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Towards accurate prediction of
configurational disorder properties in
materials using graph neural networks
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The prediction of configurational disorder properties, such as configurational entropy and order-
disorder phase transition temperature, of compound materials relies on efficient and accurate
evaluations of configurational energies. Previous cluster expansion methods are not applicable to
configurationally-complex material systems, including those with atomic distortions and long-range
orders. In this work, we propose to leverage the versatile expressive capabilities of graph neural
networks (GNNs) for efficient evaluations of configurational energies and present a workflow
combining attention-based GNNs and Monte Carlo simulations to calculate the disorder properties.
Using the dataset of face-centered tetragonal gold copper without andwith local atomic distortions as
an example, we demonstrate that the proposed data-driven framework enables the prediction of
phase transition temperatures close to experimental values. We also elucidate that the variance of the
energy deviations among configurations controls the prediction accuracy of disorder properties and
can be used as the target loss function when training and selecting the GNNmodels. The work serves
as a fundamental step toward a data-driven paradigm for the accelerated design of configurationally-
complex functional material systems.

Disordered materials have attracted much attention in the community in
recent years due to their exotic structural and electronic properties such as
Anderson localization and Mott-like conduction1–3, novel phonon scatter-
ing channels and lattice dynamics4–6, enhanced ductility and mechanical
strength over a wide temperature range in medium- and high-entropy
alloys7–11, and regulated electronic states and atomic sites for catalysts12,13,
endowing them with promising applications in electronic devices and
energy materials. Depending on its chemical nature, disorder effects in
materials can be classified into structural disorder characterized by dis-
rupted chemical bonding network (such as vacancies, dislocations, and
dangling bonds)14, and configurational (compositional) disorder char-
acterized by crystallographic sites being occupied by irregular atomic
species15. In this work, we focus on the latter type of disorder.

To numerically access the configurational disorder properties, such as
the order-disorder phase transition temperature16,17 and the configurational
entropy18,19, Monte Carlo (MC) simulations are often carried out with
Metropolis sampling20 orWang-Landau sampling21,22. With theMetropolis
sampling, the free energy is obtained by performing thermodynamic inte-
gration numerically using the average energies at each temperature. As for

the Wang-Landau sampling, the density of states, instead of the average
energies, is estimated, and the configurational entropy and the heat capacity
at any arbitrary temperature can thenbe evaluated.However, both sampling
methods require evaluating a large number of supercell configurational
energies efficiently and accurately in order to achieve convergence, thus not
applicable to first-principles methods especially when the cell size is
very large.

One commonly used approach to this problem is the cluster expansion
(CE)method23–28,where the cell is decomposed intodifferent atomic clusters
up to a cutoff size, and the total energy of the cell is expanded into the
effective cluster interactions of these clusters. This method has been applied
to evaluate the total energies of different configurations and further to
calculate the disorder properties effectively. However, it suffers from several
limitations.Due to the limited cluster size inpractice, it cannot capture long-
range orders inmaterials, whichmay affect the phase stability and electronic
structures29. Besides, the definitions of clusters strongly depend on the
atomic positions, restricting thismethod fromadapting to lattice distortions
and local atomic displacements induced by atomic relaxations or thermal
effects30.
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Since 2018, graph neural networks (GNNs) have been applied to
studying the structure-property correlation in complex solid-statematerials.
Instead of relying on human-selected descriptors, GNNs can autonomously
learn latent representations of materials and make fast and accurate atom-,
bond-, and material-level predictions31–33. Therefore, in this work, we pro-
pose to employGNNs to evaluate the configurational energies and to access
the disorder properties in configurationally-complex compound materials
accurately, because of their high representation capability and versatile
adaptability to realistic simulation scenarios, including lattice distortions,
atomic displacements, and various types of defects32,33. Especially, we con-
struct attention-based GNN models from Transformer neural networks34,
leveraging masked self-attentional layers to obtain configurational energies
efficiently. The model is trained on the face-centered tetragonal (fct) gold
copper (AuxCu1−x) alloy dataset obtained from density functional theory
(DFT) calculations. The trained model can well reproduce the DFT con-
figurational energies, with amean absolute error (MAE) of 2.76meV/atom,
which eventually leads to the prediction of order-disorder phase transition
temperature that is comparable to experimental observation.When random
atomic displacements are introduced, which is beyond the capability of the
CE method, the GNNmodel can still evaluate the configurational energies
accurately (with MAE being 5.02 meV/atom). The predicted phase transi-
tion temperature is slightly lower than the undistorted case, suggesting
structural disorder can enhance the configurational disorder. Furthermore,
we reveal the connections between the variance of the energy deviations
among configurations and the accuracy of configurational entropy and heat
capacity predictions, providing guidance on future data-driven studies of
the configurational disorder properties in materials.

