 1. In FP calculations of a
solution system under a periodic boundary condition, the energy con-
tribution U1 � U0

� �
λ
in Eq. (6) is equal to the negative electron affinity

of the oxidized species scaled to the average local potential of the system.
The same calculation can also determine the O 1s level ϵ1s;bulk

� �
λ
of

water, sufficiently far from the redox species and unaffected by the
reactant, scaled to the average local potential. Therefore, measuring the
redox level using the O 1s level as a reference results in
U1 � U0

� �
λ
=n� ϵ1s;bulk

� �
, as highlighted in orange letters in Fig. 1c. In

practice, ϵ1s;bulk
� �

λ
may slightly vary along the coupling path due tofinite

size effects (refer to Supplementary Table 4). By aligning the potentials
between the ’defect’ and the ’host’ within the same supercell in this
manner, the finite size effects can be mitigated46,47. The vacuum level
referenced to the O 1s level can be calculated using a slab model. As
depicted in Fig. 1b, when referencing the O 1s level of water molecules
located in the middle layer of the water slab, the vacuum level can be
expressed as μ� ϵ1s;slab

� �
, as indicated in blue letters in Fig. 1c. The

difference between the redox level and vacuum level scaled to the O 1s
level results in the redox level scaled to the vacuum level, as shown in red
letters in Fig. 1c. Consequently, the free energy difference ΔA on an
absolute scale is written as

ΔA ¼
Z 1

0
U1 � U0

� �
λ
dλ� neΔ�ϕ; ð7Þ

eΔ�ϕ ¼
Z 1

0
ϵ1s;bulk
� �

λ
dλ� ϵ1s;slab

� �
; ð8Þ

where the vacuum level μ is set to zero. As illustrated by the green letters in
Fig. 1c, Δ�ϕ accounts for the difference between the local potential at the
vacuum in the slab model and the one in the bulk solution model.

Equation (7) is similar to the approach used in the CSHE method
described in previous studies8,9. In these studies, the electrostatic potential of
waterwas employed for alignment instead of theO1s level. As shownby the
gray dashed line in Fig. 1c, using the electrostatic potential, referred to here
as the local potential, away from the redox species yields a result that is
consistent with the use of the O 1s level within the statistical error bar (refer
to Supplementary Note 3 for the case of pure water). However, our method
differs in two key ways from the previous approach. First, we calculate the
absolute vacuum reference rather than using SHE as a reference, which
allows for the assessment of absolute potentials in half-cell reactions. Sec-
ond, machine-learned (ML) force fields (FFs) can create many statistically
independent configurations for the water slab. We do this by on-the-fly
learning an H2O force field for the bulk and then for the surface and
performing finally extensive million-step (total 1.5 ns) ML molecular
dynamics for the surface. From this simulation, we draw 3000 statistically
independent snapshots. Only for these snapshots, FP calculations are per-
formed to determine the averageO 1s level with respect to the vacuum level.
This substantially reduces the required computational time from 1mio core
hours for brute force runs using the semi-local functional to only 2200 core
hours for the FP calculations on 3000 structures, including the ML simu-
lations and training runs, while retaining statistical accuracy, as demon-
strated by the local potential profile shown in the inset of Fig. 1b (see details
of the estimation of compute time in Supplementary Note 2).

