
npj | computational materials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-024-01289-4

Machine learning-based prediction of
polaron-vacancypatternson theTiO2(110)
surface

Check for updates

Viktor C. Birschitzky 1 , Igor Sokolović 2, Michael Prezzi1, Krisztián Palotás 3, Martin Setvín2,4,
Ulrike Diebold 2, Michele Reticcioli 1 & Cesare Franchini 1,5

Themultifaceted physics of oxides is shaped by their composition and the presence of defects, which
are often accompanied by the formation of polarons. The simultaneous presence of polarons and
defects, and their complex interactions, pose challenges for first-principles simulations and
experimental techniques. In this study,we leveragemachine learning anda first-principles database to
analyze the distribution of surface oxygen vacancies (VO) and induced small polarons on rutile
TiO2(110), effectively disentangling the interactions between polarons and defects. By combining
neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous VO

distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand
and predict defective surface patterns at enhanced length scales, identifying the specific role of
individual types of defects. Specifically, surface-polaron-stabilizing VO-configurations are identified,
which could have consequences for surface reactivity.

The rich and tunable physics of oxides depend on their precise chemical
composition, and the presence of impurities, including atomic vacancies,
interstitial atoms, and dopants in the material1–4. Defects at the atomic level
frequently lead to the formation of polarons, which are localized charge
carriers arising from the synergy between unbound charges and lattice
phonons5–7. In the specific case of so-called small polarons, the polaronic
charge is localized almost entirely on one atomic site, surrounded by sizable
distortion of the local lattice structure8. In conjunction with their inducing
defects, these small polarons play a dominant role in a wide range of pro-
cesses relevant to technological applications9 and fundamental phenomena
such as charge carrier mobility10–12, electron-hole recombination13,14 and
adsorption15–17.

Most importantly the role of polarons is known to be highly relevant in
the context of (photo)catalysis18–21 and, single-atom catalysis22–24. The
localized charge carriers act as active centers, which enhance (photo)cata-
lytic activity by providing sites that can readily adsorb and interact with
reactant molecules25,26. Although polaron formationmay in principle occur
on any site of the lattice, the defects can act as attractive or repulsive centers,
favoring specific polaronic configurations over others27. In turn, the
dynamics and distribution of the atomic defects are known to be altered by

the polarons28. Therefore, control over the spatial distribution of polaronic
active centers becomes pivotal in optimizing (photo)catalytic performance.

While theoretical studies based on density functional theory (DFT)
have elucidated excess charge localization in relation to the inducingdefect in
many materials29–31, the specific role of subsurface and surface polarons,
particularly in the presence of defects, on the archetypal redox active oxide
surfaceTiO2(110) is still debated.Here, a problemarises fromthe complexity
of the configuration space of point impurities, where DFT calculations strive
to account for the computational cost of the problem. As a consequence,
either no exploration attempt is performed (i.e., most studies rely on the
configuration randomly obtained in theDFT calculation)32,33, or effective but
costly approaches are adopted such as molecular dynamics34,35, Monte-
Carlo-driven DFT simulations36 or systematic explorations limited to a
handful of localization sites37. While other fitting methods such as cluster
expansion38 have addressed the configurational problem of disordered
impurities in (oxide) materials39–41, the interactions arising from polarons
and other charged defects have sizable contributions within large cutoff
distances (≈10Å)37 resulting in a combinatorial divergence of possible cluster
interactions42,43. Thus, finding amethod that effectively navigates the diverse
defect-polaron configuration landscape has become a research imperative.
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In this study, we focus on rutile TiO2(110) and show how the spatial
distribution of VO measured by SPM can be successfully predicted and
interpreted by first-principles calculations if the coupling between VO and
polarons is taken into account. To address this problem, we developed a
strategy based on defect distribution descriptors and neural networks to
predict the stability of specific polaron-vacancy patterns. Through an
iterative optimization active learning cycle (similar in spirit to cluster
expansion approaches studying atomic disorder39), we systematically
extended the DFT reference dataset and converged the machine learning
(ML) model, to efficiently explore the defect-polaron configuration space.
The model can capture the complexity of the VO-polaron interactions with
DFT accuracy and proposes alternative configurations showing remarkable
energy stability. By feeding Markov-chain Monte-Carlo (MC) algorithms
with the ML configuration energies, we simulate the annealing process
leading to the formation of vacancies and polarons in the experimental
samples. As a final result, we obtain large-area (>10 × 10 nm2) surface
morphologies resembling the SPM measurements. This analysis revealed
physical properties of the polarons on TiO2(110), where the formation of
inhomogeneously distributed VO is linked to an increased formation of
surface polarons and, therefore, to the density of active sites.