Results
Pristine AuxCu1−x structure dataset
We choose fct AuCu to construct our dataset. Although both experimental
and numerical results on the configurational entropy and the phase tran-
sition temperature (683 K) were reported27,35, those results are based on the
face-centered cubic (fcc) structure, which is higher in energy than the
ground-state fct structure by 0.016 eV per formula unit and can only be
stable under pressure.However, these two structures differ only in the lattice
constants (Δa/a = 6.9% and Δc/c = 15%), and thus we expect their disorder
properties, especially the phase transition temperature, to be similar. Using
first-principles calculations, we construct our dataset for pristine AuxCu1−x

containing 4500 configurations in a 5 × 5 × 4 supercell with 200 atoms,

covering all chemical compositions x∈ [0, 1]. The concentration distribu-
tion of the dataset is shown in Fig. 1a.

Our GNN model features a typical global graph feature regression
model architecture, as shown in Fig. 2. It consists of a few stacked graph
convolution layers which aggregate information between adjacent atoms/
nodes, a pooling layer which extracts the global feature as the mean of all
node features, and amulti-perceptron network which transforms the global
feature into the energy (per atom) of the crystal (see Methods section).
Therefore, when inputting each atomic configuration as a crystal graph, our
GNNmodel can efficiently output its energy. To train the GNNmodels, we
randomly shuffle the dataset anddivide it into the training set, the validation
set, and the testing set, allocating them in a 60:20:20 ratio. We also imple-
ment early stopping techniques to prevent overfitting on the training set,
and we choose the GNN model with the minimum validation loss as our
final model for testing and next-step MC simulations. Besides, we also use
the Bayesian optimization method implemented in Optuna36 to select the
best set of hyperparameters of the GNN model (the full list of hyperpara-
meters can be found in Methods section).

TheMAEof the bestGNNmodel built uponTransformer convolution
layers on the testing set of our fct AuxCu1−x dataset is 2.76 meV/atom,
similar to previously reported CE methods on fcc-structure AuCu (4.49
meV/atom)27. The comparison between the predicted energy and the DFT
energy is shown in Fig. 1b, indicating the capability of our attention-based
GNN model to evaluate the configurational energies accurately for all
compositions of AuxCu1−x.

We compare this result with other commonly used GNNs with
attention mechanism, such as the graph attention network (GAT)37,38, and
those without attention mechanism, including the crystal graph neural
network (CGNN)39 and the edge-conditioned neural network (ECNN)40,41

(details about these convolution layers can be found in SupplementaryNote
1). The MAEs of the best GNN model built for each type of convolution
layers are summarized in Table 1, suggesting that GNN models with the
attention mechanism perform better than those lacking this mechanism
when evaluating configurational energies. In attention-based neural net-
works, node features are updated by summing up adjacent node features
weighted by the attention coefficients, calculated from the node features and
the edge features and thus containing the information on the similarity
between the two nodes. Specifically in Transformer convolution layers, the
central node and the adjacent nodes are considered as queries and keys
respectively, and the overlap between the queries and the keys reflects the

