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Machine learning algorithms have shown great accuracy in predicting chemical reaction outcomes
and retrosyntheses. However, designing synthesis pathways remains challenging for existing
machine learning models which are trained for single-step prediction. In this manuscript, we propose
to recast the retrosynthesis problem as a string optimization problem in a data-driven fingerprint
space, leveraging the similarity between chemical reactions and embedding vectors. Based on this
premise, multi-step complex synthesis can be conceptualized as sequences that link
multidimensional vectors (fingerprints) representing individual chemical reaction steps. We extracted
an extensive corpus of chemical synthesis from patents and converted them into multidimensional
strings.While optimizing the retrosynthetic path, we use the Euclideanmetric tominimize the distance
between the expanded trajectory of the growing retrosynthesis string and the corpus of extracted
strings. By doing so, we promote the assembly of synthetic pathways that, in the chemical reaction
space, will be more similar to existing retrosyntheses, thereby inheriting the strategic guidelines
designed by human experts. We integrated this approach into the RXN platform (https://rxn.res.ibm.
com/) andpresent themethod’sapplication tocomplex synthesis aswell as its ability toproducebetter
synthetic strategies than current methodologies.

The retrosynthesis is the process of designing a synthetic route for a desired
target molecule and requires the identification of optimal strategies to
combine simpler molecules into a target product1. Frequently, retro-
synthesis entails a series of reaction steps to synthesize thosemolecules from
simpler precursor molecules. One of the main challenges in this process is
exploring the large retrosynthesis hypergraph, which represents all possible
synthetic routes for a given targetmolecule2–30. The pathwayswithin the tree
link the target product (i.e., the root) with all commercially available com-
pounds (i.e., the leaves) which are identified by the algorithm through
single-step disconnections.

The retrosynthesis tree is exponentially large because each retro-
synthetic step can potentially branch into multiple alternatives, and the
number of possible routes increases exponentially with the depth of the tree.
Consequently, the sheer volume of potential synthetic routes can be over-
whelming to explore using classicalmathematical kernels, even for relatively
small molecules.

The exploration of such hypergraphs requires the implementation of
specific criteria to effectively filter the extensive array of disconnection

options. One strategy relies on the evaluation and scoring on the pathways
based on the confidence of each single-step retrosynthesis prediction, which
can be individually evaluated. The idea is to consider the low confidence as a
metric for an highly risky andmost likely failing synthetic route. Therefore,
steps with low confidence are not further propagated, giving higher priority
to those with higher confidence14. Apart from filtering based on confidence
values, single-steppredictions that fail the round-trip check can also serve as
additional targets to avoid further expansion. This check consists of
applying a forward prediction model to the output of the single retro-step
prediction and of verifying whether or not the result of this operation
returns the desired product14. In other schemes, one could score and rank
the different options, for example depending on the molecule availability,
the corresponding cost, or by some metric related to green chemistry31.

Notwithstanding, most of the existing approaches exclusively use local
information derived from single-step retrosynthesis and do not keep into
account strategical decisions typical of amulti-step synthesis conceived by a
human expert. In fact, when undertaking a multi-step synthesis, various
strategic decisions can be made to streamline the process and optimize
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efficiency. One example is the strategic protection of functional groups. By
selectively safeguarding specific groups early on, chemists can prevent
unwantedreactions andensure thedesired transformationsoccur smoothly.
In ideal cases, chemists follow the idea of introducing different protecting
groups, targeting the removal of all protections in a single step at the final
stage, saving time and minimizing the risk of side reactions. Another
strategy involves utilizing robust and high-yielding reactions for key
transformations, which can significantly impact the overall yield and sim-
plify the synthesis route. Additionally, strategic retrosynthetic disconnec-
tions play a crucial role in planning the sequence of reactions. By identifying
strategic bond disconnections, chemists can design efficient synthetic
pathways and target specific intermediates or building blocks to assemble
the final product. Lastly, the choice of reagents, catalysts, and reaction
conditions is another strategic consideration. Selecting appropriate reaction
parameters can enhance selectivity, improve yields, and expedite the overall
synthesis process. These strategic decisions collectively contribute to the
successful execution of complex multi-step syntheses32. Due to their
dependence on single-step predictions, existing models lack a compre-
hensive understanding of the key strategies employed in multi-step
retrosynthesis.

Recently, Thakkar et al.29 described an approach aiming to improve
retrosynthetic prediction systemsbyallowing chemists to havemore control
over the disconnections made during the exploration of the retrosynthesis
tree. The method enables user-defined disconnections, creating a “human-
in-the-loop” component that combines expert knowledge with deep
learning. Their approach results in an increased diversity of predicted

disconnections. With their method they improved decision-making stra-
tegies thus enhancing the chemist’s experience and facilitating user
engagement that statistical and machine learning algorithms alone cannot
encode due to insufficient training data and resultingmodel biases. Another
recent approach to improve the search policy builds on reinforcement
learning to introduce a notion of goal-driven synthesis planning that opti-
mizes multistep synthesis routes toward specific building blocks33.