Fig. 2 | Schematic of ML-aided TI and TPT to compute the free energy difference
ΔA. The notations ML, FPsl and FPnl mean the machine-learning force field, FP
methodwith semi-local functional and FPmethodwith non-local hybrid functional,
respectively. See details of equations in the Methods section.
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Thermodynamic integration
To address the problem of computing the free energy difference, i.e. point
(i), we propose theML-aided scheme as depicted in Fig. 2.Here,weuse the
abbreviations FPnl(Ox/Red), FPsl(Ox/Red), and ML(Ox/Red) to denote
calculations using a non-local hybrid functional, a semi-local functional
and machine-learned force field for the oxidized and reduced cases,
respectively. Naively, one could just perform the required TI using ML
surrogate models. As we will show later in this article, this yields only
acceptable accuracy. Errors in ΔA resulting from inaccuracies in the tra-
jectory and the energy predictions by theMLpotential can be corrected by
performing TI from the ML potential to the FP potential for both the
oxidized and reduced states. We will adopt this strategy for the FPsl
method. So this involves two calculations: TI from the oxidized to the
reduced species using ML surrogate models via Eq. (11) in the Methods
section,ML (Ox)→ML (Red), and then for each oxidation state, TI from
MLFF to the FPsl Hamiltonian via Eq. (13), ML(Ox)→ FPsl (Ox) and
ML(Red)→ FPsl (Red). This two-step integration has three advantages as
summarized below:
• The integration ML (Ox)→ML (Red) using the MLFF takes into

account most of the non-linear components of the integrand in the TI
(see Supplementary Figs. 8, 9). Excellent statistical accuracy can be
reached for this step.

• The MLFFs also provide well-equilibrated initial structures required
for other calculational steps.

• The integrands in ML(Ox)→ FPsl(Ox) and ML(Red)→ FPsl
(Red) are small and almost linear in the coupling parameter (see
Supplementary Fig. 10) owing to the accurate reproduction of the
FPsl structures by the MLFF (see Overview of results). Hence,
these demanding integrals (evaluation of FPsl calculation in every
MD step) converge using a few tens of picosecond MD
simulations.
There is one final obstacle though: performing TI to a potential cal-

culated by a hybrid functional that includes non-local exchange (FPnl) is still
exceedingly demanding and challenging. So in this specific case, as depicted
in Fig. 2, we have decided to apply the Δ-machine learning (Δ-ML)48–55

which learns the difference ΔU between the FPsl potential and the FPnl
potential. Due to the very smooth energy difference between the FPsl
functional and the FPnl functional, it is possible to learn an extremely
accurate ML representation of ΔU with just a few tens of FPnl calculations,
with errors significantly smaller by an order of magnitude or more com-
pared to those associated with MLFF models (see details in Supplementary
Figs. 2 to 4 and Figs. 16 and 17). In the current implementation, the TI
integration has been replaced with thermodynamic perturbation theory

(TPT),

ΔA ¼ A1 � A0 ¼ � 1
β

e�βΔU
� �

0 ¼ � 1
β

eβΔU
� �

1; ð9Þ

whereβ is the inverse temperature, and the symbolΔUdenotes the potential
energy difference between the two end points. Although Eq. (9) is in prin-
ciple exact, the potential energy difference might need to be evaluated for
thousands or even many ten thousand configurations if the ensembles
generatedby the twopotentials are toodistinct. This implies the significantly
expensive FPnl calculations. TheΔ-ML scheme allows for the circumvention
of this issue, enabling the reduction of the required FPnl calculations to
merely tens. Thanks to the remarkable accuracy of the Δ-ML models, it is
possible to obtain exceedingly accurate free energy differences between
different FP methods without further correction (see Supplementary Fig.
12). This is one of the key advances of the present work. The computational
cost is ultimately only limited by generating sufficient configurations using
the FPsl. Thus, the required compute time for direct TI using the FPnl
method is reduced from 20 mio core hours to 16800 core hours for the
FPMD simulations that generate configurations using the FPsl method (see
details of the estimation in Supplementary Note 2).