Fig. 1 | The performance of the Transformer-
based GNN model on the pristine AuxCu1−x

structure dataset. aThe histogram of the number of
configurations for each Au concentration. b The
comparison between the configurational energies
(per atom) predicted from DFT (EDFT) and the
optimalGNNmodel (EGNN). The color of each point
represents the concentration x of Au atoms in the
configuration. c The calculated normalized density
of states of pristine AuCu during theMC simulation
process (per cell). The total number of MC steps is
4 × 107. d The calculated configurational entropy
(black curve) and the heat capacity (red curve) at
different temperatures.
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similarity between the two nodes (atoms). This attention mechanism
updates the central node features by a linear combination of adjacent node
featuresweightedby the overlap between the query vector and key vectors in
the latent space, thus allowing the network to effectively capture the che-
mical distinctions between neighboring atoms and increasing its efficacy in
predicting properties related to crystal structure. Besides, since the attention
coefficients depend on the node features, they are dynamic and can vary
across different convolution layers, as compared to the static weight
matrices that are fixed across the convolution layers in models without the
attention mechanism. Therefore, we expect that in general models with the
attention mechanism are better than those without it. Finally, we also
observe the superior performance of the ECNN model compared to the
CGNN model, possibly because the ECNN model adopts a multilayer
perceptron layer to process edge features while the CGNN model employs
only a linear transformation on edge features. This distinction makes the
former more adaptable in evaluating configurational energies.

We then apply the optimal GNN model based on Transformer
attention mechanism to MC simulations to obtain the configurational
properties of stoichiometric AuCu systems, as shown in Fig. 2. We use the
Wang-Landau sampling method to obtain the configurational density of
states g(E) (see Methods section), with which we can calculate the config-
urational entropy S and the configurational heat capacity Cv at any tem-
perature T according to

S ¼ hEi � F
T

; Cv ¼
hE2i � hEi2

kBT
2 ð1Þ

where the partition function is Z = ∫ g(E)e−βEdE, the free energy is
F ¼ �kBT lnZ, the expected value for the physical quantity Q is
hQi ¼ 1

Z

R
gðEÞQðEÞe�βEdE, and β ¼ 1

kBT
.

Because the configurational space is complicated for such large super-
cells, we choose a bin size of 0.3 eV in theWang-Landau samplingmethod to

expedite convergence. Since the MAE of the trained GNN model is around
2.76meV/atom, we anticipate that each configuration has an energy devia-
tionof0.6 eV/cell onaverage, justifyingour choiceofbin size.With this choice
of the bin size, the MC simulation takes around 4 × 107 steps to converge,
beyond the capability of DFT methods. We show the intermediate and final
densityof states that arefitted toaGaussiandistribution inFig. 1c.Thedensity
of states is normalized such that the sumof the density of states equals to one;
while the normalization constant is the total number of configurations of

stoichiometricAuCu ina200-atomsupercell, i.e.,Ωmax ¼
200
100

� �

. Thepeak

of the density of states is higher in energy than the ground state by 3.2 eV/cell.
From the density of states, we can calculate the configurational entropy and
the heat capacity according to Eq. (1), shown in Fig. 1d. The position of the
heat capacity peak, indicating the order-disorder phase transition tempera-
ture, is at 870 K (for fct AuCu), similar to the experimental values27,35. As
temperature further increases, the configurational entropy gradually
approaches the theoretical limit for the fully disordered phase (within a 200-
atom supercell) Smax ¼ kB lnΩmax ¼ 1:17× 10�2 eV/K.

We also note that while training and selecting the best GNNmodel for
MC simulations, batch normalization features can affect the predictions of
disorder properties significantly and should be disallowed. When training
GNNmodels, configurations are grouped intobatches of a reasonable size to
accelerate the training process. In general, too small batches can lead to
instability of gradients and optimization process, while too large batches can
lead to huge memory requirements and possible overfitting. However, in
MCsimulations, energy evaluations are performedona single configuration
consecutively. When using trained models with batch normalized features
to predict the energy of one configuration, incorrect predictions may arise
because in this case the batchmean andbatch variance are highly influenced
by the specific configuration in the batch, but not reflecting the distribution
of the features of the whole dataset. In Supplementary Note 2, we show
benchmark calculations for the GNN model with batch normalization
features. By evaluating the configurations in batches (containing 58 con-
figurations), the MAE of the best model is 3.52meV/atom, but when
evaluated consecutively, theMAE loss for the model increases drastically to
2.76 eV/atom, and the corresponding prediction on the order-disorder
phase transition is incorrect (183 K).