Furthermore, Chen et al.21 introduced amethod called “Retro*”, using
an innovative neural-guided tree search approach for chemical retro-
synthesis planning. Theirmethod uses anA-like planning algorithm guided
by a neural network trained on past retrosynthesis planning experiences.
Their neural network learns synthesis costs for each molecule, assisting the
search algorithm in choosing the most promising molecule node for
expansion. In addition, the work by Ishida et al. introduces “ReTReK”, a
data-driven computer-aided synthesis planning (CASP) application that
integrates retrosynthesis knowledge into the evaluation of search directions.
By incorporating adjustable parameters based on retrosynthesis knowledge,
ReTReK successfully explores promising synthetic routes, demonstrating its
preference for routes designed with the knowledge. The study addresses
limitations in existing data-driven CASP applications by introducing rule-
based techniques and evaluating performance using drug-like molecules,
showcasing ReTReK’s potential to enhance both current and future data-
driven CASP applications.

Recently, Pasquini and Stenta30 showcased LinChemIn, a toolkit that
simplifies themanipulationof reactionnetworks andenhances functionality
for working with synthetic routes, promoting interaction between AI and
human expertise in chemical analysis.

For a comprehensive review, we refer the reader to the evaluations
provided by Zhong et al.34 and Jiang et al.35.

However, the problemof designing chemical retrosynthesis is farmore
complex than removing potential biases from single-step retrosynthesis
model or to steer routes toward specific precursors. It involves knowledge,
experience and also a certain degree of creativity and intuition which goes
beyond the state of the art of existing retrosynthesis algorithms. Similar to a
strategy game, the evaluation of multi-step solutions requires holistic
planning and thus may be more effectively conducted by considering a
sequence of steps rather than solely focusing on individual steps. Hence,
relying exclusively on the confidence of a single-step model to devise a
synthetic route can potentially overlook crucial pathways and lead to sub-
optimal or even erroneous predictions.

Our algorithm not only addresses strategic decisions but also extends
its impact to enhance the efficiency of separation steps in multi-step
synthesis planning. Unlike traditional approaches that rely solely on single-
step retrosynthesismodels, ourmethod introduces a strategy for assembling
single-step predictions into coherent retrosynthetic pathways.

By considering the entire sequence of steps, our approach provides a
broader viewof the synthesis process, including the crucialfinal stageswhere
separation efficiency is crucial.

In this study, we present an algorithm that emulates human
strategic decision-making when constructing an AI-driven retro-
synthesis approach. The computational method facilitates the

Fig. 2 | Frequency of distances in the Pistachio40 (red solid and dashed lines) and
in the Schneider dataset41 (blue solid and dashed lines). The Euclidean distances
have been computed in the original fingerprint space of 256-dimensions (solid lines)
and compared to the PCA 16-dim reduced space (dashed lines). The frequency of
chemical reaction SMILES within the same class were centered around values of 6 in
the original fingerprint space. Both plots have been normalized by the same total
number of pair counts. The Pistachio distribution has been computed on subset of
Pistachio data. In this case, the number of data points is large enough to give a
converged distributions.

Fig. 1 | Distribution of Retrosynthesis Routes.
a Distribution of the tree depths of retrosynthesis
routes in the database, linear reactions are shown in
blue, while the count including the tree routes is
shown in red. bThe distribution of sequence lengths
is shown in blue for linear routes and in red for both
linear and tree routes.
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exploration of the retrosynthesis tree, which is constructed using
conventional single-step machine learning predictions, leveraging the
chemical knowledge derived from existing collections of multi-step
retrosynthesis. By doing so, the algorithm effectively harnesses the
expertise and available knowledge of human chemists readily acces-
sible through retrosyntheses published in literature. The proposed
method targets the task of assembling efficiently the single-step retro
predictions and does not require any retraining of retrosynthesis
models, since it makes used of existing pre-trained models. The algo-
rithm focuses on using an embedding to represent sequences of che-
mical steps. It then compares the sequences of predictions with the
sequences of steps in pre-existing datasets to prioritize retrosynthesis
strategies. For the representation of the single-step chemical reaction,
we leverage the work of Schwaller et al.36, who utilized embeddings of
language models to build a chemical reaction fingerprint (rxnfp).
Such reaction fingerprints capture structural and chemical properties,
such as reactants, products, reaction context, and stereochemistry.
These embeddings proved to be very successful to relate chemical
reactions to specific reaction classes37, to predict reaction yield38 or even
to discovery novel Heck reactions39.