Overview of results
We now detail our results and will show that the adopted procedure yields
statistically highly accurate results. The calculations were performed using
VASP56,57 and the projector-augmented wave (PAW) method58,59. For the
ML force fields (MLFFs) the implementation detailed in previous publica-
tions is used60–62. Similar to the pioneering ML approaches50,63,64, the
potential energy in our MLFF method is approximated as a summation of
local energies [see Eq. (20)]. The local energy is approximated as a weighted
sum of kernel basis functions [see Eq. (21)]. A Bayesian formulation allows
to efficiently predict energies, forces and stress tensor components as well as
their uncertainties. The predicted uncertainty enables the reliable sampling
of the reference structures on thefly during the FPMDsimulation.Details of
the equations, parameters and training conditions are summarized in the
Methods section and Supplementary Note 1. As in the previous
studies60,65–67, the MLFFs trained on a semi-local functional with dispersion
corrections achieve root mean square errors (RMSEs) of 1–5 meV atom-1

and 0.04-0.11 eV Å-1 for energies and forces (see error distributions in
Supplementary Figs. 1 to 4). The three ET reactions are examined in water
by using a semi-local functional68 with a dispersion correction69,70 (RPBE
+D3) and hybrid functionals71,72 with and without a dispersion correction
(PBE0 and PBE0+D3). Systematic comparisons of different functionals
help us to study the effects of the exact exchange as well as dispersion
corrections. As shown in Table 1 [see lines of PBE0 (0.25) and PBE0+D3
(0.25)] good agreement with experiment is achieved using the hybrid
functional with 1/4 exact exchange, regardless of whether dispersion cor-
rections are used or not.

Water surface calculations
For RPBE+D3, the present MLFF provides a surface tension of 79 ± 5 mN
m−1 for the128molecular systemand84 ± 5mNm−1 for the1024molecular
system at 298 K. Here, the surface tension was computed as73

γ ¼ Lz
2

pzz �
pxx þ pyy

2

� �
; ð10Þ

where x and y define the directions parallel to the macroscopic interface, z
defines thedirectionnormal to the interface,Lz is the lengthof theunit cell in
the z-direction, and pij is the pressure tensor. The results are slightly larger
than the value of 68 ± 2 mNm−1 calculated by a neural network potential73

and experimental value of 72 mN m−174 while it is within the range (50-90
mN m−1) of previous MD results by FP75 and classical force fields76,77. Dis-
tributions of interfacial water dipole moments for both, 128 and 1024
molecular systems, are shown in Supplementary Fig. 5. They consistently

Table 1 | Redox potentialsUredox of three reported in ref RPBE
+D3, PBE0 (0.25), PBE0 (0.50), PBE0+D3 (0.25) and PBE0+D3
(0.50) using MLFF and Δ-ML

XC functional Fe Cu Ag RMSE

RPBE+D3 0.80 0.66 1.88 0.29

PBE0 (0.25) 0.92 0.26 1.99 0.11

PBE0 (0.50) 0.79 − 0.34 2.12 0.30

PBE0+D3 (0.25) 0.94 0.24 2.02 0.11

PBE0+D3 (0.50) 0.83 − 0.38 2.13 0.32

HSE06[a] − 0.20 1.72 0.31

Exp.[b] 0.77 0.15 1.98

Here, values in the parenthesis are the fraction of the exact exchange. The results for 64 water
molecular systems are tabulated. The potential of SHE is set to 4.44 V reported in ref. 102. The root
means square errors (RMSE) compared to the experimental redox potentials are also shown. The
results of the HSE06 functional reported by Sprik and co-workers[a] are also listed.
[a] From ref. 11. The calculations were done by the CP2K103 code with using the Goedecker-Teter-
Hutter dual Gaussian norm-conserving pseudopotential104 with the electronic configuration of
3s23p63d104s1 for Cu and 4s24p64d105s1 for Ag and localized Gaussian basis sets for orbital.
[b] From ref. 14.
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indicate that the orientation of interfacial water molecules is bimodal as
reported in previousMD studies employing the classical SPC/E force field76.
The distributions are also consistent with the results of sum frequency
generation (SFG) analyses78.