Results and discussion
Defect distribution via DFT, experiment, and machine learning
Figure 1 shows the surface structure of reduced rutile TiO2(110) as imaged
by constant current STMmeasurements (see panel b andMethods Section),
together with the models predicted fromDFTwithout taking polarons into
account or by explicitly modeling their impact via machine learning (see
panels a and c respectively). The unreconstructed 1 × 1 rutile surface con-
sists of alternating rows of under-coordinated (two-fold) oxygen atoms (the
bridging oxygen atoms, Obr) and fivefold coordinated titanium atoms (Ti5c)
running along the [001] direction44,45. Oxygen vacancies form easily on the
Obr sites upon sputtering and annealing, up to a critical concentration of
cVO

≃ 17%34. At stronger reducing conditions, the surface undergoes a
structural reconstruction46–51. Every VO releases two excess electrons that
formpolaronic states, localizingpreferably on subsurfaceTi sites27,35,52. Thus,
the VO can be considered as a positively charged (2+) center. By simple
electrostatic considerations (and by, simultaneously, neglecting the role of
polarons), one would expect a purely repulsive interaction among the

vacancies. In this picture, the configuration maximizing the VO–VO dis-
tances represents the most favorable vacancy distribution. For the critical
concentration of cVO

= 17%, this corresponds to a homogeneous config-
uration with a VO–VO distance of six lattice sites along the [001] row, and
three lattice sites considering two oxygen vacancies on adjacent rows
(see Fig. 1a).

DFT calculations confirm the homogeneous VO distribution in
Fig. 1a as the ground state configuration, as far as the formation of the
polarons is suppressed (i.e., the excess electrons are forced into
spatially delocalized states at the bottom of the conduction band,
rather than localized polaronic states). While this unphysical metallic
solution (rutile TiO2 is an n-type semiconductor) is less stable than
the polaronic solution, it simplifies the search for the optimal defect
distribution via a two-step process. Initially identifying the optimal
defect pattern through DFT calculations, where polaron formation is
suppressed, and subsequently introducing polarons into random
positions or finding the most favorable polaron configuration within
the given defect distribution27. While this approach reduces the
combinatorial divergence of defect-polaron configurations, it relies
on the assumption that the distribution of atomic defects is not
affected by the polarons, which is not valid for most materials28.

The experimental measurements do not support such homogeneous
VO pattern. Figure 1b shows a typical image as obtained from low-
temperature STM measurements on a TiO2(110) surface after sputtering
and annealing treatment to form a high content of oxygen vacancies
(cVO

≃ 14%, close to the critical value of 17%). At this temperature, the
oxygen vacancies (imaged as bright spots along the dark [001]Obr rows) are
immobile and appear in irregular patterns, quite far fromany homogeneous
distribution. The discrepancy with the simple models discussed above is a
strong indication of the role that polarons can have in determining the
optimal VO surface structure. Simply adding polarons on a rigid VO pattern
(effectively decoupling VO and polaron) as usually done in standard DFT
simulation, would not improve the situation.

Figure 1c reports the surface structure as predicted by our machine
learning model, which allows simultaneously varying both VO and polaron
positions to find the configuration that minimizes the total energy of the
system. The resulting VO distribution is in good qualitative agreement with
the inhomogeneous distribution found throughout experiments. Our

Fig. 1 | Oxygen vacancy distribution on rutile TiO2(110) obtained by various
methods. a Schematic representation of the most favorable VO distribution in non-
polaronic DFT calculations as obtained from a 6 × 4 (~1.8 × 2.6 nm2) supercell. The
schematic depiction is generated by showing theObr bridging atoms as black regions
and Ti5c rows and VO as white. The inset displays the structural model of rutile
TiO2(110). The distance maximizing VO distribution (six sites in row, three sites in
adjacent row) and the 6 × 4 supercell are indicated. b Unoccupied-states, constant-
current STM image of a clean, reduced rutile TiO2(110) surface (imaging parameters

in the Figure) depicting Ti5c rows and VOs as bright, while Obr rows are depicted as
dark. More details on the contrast formation are given in the Methods. Locally low
and highVO concentrations (cVO

) areas aremarked with solid and dashed red boxes,
respectively. The crystalographic directions are consistent in all panels. cML-
predicted schematic representation of surface oxygen vacancy distribution, where
the interaction of surface and subsurface polarons (PolS0 and PolS1, respectively) and
VOs are modeled in a 54 × 24 (~16 × 16 nm2) supercell. Orange and yellow markers
show the position of surface and subsurface polarons in the ML prediction.
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methodology, described in detail in the following, is capable of capturing the
effects of the polarons on the oxygen vacancy distribution, going beyond the
simple picture relying on purelyVO–VO interactions.Moreover, it allows us
to consider large surface areas of about 250 nm2 (>15 × 15 nm2), corre-
sponding to 54 × 24 supercells, extending considerably the limits of stan-
dard DFT simulations.