Here, we extend the concept of chemical reaction fingerprints to
retrosynthesis routes, representing the sequences of steps contained in
published retrosynthesis with a set of multidimensional strings in the
fingerprint space. The core idea of the proposed algorithm is to con-
struct the retrosynthesis tree by growing strings minimizing the dis-
tance between the predicted and each section of any pre-existing
multidimensional string in the embedding space. The comparison can
be extended to more intricate scenarios, where retrosyntheses are not
linear trajectories but rather trees depicted by corresponding branched
structures in the fingerprint space.

This method demonstrates better performance in terms of producing
retrosynthesis with a smaller number of steps, protects/deprotects func-
tional groups making decision across the entire length of the synthesis. The
proposed approach makes better use of the different available reactions
leading to steps which can occur inmilder reaction conditions, avoiding for
example the need for strong chemicals like organometals and powerful
oxidants. We provide a few applications in the results section, which are
illustrative of the potential of the methodology.

Results
Data preprocessing and preparation
Ourmethod relies on representing retrosynthesis routes as trajectories in the
fingerprint space as described in the “Method” section. We assembled the
corpus of retrosynthesis routes by processing the Pistachio dataset40, which
is a large-scale dataset of chemical reactions extracted fromUS patents. The
dataset contains over 4 million reactions. We assembled 1,202,092 linear
and 187,478 branched pathways. Figure 1a illustrates the distribution of
number of steps for the linear and branched pathways consisting of at least
two steps.

Tomaximize the extraction of the human expert knowledge contained
in all sequences, we extracted fromeach retrosynthesis route additional sub-
routes of varying lengths, fromaminimumof two steps up to themaximum

length of each pathway. For example to build the datasets of sequences
N-step long, we utilize all the retrosynthesis with length greater or equal to
N.A retrosynthesis of lengthM,withMgreater then or equal toN,produces
M+ 1−N sequences of length N. However, if the number of steps exceeds
15, we truncate the sequence at 15 steps because, we explained in the
“Method” section, the use of longer sequences does not add any perfor-
mance improvements. Figure 1b shows the final distribution of lengths
of all sequences in our dataset. Figure 2 shows the Euclidean distance
distribution of the fingerprints of the reaction SMILES in the Pistachio
dataset. The histogram is the distribution of distances between ran-
domly selected pairs of chemical reaction fingerprints. The number of
pairs is large enough to give a converged distribution, which provides a
numerical information on the range-distance values in the fingerprint
space. We also observe a peak at shorter distances, centered at about 6,
which relates almost entirely to distances among reactions from the
same class, see Fig. S1a in the Supplementary Material. We verify this
finding by computing the distance distributions of groups of chemical
reaction SMILES belonging to the same reaction class, which we report
in Supplementary Fig. 1b. In addition, we computed the distance dis-
tribution of chemical reaction SMILES in the same class and in dif-
ferent classes using the curated dataset by Schneider et al.41.
Supplementary Fig. 1c shows a two-peaks distribution with a clear
separation between the distribution of distances of SMILES in the same
class, first peak, compared to the distribution among the remaining
SMILES. Compared to Supplementary Fig. 1a, Supplementary Fig. 1c
shows a more distinct separation between the reaction records com-
pared to a more complex dataset. This clearer delineation can be
attributed to the reduced number of reaction types in the simplified
dataset of Schneider et al.41.We repeated the same analysis using cosine
distance instead of Euclidean, which showed the same two-peak dis-
tribution. In the rest of the work, we will use the Euclidean distance
because it better resolves the distribution of fingerprints in the same
class compared to other metrics. To accelerate the computation and
memory consumption, we employed PCA reduction, reducing the
fingerprint embedding from 256 to 16 dimensions without significant
loss of descriptive capacity, see “Methods” section for details. Figure 2
shows the distribution of distances in the reduced space and compared
it with the original space. Our observations reveal that the PCA
dimensionality reduction improves the separation between short-
range and long-range distance peaks in both Pistachio and Schneider
datasets.

Method evaluation and comparative analysis
To evaluate the performance of our approach, we performed a comparison
of this method based on multidimensional strings (see “Method” section)
with an hypergraph search strategy14 on a series of case studies.

We analyzed the routes obtained with both approaches on two
molecules that are challenging for a search strategy based on hypergraph
exploration (Product A and B in Fig. 3).