Metal water coordination
Figure 3 shows metal-oxygen radial distribution functions (RDFs) and
running integration numbers (RINs) at the reduced and oxidized states
calculated by theMLFF andFPslmethods. TheMLFFswell reproduceRDFs
and RINs of the FPsl method. Both methods show that the coordination
number of Fe ions is 6 independent of the charge state. In contrast, the value
for Cu changes from 5-6 in the oxidized state (Cu2+) to 2–3 in the reduced
state (Cu+). The coordination number of Ag also changes from 5-6 in the
oxidized state (Ag2+) to 4–5 in the reduced state (Ag+). These hydration
structures agreewith the ones reported in previousMDstudies usingFPMD
methods79–81 and empirical force fields79. Although there are slight devia-
tions in the Fe-O distance and shoulders for Cu-O and Ag-O in the RDFs
likely related to the short FPMD simulation time and errors in the MLFFs,
overall, ourMLFFs reproduce the first-principles energies and structures of
the hydrated metal cations with good accuracy.

Redox potentials
After verifying the size effect on the redoxpotentials obtained at the FPsl level
using unit cells containing 32, 64 and 96 water molecules (see Uredox in
Supplementary Fig. 13), calculations were conducted on the bulk solutions
containing 64 water molecules in the unit cell. The computed redox
potentials are compared with the experimental ones in Fig. 4. All relevant
data ( U1 � U0

� �
λ
andΔ�ϕ), as well as results of other functionals with error

bars, are summarized inSupplementaryNotes 3, 4 and5.TheMLFFs trained
on FPsl (RPBE+D3) (see ML in Fig. 4) lead to non-negligible deviations of
30-250 mV from the values of full FPsl calculations without any MLFF (see
FPsl w/o ML) depending on the training data size (see Supplementary Note
9). The deviations can be corrected by two TI integrations
[ML(Ox)→ FPsl(Ox) andML(Red)→ FPsl(Red) in Fig. 2] as shown by FPsl
w/ ML. However, the semi-local functional results in fairly large and non-
systematic errors. ForAg, the redox potential is underestimated, whereas for
Cu it is significantly overestimated compared to experiment.

The errors can be significantly decreased to 0.11 V on average using
hybrid functionalswith one-quarter exact exchange.As tabulated inTable 1,
Uredox for the Cu

2+/Cu+ couple decreases with increasing fractions of the
exact exchange, whereas the redox potential for the Ag2+/Ag+ couple
increaseswith increasing fractions. For Fe3+/Fe2+, the trend is not so obvious
(first increase then slight decrease).Overall the present trends agreewith the
results obtained using semi-local and hybrid functionals as reported by Liu
and co-workers11. Finally, the effects of Grimme’s dispersion correction are
small for all redox couples. This implies that changes in the electronic
properties (such as water valence band maximum and conduction band
minimum) are most relevant, whereas all the functionals give a similar and
good account of the solvation structure. It remains unclear, however, why
one-quarter of exact exchange results in balanced accuracy. The functional
form of PBE0 was rationalized by the adiabatic connection from the

Fig. 3 | Metal-oxygen radial distribution functions (gX-O) and running integra-
tionnumbers (nX-O) providedby 100 psMLFF-MDand10ps FPMDsimulations.
Gray and black lines are for the reduced and oxidized states, respectively. Solid and
dashed lines are results obtained by theMLFF and FPsl, respectively. Graphics in the
insets the show first solvation structures at the reduced and oxidized states.
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Fig. 4 | Computed and experimental redox potentials. ML means the results
obtained by the MLFF trained on FPsl (RPBE+D3) without any correction. The
small letters `w/ML' under FPslmean that theML result was corrected by the scheme

shown in Fig. 2. The letters `w/o ML' mean the result calculated by FPsl using Eqs.
(18) and (19) without MLFF. Here, FPnl means PBE0+D3 (0.25) result obtained by
the scheme shown in Fig. 2. Experimental values are taken from ref. 14.
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uncorrelated exact exchange to the fully interacting energy, which is
approximated by the PBE functional71,82. Nonetheless, the ratio of exact
exchange continues to be a parameter. One-quarter of exact exchange is
known to achieve balanced accuracy for the geometries, thermochemistry,
and spectroscopic properties ofmolecules.However, as reported in previous
studies83, this functional underestimates the band gap of liquid water, even
though it provides a more accurate prediction than the HSE06 functional.
The mechanism behind this remains an open question.