Distorted AuxCu1−x structure dataset
To showcase the adaptability of GNN models to realistic simulation sce-
narios, such as atomic relaxations where CE methods face convergence

Table 1 | The MAE (meV/atom) and the variance (meV2/atom)
on the pristine AuxCu1−xdataset using different types of graph
neural network models

GAT Transformer CGNN ECNN

MAE 2.81 2.76 8.14 6.25

variance 13.53 13.20 78.19 40.90

Fig. 2 | A schematic plot of the workflow to use
GNN to calculate the disorder properties of com-
pound materials. The input crystal structure is
converted to a graph, whose nodes and edges
represent the atomic species and the interatomic
distances, respectively. Through several attention-
based convolution layers, where the node features
aggregate and interact with each other, global fea-
tures are extracted and further processed by linear
layers to predict the energy. The well-trained GNN
model is subsequently utilized in Monte Carlo
simulations to acquire the final disorder-related
properties, such as the configurational density of
states, configurational entropy, and heat capacity.
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challenges, we constructed another dataset containing 4500 configurations
with random atomic displacements. The maximum amount of displace-
ment for each atom is chosen to be 0.35Å.

The MAE on the testing set of this dataset containing distorted
structures is 6.43 meV/atom, and the comparison between the DFT and
GNN energies is shown in Fig. 3a. Larger deviations fromDFT energies are
primarily observed in configurationswithnear amountofAuandCuatoms,
whose energies are more difficult to capture due to the large configuration
space compared to configurations with mostly Au or mostly Cu atoms. We
further apply the trained model to calculate the disorder properties, shown
in Fig. 3b. We generate one supercell with random atomic displacements
and apply it forMC simulationswhile keeping all the atomic positionsfixed.
The calculatedphase transition temperature is 788 K, lower than that for the
pristine structure, suggesting that structural disorder can enhance the
configurational disorder; the introduction of structural disorder increases
the likelihood of thematerial being in the configurational disordered phase.

A potential avenue for enhancing the performance of GNNmodels for
energy predictions of disordered systemswith distorted structures lies in the
modification of how crystal structures are represented in the formof graphs.
In our currentmethod, the nodes represent the atomic species and the edges
contain only bond distance information. But other local chemical infor-
mation can also be included in the graphs, such as the directional infor-
mation (for instance, bond directions expanded in spherical harmonic
coefficients) and the multiplet interactions that can be included in
hypergraphs42 or higher-order graphs43. These graph structuresmay capture
the much more complex chemical environment of each atom after intro-
ducing random atomic displacements. An alternative avenue for
improvement is to modify the network structure. For example, the Au
concentration can be treated as a global feature for each configuration. This
feature could be concatenated with the global features from the nodes and
jointly passed through the linear layers to determine the total energy of the
configuration. Despite room for these improvements, our current model
already suffices for the effective predictions of disorder properties of com-
plex alloy systems with distorted structures.

Discussions
Next,wewould like to draw the reader’s attention to the correlation between
disorder properties and the optimization process of GNNmodels. FromEq.
(1), it can be shown that neither the heat capacity nor the configurational
entropy are affected by an overall energy shift ΔE to all configurations (see

Supplementary Note 3). Based on this observation, we postulate that when
training and selecting the best GNN model to predict configurational
entropy and heat capacity, the variance of the differences between EDFT and
EGNN among all configurations, instead of the mean of the energy differ-
ences, controls the accuracy of predictions and thus can be chosen as the
target quantity for optimization.