Our results demonstrate several advantages of our string-growth
method compared to alternative approaches that rely on single-step
confidences. Figures 4 and 5 show for both molecules the predictions

Fig. 3 | Challenging target molecules for hyper-
graph exploration strategy. Two molecules, Pro-
duct A and B, used as target input products that
results challenging for a search relying on an
hypergraph exploration strategy.
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obtained with the two approaches. In Fig. 4, the proposedmethod finds
solutions with less steps. With the standard approach the retro-
synthetic tree counts 8 reaction steps, compared with 5 steps of the
proposed method. Using the same settings and the same molecule, the
proposed algorithm reaches commercial precursors more easily.
Analyzing more carefully each step, it is possible to observe that the
first two reactions are mostly the same: Amide formation at the first

step and protection of the phenol at the second step, although the
protecting group is different. From the third step instead the dis-
connections are different: with our algorithm, the intermediate is
obtained through Heck coupling, without any possible interference,
and the relative precursors are obtained in a single step from com-
mercially available compounds. On the contrary, using the older
algorithm the double bond is made through Horner-Wittig reaction,

Fig. 4 | Comparing retrosynthesis paths. Retrosynthesis paths obtained with the proposed method (right) and with the standard confidence-based approach (left) for
Product A of Fig. 3.
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reaction that involves the use of strong bases, after themesylation of the
phenol, that due to his acidity can interfere. Even the two precursors of
the Horner-Wittig reaction are not commercial and have to be made
through complex reactions. Given these observations it seems like the
hypergraph approach leads to worse intermediates during the retro-
synthesis and it struggles to reach commercially available compounds,
so that it has to force it through low confidence chemistry. Instead, in
the proposed algorithm, the retrosynthesis is well designed and that is
confirmed by the its shortness and higher reliability.

Figure 5 illustrates an analogous comparison for Product B. The
retrosynthesis depicted in Fig. 5 showcases two comparable routes in terms
of length, but they differ in the choice of reactions employed. Both retro-
synthetic pathways share the initial step of amide formation via the Steglich
reaction, leading to the same set of intermediates. In the string-growth
approach, the carboxylic acid is obtained through saponification of a
commercially available ester, while the standard route involves the predicted
formation of an ether throughnucleophilic aromatic substitution. Although
both routes are reliable, the saponification process is considerably easier to
execute and thus preferable for chemists. In terms of the amine, both routes
involve deprotection of a Boc protecting group. With the hypergraph
exploration method, the bicyclic structure is made using a Simmons-Smith
reaction from the alkene and the last disconnection is a Suzuki-Miyaura
coupling. In the proposed approach the aromatic ring is obtained through

[3+ 2] cycloaddition, favored by the aromaticity of the product, preceded
by the formation of the oxime. The two path are built through different
choices: in one case it is chosen to form the bicyclic structure and on the
other side the formation of the isoxazole. Also in this case it has to be
highlighted the preference of our approach for a more direct chemistry
rather than reactions conducted under harsh conditions, despite the more
direct path chosen.

In the Supplementary Material, we show the retrosynthesis paths of
Product A and B obtained via the method proposed by Chen et al.21, see
SupplementaryFigs. 5 and6, respectively. In these examples,weobserve that
the reaction pathways generated via the Retro*method are sub-optimal due
to non-regioselective reactions.

To further analyze the impact of the proposed search strategy
compared to a single-step confidence-based, we considered four
additional examples where the latter is performingwell.We employ the
same settings as in the previous case studies with a focus on delineating
the distinctions between the an hypergraph exploration approach and
the proposed method. First, the comparison reported in Fig. 6 shows
how predicted reaction pathways can exhibit a lot of similarities. The
key distinction lies in the formation of the heteroaromatic chloride.
The standard confidence-based approach relies on it being present in
the building block, whereas the proposed method involves its creation
under harsh conditions with POCl3. Nevertheless, this step streamlines

Fig. 5 | Comparing retrosynthesis paths. Retrosynthesis paths obtained with the standard confidence-based approach (left) and with the proposed method (right) for the
Product B of Fig. 3.
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the retrosynthetic process, allowing to initiate synthesis from a
renewable building block.

Second, in Fig. 7 we can observe how two predicted routes can
diverge in the construction of the core of the target molecule. The
proposed method initiates with a cycloaddition to shape the three-

membered cycle, and safeguarding the hydroxylic group enables
manipulation of the opposing segment. In contrast, the standard
confidence-based approach uses a Wittig reaction, followed by a
hydroboration-oxidation sequence to achieve a comparable outcome.
Third, in the molecule considered in Fig. 8, we observe how the initial

Fig. 6 | Comparing retrosynthesis paths.Retrosynthesis paths obtainedwith the standard confidence-based approach (left) andwith the proposedmethod (right) with a key
distinction in the formation of the heteroaromatic chloride.
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two disconnections remain identical. Subsequently, the proposed
method capitalizes on the selectivity arising from two distinct halogen
atoms. Ultimately, it tries to obtain the bicyclic aromatic structure with
a nucleophilic substitution-carbonylamine condensation. Lastly, in
Fig. 9, the solution derived from the proposed method is more concise
as it directly commences from the spyro-compound. In contrast, the

hypergraph exploration method expends considerable effort in its
construction. This underscores the string-growth approach’s profi-
ciency in identifying a more direct route from a commercially available
precursor. Additionally, the retrosyntheses are equivalent, differing
only in the choice of protecting groups for the aminic group and the
methodologies employed for its formation.