Another key observation in this study lies in the relationship between
the error of the ML surrogate model and the error in the redox potential.
OurMLFFmodels achieve an RMSE of a few meV atom−1 for energy and
tens of meV Å−1 for force. These accuracies can be considered standard
level compared to MLmodels generated in past research50,60,63,64,67,84–86, yet
they yield non-negligible deviations in the redox potential from the FP
method. In comparison, Δ-ML models, which attained an RMSE sub-
stantially lower by more than an order of magnitude, markedly dimin-
ished the deviation in the redox potential to below 10 mV (refer to
Supplementary Fig. 12). These results suggest that in aiming for an
accuracy of 10 mV in reproducing the redox potential of the FP method,
an RMSE at least an order of magnitude smaller than that shown by
standard MLFFs is required. Achieving this level of accuracy is highly
challenging forMLFFs, even if they are trained on larger training datasets,
as demonstrated in the previous study on liquid water87. While the
accuracy of emerging MLFFs continues to improve88,89, there is always a
risk that machine learning models may produce errors concerning the
structure of extrapolation regions outside the training data. Even in the
future where machine learning models have further advanced, our ML
correction schemes will serve as a powerful method for quantifying errors
and providing results from accurate FP calculations.

In summary, our approach enables efficient statistical sampling that is
indispensable for accurate computations of the free energies of aqueous
systems.TheTI andTPTcalculations allowus to improve the accuracy from
the ML model to the semi-local functional and from the semi-local func-
tional to the hybrid functional step-by-step. Combining TPT and Δ-
machine learning is particularly promising since this allows us to obtain
statistically highly accurate results even for expensive functionals in very
little compute time. For instance, it is well conceivable that one could also
use methods beyond density functional theory for the final step. Our final
results reproduce the redox potentials of the three transition metal cations
with excellent accuracy using a standard hybrid functional. The integration
pathways chosen here are generalizable to a wide variety of electron transfer
reactions. We believe that the scheme will pave the way to first-principles
electrochemistry predicting the key properties of redox reactions in energy
conversion devices.

Methods
TI and TPT
TheTI and TPT shown in Fig. 2 in themain text are conducted by using the
equations listed below.
• ML(Ox)→ML(Red)

ΔAML ¼
Z 1

0

∂HML

∂λ

� �
λ

dλ; ð11Þ

HML ¼
XNa

i¼1

∣pi∣
2

2mi
þ λUML

1 þ 1� λð ÞUML
0 � NeΔ�ϕ: ð12Þ

• ML(Ox)→ FPsl(Ox) andML(Red)→ FPsl(Red)

ΔAFPsl�ML
κ ¼

Z 1

0

∂HFPsl�ML
κ

∂η

* +
η

dη; ð13Þ

HFPsl�ML
κ ¼

XNa

i¼1

∣pi∣
2

2mi
þ ηUFPsl

κ þ 1� η
� 	

UML
κ : ð14Þ

• FPsl(Ox)→ FPnl(Ox) and FPsl(Red)→ FPnl(Red)

ΔAFPnl�FPsl
κ ’ ΔUΔML

κ

� �
FPsl

� β

2
ΔUΔML

κ � ΔUΔML
κ

� �
FPsl


 �2
� �

FPsl

:

ð15Þ
The symbolsUFPnl

κ ,UFPsl
κ andUML

κ are the potential energies for the oxidized
(κ = 0) and reduced (κ = 1) states calculated by the non-local functional,
semi-local functional and MLFF trained on the semi-local functional,
respectively. The symbol ΔUΔML

κ denotes the potential energy difference
calculated by the Δ-ML model trained on the potential energy difference
UFPnl

κ � UFPsl
κ between the non-local and semi-local functionals. In Eq. (15),

the second-order cumulant expansion is employed.The expansion is exact if
the probability distribution of ΔUΔML

κ is Gaussian (see the derivation in
Supplementary Note 8). The condition is reasonably satisfied as shown in
Supplementary Fig. 11. Preliminary TI and TPT simulations using the
MLFFs also indicate that theTPTcalculation reproducesTI results as shown
in Supplementary Note 6.