In the following, we denote Êi as the energy predicted byGNNmodels
and Ei as the “ground-truth” energy obtained by DFT for configuration i,
and their difference as ei ¼ Êi � Ei (in the following, thermodynamic
quantities with hats are calculated from Êi, and those without hats are from
Ei). We assume that those energy differences are independent and identi-
cally distributed random variables, following the normal distribution
N ðμ; σ2Þ, with mean μ and variance σ2; thus we have E½ei� ¼ μ,
E½e2i � ¼ μ2 þ σ2, andE½eiej� ¼ μ2 for all i and j ≠ i.

To derive the expected deviations of configurational entropy and the
heat capacity due to ei’s, we first focus on the difference of the log-partition-
function, defined asΔðlnZÞ � ln Ẑ � lnZ ¼ ln

P
ie
�βÊi � ln

P
ie
�βEi . By

assuming that the errors ei are smaller than the energies Ei, we can perform
Taylor expansions on the log-sum-exp function ln

P
ie
�βÊi ¼

ln
P

ie
�βðEiþeiÞ with respect to ei. As shown in the Supplementary Note 3,

after taking the expectation valuewith respect to the randomvariables ei, the
first-order term vanishes, and we have

E½ΔðlnZÞ�≈ 1
2
σ2β2ð1� αÞ ð2Þ

where α ¼
P

i
e�2βEi

ð
P

i
e�βEi Þ2

. Based on this result, according to Eq. (1), the expected

deviation of the configurational entropy due to the random energy devia-
tions ei, defined as E½ΔS� � E½Ŝ� S�, is given by

E½ΔS� ¼ � 1
T

∂

∂β
E½ΔðlnZÞ� þ kBE½ΔðlnZÞ�≈� σ2

2kBT
2 ð1� αÞ ð3Þ

where we use the fact that α, though containing β, does not depend on β
explicitly. Similarly, the expected deviation of the heat capacity is given by

E½ΔCv� ¼
1

kBT
2

∂2

∂β2
E½ΔðlnZÞ�≈ σ2

kBT
2 ð1� αÞ ð4Þ

Fig. 3 | The performance on the dataset with
random atomic displacements, using MSE as the
target loss function. a The comparison between the
configurational energies (per atom) obtained from
DFT (EDFT) and the optimal GNN model (EGNN).
b The calculated configurational entropy (black
curve) and the heat capacity (red curve) at different
temperatures. c, d Same as (a, b), but on a dataset
without displacements and using variance as the
target loss function.
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The derivation details can be found in Supplementary Note 3. Therefore,
both E½ΔS� and E½ΔCv� are linearly dependent on the variance σ2, but
independent on the mean μ, suggesting that the variance σ2 of the energy
deviations ei among the configurations must be minimized to accurately
predict configurational entropy and heat capacity.

To numerically verify this, we train our GNN model that is based on
Transformer convolution layers on the pristine AuxCu1−x dataset, using the
variance as the target loss function.Thevarianceof the optimalmodel on the
testing set is 15.82 meV2/atom, but the MAE is 4.89 eV/atom; as a com-
parison, the variance of our previousmodel usingMSEas the loss function is
13.2meV2/atomand theMAE loss is 2.76meV/atom. InFig. 3c,we show the
comparison between the configurational energies predicted by GNN and
DFT, suggesting a global shift of energies for all configurations. We then
apply this model to MC simulations, and the predicted ordering-disorder
phase transition temperature is 837 K, in good agreement with previous
results using MSE as the loss function (870 K). Therefore, as long as the
variance is minimized, the predicted configurational entropy and the heat
capacity are reliable.