Fig. 7 | Comparing retrosynthesis paths.Retrosynthesis paths obtainedwith the standard confidence-based approach (left) andwith the proposedmethod (right) where the
formation of the core of the product highlights the different strategies.
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The overall effect of the proposed search approach is that the steps
along the retrosynthetic tree are more interconnected, less focused on a
single reaction andmore on the quality of the resulting sequence, leading to
shorter retrosynthesis with an higher quality and reliability of each step.

Figure 10 and Fig. S4 in the Supplementary Material compare the
length of the retrosynthesis obtained with the hypergraph search and our
proposedmethod,which produces on average less deep retrosynthesis trees.
The retrosynthesesplannedbyourproposedmethodoverall consist of fewer
reactions, see Fig. S7 in the Supplementary Material, which compares the
total number of reactions of retrosynthesis predicted via hypergraph search,
our proposed method, and the “Retro*”method21.

For reproducibility, in the Supplementary Material, we report the
parameters configuration used in the RXN for Chemistry platform to
produce the reported results, see Supplementary Fig. 2.

Discussion
We present a novel method for generating complete retrosynthesis path-
ways that incorporates human expert synthesis strategies, which are not
captured by existing single-step prediction models. Our method utilizes
chemical reactionfingerprints, commonlyused for reaction classification, to
capture multi-step strategies. Retrosynthetic routes are represented as
strings in the fingerprint space. The fingerprints of published chemical
routes are used to populate a database, which is then used to guide the
expansion of the retrosynthesis tree by ranking branches using a score that
favors pathways closer to those compiled by human experts. This approach
prioritizes pathways that use similar retrosynthetic strategies, without
requiring additional training of existing single-step prediction models.

Because at the time of this publication there are no benchmarks
available for multi-steps synthesis, the testing a scale poses significant

challenges. Therefore, we have engaged expert chemists among our authors
to evaluate specific examples.

We demonstrate the effectiveness of our method by applying it to the
synthesis of several products, which serve as prototypical examples to high-
light the differences between our approach and the older statistical approach.
In generalwe observe that the proposed algorithmshows improved results by
creating shorter retrosynthesis paths. It efficiently handles the protection and
deprotection of functional groups throughout the entire synthesis process.
The method maximizes the utilization of various reactions, allowing for
gentler reactionconditions for exampleeliminating the requirement forharsh
substances such as organometals and potent oxidants.

Our proposed algorithm, which currently rewards synthesis
routes closely resembling those documented in the Pistachio dataset, is
designed to be adaptable to various preferences and constraints within
the fingerprint space. By default, our scoring metric considers all the
retrosyntheses in Pistachio equally important. Nothing prevents to
customize our score function by assigning different weights to routes
based on specific preferences or constraints, or, alternatively, com-
bining with other metrics linked to trajectories in the fingerprint space,
for instance, accounting for precise and unambiguous comparisons for
improved resource management proposed by Andraos42 or including
concepts such as the one of strategic molecules proposed by Weber
et al.43.

Methods
Our method relies on representing single-step chemical reactions
with reaction fingerprints36. We build sequences of reaction steps of
different lengths from the protocol synthesis contained in the Pis-
tachio dataset40 belonging to the same document ID. Each sequence of

Fig. 8 | Comparing retrosynthesis paths.Retrosynthesis paths obtainedwith the standard confidence-based approach (left) andwith the proposedmethod (right) where the
proposed method exploit more the selectivity of the halogen atoms.
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steps will be referenced as a string or trajectory in the fingerprints
space. We compute the fingerprint of a synthetic pathway by con-
catenating the fingerprints of each step of the sequence and thus
construct a database for all the synthetic procedures extracted from
Pistachio. To promote the exploration and continuation of branches

in the retrosynthesis tree that closely align with pre-existing trajec-
tories derived from publications, we compare distances between the
expanded pathway and any pre-existing string. The pathway with
shorter distances to existing pathways will be prioritized for further
exploration.

Fig. 9 | Comparing retrosynthesis paths. Retrosynthesis paths obtained with the standard confidence-based approach (left) and with the proposed method (right) with a
more concise predicted route for the latter.
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Chemical reaction fingerprints
Each step is identified by a chemical reaction in SMILES notation, which
consists of a text string containing the precursors and the corresponding
product separated by the “>>” token. The precursors are separated by a “.”
token. In this work we used the fingerprints of Schwaller et al.36, which is an
array of real numbers of length 256. The fingerprints of chemical reaction
SMILES of the same reaction class are closer in space compared to the
SMILES of different reaction classes.