The free energydifferences of theFPsl andFPnlmethods are obtained as

ΔAFPsl ¼ ΔAML þ ΔAFPsl�ML
1 � ΔAFPsl�ML

0 ; ð16Þ

ΔAFP
nl ¼ ΔAFPsl þ ΔAFPnl�FPsl

1 � ΔAFPnl�FPsl
0 : ð17Þ

To validate theMLFF-aided computations of the free energy difference
ΔAFPsl , the same property was also computed by the TI without using the
ML method:

ΔAFPsl ¼
Z 1

0

∂HFPsl

∂λ

� �
λ

dλ; ð18Þ

HFPsl ¼
XNa

i¼1

∣pi∣
2

2mi
þ λUFPsl

1 þ 1� λð ÞUFPsl
0 � NeΔ�ϕ: ð19Þ

The TI calculation in Eq. (2) can be decomposed into the two terms on the
right-hand side of Eq. (7). The integrand in the first term nonlinearly varies
along the couplingpath (see SupplementaryFigs. 8 and9)while the integrand
in Eq. (8), which is relevant to the second term in Eq. (7), varies only slightly
(see Supplementary Table 4). To perform the integration of the first term in
Eq. (7), Simpson’s rule with equidistant five points was used following the
previous FP study by Blumberger and co-workers41. For the integration in
Eq. (8), the average of the O 1s levels in the fully reduced and oxidized states
was used based on the trapezoidal rule. For each point, the ensemble average
was takenover an80-ps-NVT-ensembleMDsimulationat 298Kafter a20ps
equilibration. Similar to the MLFF calculations, Simpson’s rule with
equidistant five points was used for the TI calculation in Eq. (18). For each
grid, the ensemble average was taken over a 20-ps-MD simulation starting
from the final structure of the TI calculation using theMLFF at the same grid
point. Each initial structureof theMDsimulationswaspreparedbyannealing
the system from 400 K to 298 K by a 100-ps-NVT-ensembleMD simulation
using theMLFFafter annealing the same system from1000K to 400Kby a1-
ns-NVT ensemble MD simulation using the polymer consistent force field
(PCFF)90 implemented in a homemadeMDprogram91. Supplementary Figs.
8 and 9 show the integrands of Eqs. (11) and (18), respectively, as functions of
the coupling parameter λ. In the same figures, probability distributions of
ΔUML ¼ UML

1 � UML
0 andΔUFPsl ¼ UFPsl

1 � UFPsl
0 at each λ are also shown.

For all redox couples, the variance of the distribution varies with changing λ,
and thus, the integrand is non-linear with respect to λ [see Supplementary
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Eq. (14)]. Hence, the second cumulant expansion Supplementary Eq. (12) is
not applicable to the whole integration from the oxidized state to the
reduced state.

The TI calculations in Eq. (13) were conducted using the trapezoidal
rule with three equidistant points. At each point, a 10-ps-NVT-ensemble
MD simulation at 298 K was performed. The integrands shown in Sup-
plementary Fig. 10 are smaller than the ones shown in Supplementary Figs.
8 and 9, respectively. They are also nearly proportional to the coupling
parameter η.

In the TPT calculations using the Δ-MLmodels, the ensemble average
in Eq. (15) was taken over 1400 configurations selected randomly from 70-
ps-NVT-ensemble FPMD simulations using the FPsl method. Although
these FPMD simulations are expensive, the overall computational time is
stillmuch smaller than full FP simulations. To ensure the applications of the
second-order cumulant expansion, we show the probability distributions of
the energy difference ΔUΔML

κ in Supplementary Fig. 11. The distribution is
well-fitted by Gaussian functions, indicating that Eq. (15) is a reasonable
approximation.