Machine learning polaron and defect distributions
Themethodology proposed here is structured in three parts: First, we train a
feed-forward neural network53 to predict the DFT energy of the system
depending on the configurations of the impurities. Due to the computa-
tional limitation of the DFT calculations, we adopt relatively small unit cells
in this step. Polaron-polaron/defect interactions in rutile TiO2 become
negligible within≃ 10Å37. Here, we used two supercells with different lat-
eral extensions (6 × 4 and 12 × 2, see “Methods”) to include these long-
ranged interactions along different crystallographic directions. Then,we use
the trained model to search for low-energy configurations that were not
included in the original set of data, adopting an active learning scheme54.
Finally, we use the actively trainedmodel to obtain large-area predictions. In
the following, we describe in detail the architecture of themachine-learning
model and compare theML predictions with experimental data on reduced
TiO2(110).

The training of the machine learning model requires a reference
database built up by several, distinct polaron and atomic-defect config-
urations. By following the process described in detail in the Methods
Section, we calculated the free energy for different configurations at the
DFT+U level using VASP55–57, with a U = 3.9 eV on the d orbitals of Ti
atoms27,58. Polarons were localized at chosen surface TiS0 (PolS0) and
subsurface TiS1 (PolS1) sites via occupation matrix control59. Wemodeled
2367 symmetrically-inequivalent polaron-VO configurations in a
6 × 4 supercell (i.e., six and four times the [001] and [1�10] lattice vectors,
respectively), and 2155 configurations in a 12 × 2 supercell. To optimize
the model, we randomly split the calculated configurations and energies
into training and validation data sets, including 80% and 20% config-
urations, respectively.

Figure 2 sketches the main features of our ML architecture predicting
the stability of different defect-polaron configurations. A generic polaron-
VO distribution on the rutile TiO2 surface is depicted in Fig. 2a. The
descriptor representing the configuration is constructed by, first, discretiz-
ing the space into a rough grid (see Fig. 2b), and encoding the spatial
distribution of polarons and atomic defects. While this representation does

not explicitly include the specific structural distortions accompanying the
defect configuration, we account for it by training our model on relaxed
structures that capture the distortions and their contribution to the energy.
This is possible since the distortions accompanying a specific defect con-
figuration are defined by the position of the defects in the lattice (i.e., in a
DFT calculation, defining the defect configuration suffices to find the
minimum energy structure). The discretized space simplifies the training of
the MLmodel, as compared to using Euclidean distances27. To improve the
description of the interaction with polarons/defects at similar crystal-
lographic displacements, we employ a one-hot encoding (i.e., value of 1 for
grid cells containing a defect, 0 otherwise) smeared to effectively encode the
defect density. We achieve this smearing via multiple applications of a
discrete Laplacian kernel to the one-hot encoding (Fig. 2c), mimicking
a diffusion process. Then, to predict the energy of the whole system given a
specific configuration, we split the total energy into contributions arising
from a single defect/polaron impurity (Fig. 2d):

Etot ¼
XNS1

i

Ei þ
XNS0

j

Ej þ
XNVO

k

Ek ð1Þ

Here,Etot is the total energyof a given configuration, andEi,Ej, andEk are the
virtual contributions of a single PolS1, PolS0, and VO respectively. We use a
feed-forward neural network to estimate the virtual contribution of a single
defect/polaron (Fig. 2e). Finally, we sum over the virtual contributions to
obtain the total configuration energy27. The total energy can be computed by
DFT calculations37, while the virtual contributions are not directly accessible
in the DFT data. Thus, we can train our model using the discretized defect-
polaron positions as a descriptor, and theDFT energy as the target quantity.
By training the MLmodel on DFT data obtained for the 6 × 4 unit cell (see
Supplementary Fig. 1), we achieved a mean absolute error of 1.8 and
2.2meV/VO for the training and validation sets, respectively. By adding
training data from the 12 × 2 unit cell (see Supplementary Fig. 2), the mean
absolute error increased slightly (2.9 and 3.5meV/VO in training and
validation, respectively). However, by using both sets of data in the training,
the ML model can account for longer interactions in both the [001] and
[1�10] directions. For a detailed description of the training process see
“Methods” Section.