Dimensionality reduction of the fingerprints of a chemical
reaction
Expanding a retrosynthetic route close to humanly compiled pathways
requires the operation on fingerprints of thousands of sequences during a
single retrosynthesis prediction task. Each operation involved the calcula-
tion of the Euclidean distance between pairs of fingerprints. To speed up the
computation, we performed a PCA reduction on the set of fingerprints of
the chemical reactions, reducing the dimensionality from 256 to 64, 32, 16,
and 8. We then computed the correlation between the distances in the
original space and the reduced space andwe identified a valueof 16beingbig
enough to preserve the relative distances among chemical reaction SMILES.

Retrosynthesis route fingerprints
Given that each single reaction step is a point in the fingerprint space, a
sequence of steps is can be thought of a string connecting the individual
steps part of the synthetic pathway. Figure 11 shows two examples: for a
linear and branched synthesis, see Fig. 11a, b, respectively. The string
contains the information both on the order of the steps in the sequence, but
also on their nature. Branched synthesis, similar to linear synthesis, can be
described in the same space, as it is shown in the second example illustrated
in Fig. 11b.

The fingerprint of a retrosynthesis route (or string) is represented via
an array built concatenating the fingerprint of each chemical reaction step,
in the sameorder theyappear in the sequence.A sequenceof lengthNwould
be described by an array of N × 256 dimensions, if we use the original
embedding space. The same sequence could be analogously described by an
array N × 16 long using the representation in the PCA reduced space. This
definition makes every string’s fingerprint depend on its particular length.

For example, considering the case of a linear pathway consisting of
M = 6 steps as reported in Fig. 11a, we can buildM+ 1−N fingerprints of

length N (N ≤M). It is immediate to see how each retrosynthesis route will
contribute only to sets shorter or at most of length equal to the maximum
length of the extracted route. Similarly, we can extract linear sequences from
branched pathways to augment the sequence dataset. An example is
described in Fig. 11.

To expedite the search of closest sequences, we employed the cKDTree
class from thescipy library, which allows us to efficiently index each list of
vectors and quickly retrieve the nearest neighbors of any given point. This
indexing process was performed directly in the PCA reduced space, offering
the advantage of a smaller indexed object size that needs to be stored and
loaded into memory during runtime.

Algorithm of the fingerprint-driven retrosynthesis
The proposed method requires as input a target product, a single-step
prediction model to preform single-step retrosynthesis predictions, and a
model to convert chemical reaction SMILES into fingerprints. We use the
fingerprint model of Schwaller et al.36 and for the retro-predictions we use
themodels available on theRXNplatform44,with the results presented in the
next section relying on the use of the model with ID “2020-07-01”.

In retrosynthesis planning, a route is considered complete when all
leaves of the retrosynthesis tree contain reaction SMILES with the pre-
cursors that are available. To this end, we use the database provided by
eMolecules45 to determine the availability of each molecule. The method
involves a series of steps, which are exemplified in Fig. 12 for better
understanding. The figure presents a simplified example of a reaction
SMILES tree, along with the intermediate levels, highlighting the role of the
precursor compounds.

Given a target product, the retrosynthesis route is expanded using the
following steps:

(1) The first step in our approach is to conduct a top-N single-step retro
prediction for the desired product. For each prediction, we generate a
reaction SMILES that follows the format of “precursors >> product”,
where the precursors are separated by a dot. Subsequently, we calculate
the fingerprint of each reaction SMILES.

(2) We filter out all predictions that fail the round-trip check, in which a
forward predictionmodel (in our case theMolecular Transformer46) is
used to confirm the correct prediction of the product from the
precursors. This check is carried out by using the precursors predicted
from the retro model as input for a forward model. If the resulting
product from the forward prediction is the same as the original
product, we consider the round prediction to be successful.

(3) Our model predicts not only the reactants but also the reagents, sol-
vents, and catalysts, leading to several single-step retro-predictions that
may be quite similar. Although they have the same disconnection
point, they use slightly different precursors. To ensure better
exploration of the retrosynthesis tree and promote diversity, we use
the chemical reaction fingerprints to remove similar predictions, that
are too close in the fingerprint space. We use a fixed threshold of 2.0,
which we determined by examining the distance distribution of these
top-N predictions and testing thresholds between 1.0 and 2.5. The top-
N predictions, which passed the round-trip check, are sorted by length
with its maximum value being N. For each i in [1:N] and each j in
[i+ 1:N], if dij < 2.0, we remove j. This filter action eliminates reactions
that are too similar, expanding further only one of them, while saving
computational time as the tree grows deeper. This step will retrain K
single-step predictions, with K∈ [1,N].
Different to our previous approach14, here we do not filter based on the
confidence of the forward model, thus avoiding biases on reaction
classes that are under-represented and not sufficiently learned. In fact,
sometimes there are effective retrosynthesis pathways that involve a
single retro-step with low confidence, which would be penalized by
confidence-based methods and possibly never explored.