The MD simulations were performed using a Langevin thermostat92.
For efficient sampling, themass of hydrogenand time stepwere set to 2 amu
and 1 fs.

MLFF and Δ-ML
Similar topreviousmachine-learning approaches63,64, the potential energyU
of a structure with Na atoms in our MLFF method is approximated as a
summation of local energies Ui written as

U ¼
XNa

i¼1

Ui: ð20Þ

Following the Gaussian approximation potential pioneered by Bártok and
co-workers64, the local energy Ui is approximated as a weighted sum of
functions Kðxi; xiB Þ centered at reference points fxiB jiB ¼ 1; :::;NBg

Ui ¼
XNB

iB¼1

wiB
K xi; xiB


 �
: ð21Þ

The coefficients fwiB
jiB ¼ 1; :::;NBg are optimized to best reproduce theFP

energies, forces, and stress tensor components as obtained by the FPMD
simulations. The descriptor xi used in this study is a vector containing two
and three body contributions67:

xTi !
ffiffiffiffiffiffiffi
βð2Þ

q
xð2ÞTi ;

ffiffiffiffiffiffiffi
βð3Þ

q
xð3ÞTi

� �
; ð22Þ

Here, β(2) and β(3)( = 1− β(2)) are the weights on the two and three body
descriptors, xð2Þi and xð3Þi , respectively. The vectors xð2Þi and xð3Þi collect the
expansion coefficients of two and three body distribution functions with
respect to the orthonormal radial and angular basis sets60,67:

ρð2Þi rð Þ ¼ 1ffiffiffiffiffi
4π

p
XN0

R

n¼1

cinχn0 rð Þ ð23Þ

ρð3Þi r; s; θð Þ ¼
XLmax

l¼0

XNl
R

n¼1

XNl
R

ν¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1
2

r
pinνlχnl rð Þχνl sð ÞPl cos θð Þ: ð24Þ

The two and three body distribution functions ρð2Þi and ρð3Þi are defined as:

ρð2Þi rð Þ ¼ 1
4π

Z
ρi rr̂ð Þdr̂; ð25Þ

ρð3Þi r; s; θð Þ ¼
Z Z

dr̂dŝ δ r̂ � ŝ� cos θð Þρi rr̂ð Þρi ŝsð Þ; ð26Þ

ρi rð Þ ¼
XNa

j¼1

f cut ∣rj � ri∣

 �

g r� rj � ri

 �
 �

ð27Þ

The function g is the smoothed δ-function, and fcut is a cutoff function that
smoothly eliminates the contribution from atoms outside a given cutoff
radius Rcut. For χnl and Pl, normalized spherical Bessel functions χnl = jl(qnr)
and Legendre polynomials of order l are used in this work, respectively. For
the kernel basis functions, the smooth overlap of atomic positions (SOAP)
kernel50 is employed

K xi; xiB


 �
¼ x̂i � x̂iB


 �ζ
: ð28Þ

The hat symbol x̂i denotes a normalized vector of xi. The normalization and
exponentiation in Eq. (28) introduce non-linear terms that mix two- and
three-body contributions.

The same formulation is used for the Δ-ML method. In the Δ-ML
method, differences in potential energies and forces between two FP
methods, semi-local and non-local functionals in this study, are used as the
training data.

Parameter sets of the descriptors and kernel basis functions used in
previous publicationswere employed in this study60,62,67. The parameters are
tabulated in Supplementary Table 1.