Aiming for a comparison with the experimental measurements, we
focus here on the low-energy configurations, which are more likely to get
stabilized in real samples. To identify such stable configurations, we

Fig. 2 | Machine learning model architecture. a A defect structure consisting of
oxygen vacancies and polarons in a supercell. b The supercell is converted into a
discretized grid, where each cell encodes whether it contains a defect/polaron.
c Smearing of the one-hot encoding. d The supercell is partitioned into the local

environment of each defect. e The local environment descriptors are fed through a
feed-forward neural network to predict the energy contribution of each defect. The
sum of the individual defect contributions gives the total energy of the system.

https://doi.org/10.1038/s41524-024-01289-4 Article

npj Computational Materials |           (2024) 10:89 3



performed simulations thatmodel the annealing process. In the preparation
of the experimental samples, both polarons and oxygen vacancies diffuse on
the sample during annealing. At lower temperatures, VO on rutile are
immobile, while polarons always show a certain degree of mobility, hop-
ping/tunneling a few lattice sites around the equilibrium position34,45. The
simulated annealing can be implemented as a global optimization scheme60.
Candidate configurations are obtained by perturbing the current config-
uration, randomly displacing one defect/polaron impurity to any nearest
neighbor site. The candidate configuration is either accepted or declined by
virtue of the Metropolis-Hastings algorithm61 with the acceptance criterion
based on the configuration energy—similar in spirit to large-scale defect
distribution studies based on reverse MC62 (although in our approach the
defect distribution is not fitted to minimize the deviation from experiment,
but it relies entirely on DFT/ML data). Calculating the energy of the can-
didate configurationswithin theDFT frameworkwouldmake this approach
unfeasible, due to the computational cost of DFT calculations and the high
number of energy evaluations required for a single optimization. Con-
versely, theMLmodel allows us to inspect the stability of an extremely high
number of defect-polaron configurations (minimization of the energy
requires on the order of 103−106 energy evaluations depending on the size
and initialization of the employed configuration) and enables the explora-
tion of candidate structures.

We iterated annealing simulations following an active learning pro-
cedure. The initial DFT data set built by random configurations was pro-
gressively augmented by including the results from the annealing
optimization (see Supplementary Fig. 4). Consequently, we obtained a final
ML model refined to account for a broader range of configurations. The
refinedmodel is finally used to obtain large-area predictions (7.1 × 10.5 nm2

to collect statistics and 16 × 16 nm2 for visualizations) on the defect-polaron
distributions, using again the simulated annealing approach. The qualitative
agreement with the experimental data is shown in Fig. 1c for the 54 × 24
rutile TiO2(110) supercell. In the following, we quantitatively analyze our
results.

Formation of VO-polaron patterns and their mutual interaction
The analysis of the low-energy configurations (see Supplementary Fig. 5 for
the energy distribution of all possible VO configurations in the 6 × 4 cell) is
summarized in Fig. 3. Figure 3a shows the improvement of energies of the
TiO2(110) 6 × 4 cell as obtained by treating VO-polaron coupling at three
different levels: (i) Suppressing polarons ("No Polarons”); (ii) Distributing
polarons in random or positions guided by physical intuition (“Random
Polarons”); (iii) Full inclusion of polaron–VO interaction via our proposed
ML protocol ("ML Polarons”). By suppressing polaron formation, the
ground state configuration is given by the vacancies being homogeneously
distributed on the surface (CHom

NoP configuration, see “No Polarons” column
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Fig. 3 | Analysis of VO-polaron configurations in a 6 × 4 TiO2(110) cell.
aComparison of selected low-energy vacancy-polaron configurations as obtained by
different treatments of the polaron–VO interaction. For a comparison of all con-
figurations and their labeling, refer to Supplementary Fig. 6. The change in energy for
all low-energy configurations is displayed in Supplementary Fig. 7. “No Polarons”
refers to DFT calculations suppressing polaron formation. “Random Polarons”
refers to the reference DFT data set, built by including polarons in random positions
or guided by physical intuition. “ML Polarons” indicates the DFT energies of con-
figurations identified in the ML search. Total energies ΔE are shown using the
homogeneous VO distributions (from “No Polarons” and “Random Polarons'') as

references (note the large energy gainΔEpol of−3.23 eV between non-polaronic and
polaronic solutions with homogeneous VO patterns). Dashed lines connect identical
VO configurations. VO configurations found in the ML search are displayed in red.
The occurrence of TiS0 polarons is highlighted in orange and purple for [1�12]- and
[1�10]-aligned oxygen vacancies, respectively. The most important VO-polaron
complexes are shown schematically in top view at the bottom of the Figure. Only the
most stable polaronic configuration per VO arrangement is shown. b, c Top and side
views of the polaronic isocharge surfaces of the [1�12]-aligned VO-PolS0 complex
(top), and of the PolS1 in the homogeneous VO-distribution (bottom).