(4) For each of the K results obtained from the previous step, we examine
the precursors to identify those that are not readily available. These

Fig. 10 | The figure illustrates the count of tree depth in retrosynthesis of 144
products, comparing results obtained through the hypergraph search and the
proposed method. The histogram focuses on the frequency of tree depth for each
product based on the top-1 results. Vertical blue and orange dashed lines indicate the
means of the two distributions: hypergraph search and the proposed method,
respectively. In the SupplementaryMaterial Fig. S4 provides additional comparisons
of the length of predicted retrosynthesis.

https://doi.org/10.1038/s41524-024-01290-x Article

npj Computational Materials |          (2024) 10:101 10



precursors are deemed intermediate products that require synthesis.
We maintain a list of completed reaction SMILES and those that
require further prediction steps. Reaction SMILES with all available
precursors are marked as completed. Completed pathways including
the final product are considered successfully finished retrosynthesis, as
the product can be directly obtained from the available precursors. In
the example shown in Fig. 12, the reaction labeled s1 is completed in a
single step, and the corresponding chemical SMILES (s1) is located at
depth zero.
When possible, our approach will return multiple routes, which
are compatible with the time and execution constraints provided
by the user. In the example of Fig. 12, the prediction s0 contains
two available precursors, A and B, and a third precursor that is not
available. If compatible with the user settings, the method will
continue to search for more routes expanding the leaves of the tree

which correspond to reaction SMILES containing one or more
non-available precursors. Precursors that are not available are
considered intermediate products that need to be synthesized.
During the execution we keep updating the lists of chemical
reaction SMILES, which contain available precursors, and those
that require further prediction steps. For example, in Fig. 12, the
reaction labeled s1 is completed in a single step, and the
corresponding chemical SMILES is located at depth zero. If the
maximum number of prediction is reached, the algorithm returns
the results and terminates the execution, otherwise it continues by
expanding the tree.

(5) The tree expansions involve single-step retro predictions using as input
all the non-available precursors of the non-completed reaction
SMILES. In the example shown in Fig. 12, these new predictions are
located at depth one and are labeled as s2, s3, and s4.

Fig. 11 | Representation of Chemical Synthesis Paths in Fingerprint Space.
a Illustrative representation projected in two dimensions of sequence of chemical
steps in the fingerprint space. This sequence could represent an entire linear
synthesis or a smaller part consisting of six consecutive steps. Each of the six che-
mical steps maps to a specific point in the embedding space. The sequence is
represented by a trajectory connecting all the points one after the other with a
specific order. For visualization purposes, a twodimensionsfingerprint space is used.
b Same illustrative example as in (a) but for a non-linear synthesis, described via tree

structure. Different trajectories merge in common nodes. cGraph representation of
the retrosynthesis tree illustrated in (b). d Linear sequences derived from retro-
synthesis tree. Each sequence connects one leaf of the tree to the common root. The
root of the tree represents the last (time ordered) reaction step giving the target
product. The root in at depth equal to zero. The leaves are at depth greater than zero.
We use the convention to count the steps from the root to the leaves (backward).
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If the precursors of each of the predictions s2, s3, and s4were available,
the chemical smiles s2, s3, and s4 would be leaves of the tree, and the
solution would have three alternatives. In this case, we would return
four routes: a single-step route [s1] and three 2-steps routes [s0, s2], [s0,
s3], and [s0, s4]. For each route, we would compute the score and rank
the solutions accordingly.
However, following the example of Fig. 12, if two precursors of s2 were
not available, we would continue the search for more routes involving
s2. This process is repeated for each non-completed reaction SMILES
until all routes have been explored or the maximum number of
solutions requested by the user has been reached.

(6) During the expansion of the retrosynthesis tree, the number of
unfinished routes may increase, depending on the number of una-
vailable precursors. As this number grows, the algorithm computes a
score to select which routes have to be further expanded and which
should not. The selection is necessary to limit the exploration in favor
of the computational time. Continuing with the example of Fig. 12, we
now compute the score for pathways consisting of two steps, for
example s0 and s2.We compute the fingerprints of s0 and s2, and then
we apply the PCAmodel: each fingerprint after PCA is a point in a 16-
dimensional space. After concatenation of the two 16-dimensional
arrays into a single array of length 32, we search for the closest five
trajectories in the database using the cKDTree library. We store the
average distance of the top five closest trajectories as a measure of how
close or far the predicted [s0, s2] pathway is from the reported
reactions. The same protocol will be applied for computing the score
for all other alternative routes, [s0, s3] and [s0, s4] in the example.
Although the sequences considered in this description consist of a
length of two steps, as the tree depth grows, the score will compare
longer sequences.
Among the unfinished routes, we select to expand further only a
fraction, typically the top-M having the smallest distance from the
database. The numberM is usually between10 and 20. The user can set
the value of M to balance between the duration of the prediction and
accuracy. Increasing M allows for the continuation of more routes,
which results in more exploration but also a larger number of single-
step retro predictions and a longer overall prediction time. On the
contrary, a smaller value of M reduces exploration for a faster
prediction.
After identifying the top M pathways, we search for intermediate
compounds that are not available and require further synthesis. These
intermediate products are stored in a list, and we perform single-step
retro predictions to determine their precursors. In the simplified
representation shown in Fig. 12, these predictions are labeled as s5, s6,