Bulk solutions containing the redox species were modeled by systems
as shown in Fig. 1. The number of watermolecules was set to 32, 64, and 96.
Three different model sizes were examined to clarify the system size effect.
The sizes of the unit cells were set to obtain a water density of 0.99 g cm−3.
The size of theunit cell for the 32watermolecules is the same as the oneused
in previous FPMD studies10,11,41,80. For each of the reduced and oxidized
states, MLFF and Δ-ML models were constructed. All MLFF models were
generated on theflyduring a 100-ps-NVT-MDsimulation at 400Kbyusing
the active-learning algorithm developed in our previous study60. The tem-
perature for the training runs was set to a value higher than the target one of
298 K for production runs, to ensure that training data and kernel basis
functions were provided in a wider phase space. A Langevin thermostat92

was used to control the temperature. Exchange-correlation interactions
between electrons were described by the semi-local RPBE functional68 with
Grimme’s D3 dispersion corrections69,70. Probability distributions of the
errors of the constructed MLFFs for energies and forces on test data are
shown in Supplementary Figs. 1 to 4. The RMSEs are similar to those of
MLFFs used in previous studies60,65–67.

After examining the system size effect using the semi-local functional
(see results in Supplementary Fig. 13), Δ-ML models were constructed on
systems containing 64 water molecules. Each Δ-ML model was trained on
FP energies and forces of 40 structures selected randomly from a trajectory
of a 20psNVT-ensemble FPMDsimulation at 298K.TheFPMDsimulation
was performed using the RPBE+D3 functional. Differences in energies and
forces between the non-local and semi-local functionals for these 40 struc-
tures were used as training data. PBE072 with and without Grimme’s D3
dispersion correction69,70 was employed as the non-local functional because
the functional is known to accurately predict properties of water93–101. The
fraction of the exact exchangewas set to 0.25 and 0.50 to determine how this
influences the redox potentials. Error distributions of the Δ-ML models on
test structures are shown in Supplementary Figs. 2 to 4. The RMSEs are one
to twoorders ofmagnitude smaller than the errors of theRPBE+D3MLFFs.

The vacuum-water interface for the production run was modeled by a
pure water slab without the redox species composed of 128 watermolecules
per unit cell. Following the previous study45, a rectangular cell of
12.5 × 12.5 × 50 Å 3 was employed. Similar to the MLFFs for the bulk
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solution systems containing the redox species, the MLFF for the interface
was also generated by using the active-learning scheme. The systems used
for the trainingwere a pure water bulk composed of 64watermolecules in a
12.4 × 12.4 × 12.4Å 3 cubic cell and a pure water slab composed of 64 water
molecules in an 8.8 × 8.8 × 40.8 Å 3 rectangular cell. Training simulations
for both the bulk and slab were performed by NVT-ensemble MD simu-
lations at 300, 400, 600 and 800 K. As shown in Supplementary Fig. 1, the
constructed MLFF realizes small errors on test data taken from a 100-ps-
MD simulation of a water slab composed of 128 water molecules at 298 K.

The annealing procedure used for the production runs explained in the
previous subsectionwas also used to prepare for the initial structures for the
training runs. All FP calculations were performed using VASP56,57. A
2 × 2 × 2 k-point mesh was used for the bulk systems containing 32 water
molecules. For other systems, Γ-point was used. Plane-wave cutoff energy
was set to 520 eV. The PAW58,59 distributed in VASP 5.4 was used in all FP
calculations. The PAWatomic reference configuration was 1s1 for H, 2s22p4

for O, 3d74s1 for Fe, and 4d105s1 for Ag. The comparison of two atomic
configurations for Cu, specifically 3d104p1 and 3p63d104p1, was conducted to
examine the impact of semi-core electron relaxations on the redoxpotential.
Uponverification that these effects areminimalwithin thePAWframework
in VASP, as detailed in Supplementary Note 7, we employed the less
computationally demanding 3d104p1 electronic configuration. The para-
meters for the MD simulations are the same as the ones described in the
previous subsection.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The VASP code is distributed by the VASP Software GmbH. The machine
learning modules will be included in the release of vasp.6.3. Prerelease
versions are available from G.K. upon reasonable request.
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