In conclusion,wedemonstrate the capability ofGNNwith an attention
mechanism to accurately predict the configurational disorder properties in
compoundmaterials, including configurational entropy and order-disorder
phase transition temperature. Using the face-centered tetragonal AuxCu1−x

dataset as an example, the predicted phase transition temperature from
attention-based GNNmodels andMC simulations is close to that obtained
in experiments. Even when random atomic displacements are introduced,
reliable predictions are still achievable. Furthermore, we show that the
variance of the configurational energy deviations between GNN and DFT
controls the prediction accuracy of these disorder-related properties. These
results provide perspectives on the efficient and accurate evaluation of
disordered properties in configurationally-complex materials. This con-
tributes to future research focused on the phase stability of such materials
and advances the exploration of medium- and high-entropy alloys and
related material systems.

Methods
Density functional theory calculations
The first-principles calculations are performed based on DFT, as imple-
mented in Vienna Ab initio Simulation Package44,45. We use the projector
augmentedwave pseudopotentials46,47, where 5d and 6s electrons are treated
as valence electrons for Au, and 3d and 4s electrons are treated as valence
electrons forCu.Weused theGGA-PBE functional for all calculations48 and
550 eV for the kinetic energy cutoff of the plane-wave basis sets. The k-point
grid density is taken to be 0.03 2π/Å, and the energy convergence threshold
is 10−7 eV.

After variable-cell relaxation, the ground state structure of stoichio-
metric AuCu is the face-centered-tetragonal structure. The relaxed lattice
constants are a = 2.86 Å and c = 3.55 Å. From the relaxed unit cell, we
generate the 5 × 5 × 4 supercell, such that the lattice constant along each
direction is close to 15 Å. Using the supercell, we generate the AuxCu1−x

dataset covering the whole concentration range 0 < x < 1.

Constructing and training GNNmodels
In each layer of a GNN, the node features are updated by the features of
neighboring nodes according to xi ¼ ϕðxi; xN ðiÞÞ, where xi is the feature of
the ith node andN ðiÞ is the adjacent nodes of i. This message aggregation
process is repeated multiple times as the convolution layers are stacked,
allowing GNNs to capture the long-range interactions in the crystal.
Depending on the aggregate function ϕ, various types of GNNs are pro-
posed. In this work, we choose the attention-based Transformer network34

to construct our GNN and generate the main results in the manuscript.
For each layer, we use global mean pooling to extract the global graph

feature from all nodes, as we choose the total energy per atom as the target
quantity to predict. These global features are added together, forming
shortcut connections that allow the gradient to flow more easily during
training (benchmark results using only the global features from the last

convolution layer can be found in the Supplmentary Note 2). Finally, the
global features are passed to two fully-connected linear layers to predict the
total energy per atom.

For training the GNN models, unless otherwise stated, the target loss
function is the MSE and we use the Adam algorithm to minimize the loss
function, where both the learning rate and the weight decay are treated as
hyperparameters. The validation set is used to prevent overfitting on the
training set.While training theGNNmodels, we keep track of the validation
loss anduse themodelwith the smallest validation loss as ourfinalmodel for
testing and for next-step MC simulations.

To choose the optimal set of hyperparameters, we use the Bayesian
optimization method as implemented in Optuna36, which calculates the
expected improvement of the current set of hyperparameters based on
results from previous trial runs using Tree-structured Parzen Estimator
method49. The convergence is achieved when no significantly different
hyperparameter values are proposed for consecutive ten trial runs. The
hyperparameter set includes the number of convolution layers, the number
of hidden channels, the number of attention heads (used only in GNN
models with attention mechanisms), learning rate, weight decay, and
batch size.

Monte Carlo simulations
MCsimulationswith theWang-Landau samplingmethod21 are then carried
out to obtain the density of states g(E), with the configurational energies
evaluated from the trained GNNmodels. The flatness criterion is achieved
when the minimum value of the histogram is no smaller than 80% of the
mean value, and the convergence is achieved when the modification factor
satisfies ln f <10�7. Since the configurational space of the supercell is com-
plicated, at least around 107 configurations are necessary for the MC
simulation to converge.

Data availability
Thedataset generated for thiswork are available onGithub at https://github.
com/qmatyanlab/Configurational-Disorder.

Code availability
The codes used in this work are available on Github at https://github.com/
qmatyanlab/Configurational-Disorder.
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