https://doi.org/10.1038/s41524-024-01289-4 Article

npj Computational Materials |           (2024) 10:89 4



in Fig. 3a). The “Random Polarons” column of Fig. 3a shows instead the
energy of the system obtained by including polarons in random positions
and enriched by adding specific, low-energy polaronic configurations that
were suggested in previous studies27,34,37. Here, the ground state configura-
tion is given by a homogeneous distribution of PolS1 in the homogeneous
VO pattern (labeled as CHom

RandP in Fig. 3a).
Treating polaron-VO coupling at theML level (third approach) results

inVOdistributionswith lower energy, indicating an alternative ground state
for the system, where the homogeneous configuration is no longer themost
stable one, as shown in the “ML Polarons” column of Fig. 3a. First, we note
that the ML model identified a different order of PolS1 showing better
stability in the homogeneous VO background (labeled as CHom

ML , see also
Supplementary Fig. 6). Moreover, polaron configurations explored by the
extensive ML search improve the stability of many other VO patterns (see
the energy levels in black in the “MLPolarons” columnof Fig. 3a, lower than
in the “Random Polarons” column). Importantly, two of these previously-
unexplored polaron configurations (labeled as C0

ML and C2
ML) resulted in

energy values even lower than the homogeneous distribution, revealing an
alternative ground state for the system. Moreover, alternative VO-patterns
were proposed by the ML search as low-energy configurations. One in
particular (red line in Fig. 3a) is ranked as the second most stable config-
uration (C1

ML). The polarons play a key role in stabilizing this VO-pattern
and as further proof, we calculated the energy of this VO-pattern, artificially
suppressing the polaron formation, and obtained a much worse stability
(red line in the “No Polarons” column).

Interestingly, in all the low-energy configurations obtained from the
ML-driven search (except for CHom

ML ), we note the presence of at least one
polaron on a surface TiS0 site (configurations containing PolS0 are orange
highlighted in Fig. 3a). Figure 3b and c compare the spatial distribution of
the surface PolS0 and subsurface PolS1. The formation of the surface polaron
is particularly stable when occurring in the central TiS0 site between two
oxygen vacancies aligned on the [1�12] direction (see top view in Fig. 3b).
This [1�12]-alignedVO-polaron complex represents indeed the ground state
configuration obtained by our ML search (e.g., it is present in C0;1;2

ML ).
Another remarkably stable complex is given by two vacancies aligned along
the [1�10] direction andonePolS0 in their vicinity (seeSupplementary Fig. 6).
For instance, this complex appears in the configurations highlighted in
purple in Fig. 3a (C10;11

ML ). The [1�12] and [1�10] alignments found in the ML
search agree well with the experimental SPM measurements (compare
Fig. 1b and c) showing a high coverage of such high-density VO regions. In
contrast, DFT predictions, which neglect polaron-VO interaction or ran-
domly distribute polarons, favor homogeneous configurations.

Comparisonof a large-scalemodel and theexperimental surface
Figure 4 shows our results as obtained byML-driven annealing simulations
on large-area 24 × 16 cells (corresponding to 7 × 10 nm2), which enables a
direct comparison with the experiment. Visual inspection (Fig. 1b vs. c)
already indicates that our ML treatment provides VO distribution that
closely resembles the experimental one. We quantify this agreement by
calculating autocorrelation functions (ACF)63 for simulated annealings
under different computational conditions and compare it to the experi-
mental ACF of the VO distributions extracted from Fig. 1b (for details see
Supplementary Fig. 8). The simulated annealing procedure starts from
random VO–polaron configurations, where we obtain several large-area
models (such as the one in Fig. 1c), all showing very similar characteristics.
To complete our comparison, we also use theMLmodel to anneal a system
where polaron formation is suppressed. This scheme, similar to the non-
polaronicDFT approach of Fig. 1a, assumes a homogeneousVOpattern but
takes into account annealing-induced disorder effects.

The ACFs are shown in Fig. 4, where projections of VO defect popu-
lations along the same and adjacent [001] rows are shown in the histograms
in panels a and b, respectively. For oxygen vacancies lying on the same row,
both the MLmodel and the experiments show that short VO–VO distances
of 1 and2 lattice sites are unlikely. Thehighest probability lies at a distanceof
4 or 5 lattice sites for both the experimental and ML annealing including
polaron–VO interactions (see Fig. 4a and b red and blue data, respectively).
By considering only the VO–VO repulsion as driving force (i.e., excluding
polaron formation in theML annealing procedure; seeMLNoPol in Fig. 4a
and b) and applying an identical annealing protocol as in the polaron-VO

interaction case, we find the probability maximum lying at a 6-site distance
for in-row and 3-site distance in the adjacent row. This is further evidence
for polarons’ role in stabilizing the VO arrangement.