s7, s8, and s9. However, some predictions may result in invalid
SMILES, such as s6, which are discarded.
If the precursors of s5, s8, and s9 are all available compounds, they do
not require additional synthesis steps. At depth equal to two, there are
three complete routes.One route is given by the single-step reaction s1.
The other two routes are given by [s0, s2, s5, s7] and [s0, s2, s4, s8], both
of which share the first two steps, [s0, s2].
The algorithm loops over the precursors and labels reactions as fin-
ished or to be continued based on the availability of compounds. The
system also verifies that all branches of the tree have leaves containing
only available compounds to compute the number of completed
routes. Once the tree’s status is updated, we verify a set of stopping
criteria that the user can set via the user interface.
The algorithm stops when at least one of the following criteria is met.
The first termination is effective if the number of completed routes is
greater than a user-defined threshold. At each prediction step, which
occurs every time the tree increases in depth, there is a check to update
the number of the newfinished routes. The second termination criteria
checks if the maximum depth of the tree is reached. Typically, the
maximumdepth is set to be between 6 and 15. Finally, if the runtime is
exceeding a user provided value, the algorithm will terminate its
execution. Whenever a stop condition is met, the execution proceeds
directly to the final evaluation of the score and returns the solutions. If
none of the stopping criteria are met, the algorithm proceeds to the
next step.

(7) As the sequences of steps become longer, further single-step
retrosynthesis predictions are required. In this step, we describe how
we compute the score for sequences of length greater than two, which
was already been presented in the previous step.
To compute the score for a sequence of length N, we consider all sub-
sequences of lengths ranging from two toN-1, with amaximum length
of 15. We set a threshold of 40 for the distance between two steps in a
sequence. This distance is computed in the 16-dimension embedding
space after PCA. Any distance greater than the threshold is assumed to
be equal to the threshold. This decision is basedon the observation that
if two steps belong todifferent classes, their distance is likely to be larger
than the first minimum in the distance distribution. The threshold of
40 is already a much larger value than the location of the first
minimum. Sub-sequences longer than 15 steps are excluded since it is
very improbable to find such long sequences of steps close to each
other. For each of these sequences, we search the corresponding
database for the closestfingerprints and take the average distance of the
closest five as the partial score. We compute the overall score of a
sequence as the sum of partial scores from all sequences of different

Fig. 12 | Illustrative example of a non-linear
synthesis tree build via a sequence of single-step
retro predictions. The color code is indicated in the
legend of the figure. This representation not only
indicates the reaction SMILES, it also shows the
composition of the precursors of each SMILES.
Green filled dots indicate available compounds,
while black filled product are not available pre-
cursors that need further steps of synthesis.
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lengths within a specified range, thus accounting for different
alignments between predicted sequences and those in the database.
Thedifferentpathways are rankedbasedon their scores, and thosewith
the lowest scores are further expanded in the next single-step
prediction iteration. For each expanded pathway, we search for all
the nodes in the tree that are necessary to complete the retrosynthesis,
which in turn requires all the leaves to represent available compounds.
These additional nodes are expanded independently of their score.

(8) After the stopping criteria is met, we compute the score of each route.
The route can be either linear or a tree. In the case of a linear route, the
score is calculated as described in the previous step. However, for a
branched route, the score is computed summing the scores of all the
pathways connecting the route to the leaves. Each of these pathways is
linear and is scored in the same way as described before.

(9) The final step of the algorithm occurs after the search has been com-
pleted, and it can unfold in two different scenarios. In thefirst scenario,
no solution has been found, and the system returns a failed status. In
this case, no solution can be displayed to the user. In the second
scenario, at least one solution has been found, and the algorithm
proceeds with the finalization steps.
In this finalization step, an additional score value y is computed and
returned to the user interface using the formula y = 1/(1+ log(x+ 1)),
where x is the tree-route score computed in the previous step. While
arbitrary, the scoring function was chosen to return a number between
0 and 1, with an higher value connected to a greater confidence in the
designed retrosynthesis.

Data availability
We provide sample data to run the method (https://github.com/
rxn4chemistry/rxn-neb). The Pistachio and emolecules data are available
in40 and45 respectively.

Code availability
The experiments presented in the paper can be reproduced using the RXN
platform via UI (https://rxn.res.ibm.com) or REST API (Python client:
https://github.com/rxn4chemistry/rxn4chemistry). Additionally, we pro-
vide and open source implementation of our algorithm that allows to run
the method customizing: single-step forward/backward models, finger-
prints model (https://github.com/rxn4chemistry/rxn-neb).
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