As a result, the rutile TiO2 surface shows some areas with a locally low
density of oxygen vacancies (down to 0%), alternated with highly dense
areas (up to 20%, which is compatible with the 4-site-distance distribution).
Our data suggest that the great stability of the [1�12]- and [1�10]-aligned
VO–polaron complexes contribute to this alternation of locally less and
more reduced areas at a given cVO

. To further corroborate this result, we
performed additional DFT calculations modeling this strong inhomo-
geneity (see Supplementary Fig. 6with configurationsC26�29

ML ).We also note
that this analysis reconciles the DFT predictions on the critical concentra-
tion at which the (1 × 2) surface reconstruction occurs for the surface phase
transition,whichwas calculatedas ~20%, in apparent disagreementwith the
experiments reporting an average concentration of 17%34.

Conclusions
In summary, we directly elucidated the impact of polarons on the structure
of oxide surfaces, using an example of the prototypical rutile TiO2(110)
surface. Specifically, we designed a computational machinery to predict the
distribution of polarons and oxygen vacancies on rutile TiO2(110), by

Fig. 4 | Autocorrelation functions of the VO positions as extracted from Fig. 1b
(Exp) and ML-based ACFs with (ML Pol) and without polarons (ML No Pol).
Comparison of experimental and simulated VO autocorrelation functions along a
single (a) and adjacent (b) [001]-aligned Obr row. Experimental autocorrelation
functions are averaged to remove remaining anisotropies. Simulated ones are
averaged over all symmetrically equivalent most stable configurations from 60 dif-
ferently seeded simulated annealing runs performed in 24 × 16 supercells. ML Pol
andMLNo Pol are started from identically seeded VO patterns, with 2NVO

polarons
and no polarons, respectively. Autocorrelation functions are rescaled to account for
cVO

differences in experiment (14.2%) and simulation (16.7%).
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performing machine-learning-guided DFT calculations. While the defect
configuration energy could in principle also be modeled by a linear model
such as cluster expansion, non-linear models (such as neural networks)
might turn out preferable due to the complexity of the interactions at play in
oxide materials43. MC-driven annealing simulations based on the ML data
enabled the exploration of defect distributions on scales much larger than
standardDFT allows. An analysis of the experimental SPM images yielded a
direct validation of the theoretical predictions. While conventional
approximations used in traditionalDFTcalculations result in homogeneous
solutions, we were able to retrieve the inhomogeneity of the VO distribution
as detected by the experiments. Our analysis clarifies the peculiar inho-
mogeneous distribution of VO on rutile TiO2(110). Most importantly, the
system shows a tendency towards the formation of high-density VO pat-
terns, alternatedwith low-density VO regions.While larger defect-free areas
are typically attributed to subsurface Ar impurities64, the here observed
fluctuation of the local cVO

can partially be attributed to the interaction of
polarons and VOs.

These results suggest that surface reactivity could be optimized by
tuning the annealing procedure to facilitate the formation of energetically
more favorable, high-density VO patterns, which promote surface localized
charges and their interaction with adsorbates26. To elucidate the role of the
surface polaron, further experiments are necessary. Resonant photoelectron
diffraction does not rule out the formation of surface localized charge car-
riers, even at low cVO

65. SPM measurements in the presence of CO adsor-
bates confirm the formation of the [1�12]-aligned VO–polaron complex26,
while STM measurements probing the filled states on the clean surface do
showsomedisparity in comparison to simulatedSTM37.The reasons for this
discrepancy are manifold, ranging from temperature-induced effects66, to
the electric field of the tip.

Furthermore, we expect our methodology to be applicable to any other
polaronic system, even includingmultiple defects as sources of polarons, such
as the perovskite SrTiO3(001) surface

67 exhibiting Sr adatom/vacancy and
often doped by Nb atoms29. Moreover, this methodology could be used to
study the spatial distribution of defects (e.g., subsurface, bulk) that are not
directly accessible by the experiments, such as interstitial titanium in rutile.
Additionally, the stochastic optimizationmodel couldbe further improvedby
considering realistic anisotropic diffusion probabilities along certain direc-
tions. This could be achieved by explicitly computing hopping and diffusion
barriers, and incorporating these barriers into the annealing simulations.

Methods
DFT modeling
We performed DFT+U calculations using VASP55–57 on the rutile
TiO2(110) surface. We used standard projector augmented wave pseudo-
potentials for Ti (treating d- and s-orbitals as valence) and soft O pseudo-
potentials. We adopted a Hubbard U = 3.9 eV on the d orbitals of Ti
atoms27,58. The sampling of the reciprocal space included the Γ-point and the
plane-wave energy cutoff was set to 400 eV.

The surfaces were modeled using five-layer-thick slabs (where the two
bottom stochiometric layers were fixed at their bulk position) with lateral
supercell sizes of 6 × 4and12 × 2.Topartially account for the role of thermal
effects in the stabilization of theVOpatterns during the annealing treatment
in the experiments, we used an expanded [001] lattice vector. Specifically,
the low T lattice constant of 2.953Å44 was expanded to 2.968Å (high T
corresponding to 500–600 K) in accordance with thermal expansion coef-
ficient measurements68,69. This strain of +0.5% is well below the crossover
point of+ 3%, where surface polaron formation is favored over subsurface
polaron formation66.

Within the supercells, we removed 4 surface-bridging oxygen atoms
(in random positions) from every slab, obtaining a cVO

of approximately
17%. To assess non-polaronic solutions we performed spin unpolarized
DFT, constraining the excess electrons in spatially delocalized states at the
bottom of the conduction band. To model the polaronic structure, we fol-
lowed a three-step procedure: Initially, we removed bridging oxygen atoms
from a pristine structure to generate a specific oxygen vacancy pattern. This

structure was relaxed while all excess charge carriers were kept delocalized
by employing a spin un-polarized relaxation. After retrieving the structural
properties of the oxygen vacancy configuration, we introduced polaronic
distortions at selected sites via occupation matrix control59, using distinct
occupation matrices for PolS1 and PolS0 sites

27. Finally, we performed an
unconstrained relaxation starting from the structures and wave functions
determined in the previous step. As a starting point for building our dataset,
we chose 43 symmetrically inequivalent VOconfigurations and pre-relaxed
them at the delocalized level. Afterward, we added polarons at random
positions to these relaxed structures, while keeping the polaron densities in
each layer within the ranges suggested by our previous works27,37 (i.e., most
configurations have less than 4 surface polarons). After the initial dataset
was constructed, we systematically extended the dataset via simulated
annealing with our ML model. With this active learning procedure, we
extended our dataset by roughly 200 configurations.

MLmodel training and optimization of defect configurations
The machine learning model is implemented in the framework of JAX70.
Here, we describe the model optimization based on the study of config-
urations in the 6 × 4 supercell. Our MLmodel consists of featurisation (see
Fig. 2a–d) and defect-type-specific feed-forward neural networks (see
Fig. 2e). The featurisation consists of a one-hot encoding on a grid, speci-
fying the defect configuration, followed by smearing via multiple applica-
tions of a discrete laplacian kernel:

unþ1
i;j ¼ uni;j þ D uniþ1;j þ uni�1;j þ uni;jþ1 þ uni;j�1 � 4uni;j

� �
ð2Þ

Here uni;j represents the defect density encoding for the defect
u∈ {VO, PolS0, PolS1} at grid position i, j and after iteration n.D is treated as
a hyperparameter andwas set to 0.1. The application of the Laplacian kernel
was performed for 8 iterations. The local environment range was set to
include 6-sites in the [001]- and 4-sites in the ½1�10�-direction, as this choice
provided the best results in the hyperparameter optimization (see
Supplementary Fig. 3). Each defect-specific feed-forward neural network
consisted of 3 layers of width 94, 32, and 10, respectively.We optimized the
machine learning model using stochastic gradient descent and back-
propagation on an augmented dataset, including all symmetrically
equivalent representations, of the training defect configurations. We
randomly split this dataset into 80% training data and 20% validation data
andoptimized themodel parameters byminimizing themean squared error
of the energy prediction of the training data via backpropagation. Before
training, energies, as well as the descriptors, were rescaled to [0, 1], by min-
max scaling. Using an early stopping mechanism, the best model was
selected based on the lowest validation dataset errorwithin the optimization
procedure. The mean squared error during training as well as a scatter plot
of DFT and ML energies are displayed in Supplementary Figs. 1 and 2.

To ensure sufficient accuracy when using the model in the case of
exploration, we applied an active learning procedure as depicted in Sup-
plementary Fig. 4. Here, we performed an iterative training-testing loop to
further improve the reliability, data efficiency, and scope of the proposed
model. Since our main interest lies in the determination of low-energy
polaron-defect complexes, our model was used for the optimization of
defect configurations in various cases. We searched for global optima of
configurations by allowing all defects to diffuse during the optimization.
Local minima of fixed polaron layer densities were added by restricting
polaron movement to intra-layer hopping. Also, local minima of cases
where theVO-configurationwas fixed and only polarons were relaxed, were
explored.Within these three exploration cases, we extracted and confirmed
the most stable configurations by performing a comparative DFT calcula-
tion of the proposed polaron configurations.

The optimization of configurations is performed via simulated
annealing60, where we use the predicted energy of our ML model to
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determine the Metropolis acceptance probability Paccept.

Paccept ¼ min 1; expððEðxÞ � Eðx0ÞÞ=kBTÞ
� �

ð3Þ

Here E(x) is the ML predicted energy associated with configuration x.
Configuration x0 is generated from configuration x in a random walk, by
randomly choosing onedefect in configuration x and randomlydisplacing it
to an adjacent site. The temperature variable T in the Metropolis criterion
was set to 1000 K (similar to the annealing temperatures in the sample
preparation). Even though the diffusion processes of the respective defects
during the optimization are physically motivated, they do not necessarily
represent the physical process of the formation of observed defect patterns.
Defect transport mechanisms such as inter-row hopping of oxygen
vacancies have not been reported71 butmay improve optimization efficiency
or more efficiently overcome energy barriers. Discrepancies between
polaron and vacancy hopping rates were also ignored, which potentially
affects the final outcome of the optimization. Similar effects were observed
for the specific temperature or temperature rampemployed in the simulated
annealing.

Experimental setup
SPM was performed using STM in an ultrahigh vacuum (UHV) chamber
with abasepressurebelow2 × 10−11mbar; thewhole chamber, equippedwith
an Omicron qPlus low-temperature head, was suspended using 36 bungee
cords for efficient vibration damping72. Stiff qPlus sensors73 (k= 1800N⋅m−1,
Q= 5000–30,000, f0∈ [25–45] kHz) with a a sharp W tip74 were used to
collect the tunneling current (It) and the frequency shift (Δf) signals;
deflectiondetectionwasachievedusing a cryogenicpreamplifier invacuum75.
W tips were treated at a Cu(110) surface decorated with a sharp, conductive
Cupyramid at the apex, andwere subsequently applied for imaging the rutile
TiO2(110) surface. Tip sharpness was indicated by the low-frequency shifts
(Δf ∈ [0,−1]Hz) recorded during STM imaging of a Cu(110) test sample.

Sample preparation was performed in a separate UHV chamber
(connected to themeasurement chamber via a gate valve for in-situ transfer)
with abasepressurebelow1 × 10−10 mbar. Surfaceswere cleanedby cycles of
sputtering and UHV annealing that consequently reduced the samples and
introduced VOs to the surface. A typical cleaning cycle consisted of sput-
tering with 1.5 keV Ar+ ions for 10min with an ion current of 1 μA ⋅ cm−2,
and subsequently annealing the sputtered surfaces in UHV up to 700 °C.
Before each measurement, 3–5 cleaning cycles were performed. The over-
reduction of the surfacewas occasionally remedied by annealing the sample
to 750 °C in 5 × 10−7 mbar of O2 shower for 10 min. When the reduction
level was too high, the rutile TiO2 samples were re-oxidized ex situ at 800 °C
in O2 flow and reintroduced to UHV for cleaning.

Figure 1b displays the z-channel of a feedback-controlled unoccupied-
states STM image taken at a sample temperature of 14 K; Imaging para-
meters: sample biasVS =+0.9 V, grounded tip, tunneling current set-point
It = 20 pA, oscillation amplitude A = 500 pm.

The contrast in Fig. 1b corresponds to a typical unoccupied-states STM
imaging contrast over a reduced rutile TiO2(110) surface, which is domi-
nated by electronic rather than geometric considerations: 1 eV above the
Fermi level the conductionband consists ofTi 3d states anddefectVO states,
while the O states constitute the valence band76. Therefore, the highest
probability of electron tunneling from the tip to the surface is above the Ti5c
rows and VOs—they appear bright under these STM conditions. On the
other hand, the tunneling is less likely above the Obr rows and they appear
dark even though they geometrically protrude highest from the surface.
Note that in Fig. 1b individual Ti5c atoms can be recognized as spheres
forming a row along the [001] direction, while VOs are recognized as iso-
lated, bright spheres.

Data availability
The data presented in this article is available in Zenodo77 or from the
corresponding author upon request.

Code availability
A minimal example of the code used to produce the presented results is
available from Github or Zenodo77.
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