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Multi-plane denoising diffusion-based
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reconstruction of microstructures with
harmonized sampling
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Acquiring reliable microstructure datasets is a pivotal step toward the systematic design of materials
with the aid of integrated computational materials engineering (ICME) approaches. However,
obtaining three-dimensional (3D) microstructure datasets is often challenging due to high
experimental costs or technical limitations, while acquiring two-dimensional (2D) micrographs is
comparatively easier. Todealwith this issue, this studyproposes anovel framework called ‘Micro3Diff’
for 2D-to-3D reconstruction of microstructures using diffusion-based generative models (DGMs).
Specifically, this approach solely requires pre-trained DGMs for the generation of 2D samples, and
dimensionality expansion (2D-to-3D) takes place only during the generation process (i.e., reverse
diffusion process). The proposed framework incorporates a concept referred to as ‘multi-plane
denoising diffusion’, which transforms noisy samples (i.e., latent variables) from different planes into
the data structure while maintaining spatial connectivity in 3D space. Furthermore, a harmonized
samplingprocess is developed toaddresspossible deviations from the reverseMarkovchainofDGMs
during the dimensionality expansion. Combined, we demonstrate the feasibility of Micro3Diff in
reconstructing 3D samples with connected slices that maintain morphologically equivalence to the
original 2D images. To validate the performance of Micro3Diff, various types of microstructures
(synthetic or experimentally observed) are reconstructed, and the quality of the generated samples is
assessed both qualitatively and quantitatively. The successful reconstruction outcomes inspire the
potential utilization of Micro3Diff in upcoming ICME applications while achieving a breakthrough in
comprehending and manipulating the latent space of DGMs.

The properties and physical behavior of a material are profoundly
influenced by its microstructure, which encompasses the topology,
distribution, and physical characteristics of the constituent phases. By
leveraging computational mechanics1,2 and integrated computational
materials engineering (ICME) approaches3,4, the relationship between
the microstructure and properties can be systemically investigated for
exploring the design space of materials5–8. For precise modeling and
understanding of complexmaterial behavior in terms ofmicrostructure-
property linkage, conducting three-dimensional (3D) analysis and
characterization of microstructures are imperative. Furthermore, the

accuracy of computational analysis for investigating material properties
relies on the quality of accessible 3Dmicrostructural datasets. In order to
acquire precise 3D information aboutmicrostructures,micro-computed
tomography (micro-CT) has demonstrated its effectiveness as a tool
allowing for the visualization of a material’s internal structure and
potential defects in a 3D domain9–12. Moreover, the use of micro-CT-
based characterization of microstructures has been regarded as a reliable
approach to understand material behavior with computational analysis,
such as finite element analysis (FEA), particularly at the representative
volume element (RVE) scale9,12–16.
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However, the difficulty lies in acquiring an extensive database of
microstructures with experimental analysis, primarily due to the time and
cost constraints. Furthermore, obtaining a 3D microstructural dataset is
more challenging, as it requires serial sectioning views, in contrast to the
relatively straightforward process of capturing independent two-
dimensional (2D) micrographs. To address this challenge, numerous
microstructure characterization and reconstruction (MCR) approaches
employing a diverse range of microstructural descriptors have been
proposed13,17–24. In general, these descriptor-based MCR methods obtain
morphologically equivalent samples by iterative optimization of the dis-
crepancy between the target and the current descriptors. Various kinds of
descriptors, including simple volume fraction as well as high-dimensional
correlation functions such as n-point correlations17,25 or lineal path
functions26, can be employed to quantify the morphology of the micro-
structure. Once specific descriptors are chosen, the optimization problem
can be addressed using stochastic reconstruction techniques like the Yeong-
Torquato algorithm24. Moreover, it is possible to utilize differentiable
descriptors to reconstruct equivalent 3D microstructural samples through
the application of a gradient-based optimizer17,27. For instance, Seibert
et al. 20 proposed a 2D-to-3D reconstruction method to obtain realistic
microstructure samples using differentiablemicrostructural descriptors and
optimization algorithms provided by the open-access MCRpy package19.

Although MCR methods with microstructural descriptors have been
demonstrated to be effective for microstructure reconstruction, a major
concern of this approach is that it requires specific descriptors to be opti-
mized. Thus, for achieving favorable reconstruction outcomes, the selection
of appropriate descriptors is crucial considering the specific morphological
attributes of the targeted microstructure. To provide a flexible and general
solution, recent studies have proposed methodologies for reconstructing
microstructure samples without utilizing specific microstructural descrip-
tors. For instance, Bostanabad et al. 28,29 demonstrated a stochastic MCR
methodology via supervised learning for reconstructing different types of
3D binarymicrostructure samples. They showed that their fitted supervised
learning model (i.e., classification tree), which provides an implicit char-
acterization of the microstructural geometry, can generate microstructure
samples that are statistically equivalent to the training dataset. Meanwhile,
there has been extensive research on generative models, such as variational
autoencoders (VAEs)30–33 and generative adversarial networks (GANs)34–36,
for reconstructing microstructures by learning the underlying distribution
of data. For instance, Kim et al. 30 proposed a VAE-based framework for
reconstruction of 2D microstructure samples from a deep-learned con-
tinuousmicrostructure space. They also demonstrated that inverse design is
possible by establishing connections between the features in the latent space
of VAE and the mechanical properties of materials. Fokina et al. 35 utilized
the style-based GAN architecture for reconstruction of 2D microstructural
samples that are close to the original samples in terms of area density and
Euler characteristics distributions. In addition, 2D-to-3D microstructure
reconstruction with generative models has been gaining significant atten-
tion recently36,37. One of the remarkable works is the GAN architecture
called SliceGAN, proposed by Kench and Cooper36, which synthesizes 3D
microstructure datasets from a single representative 2D image. They
demonstrated their GAN-based model can effectively reconstruct 3D
microstructures of various types of materials, including polycrystalline
metals, ceramics, and battery electrodes.

On the other hand, VAEs suffer from a notable drawback, as the
generated samples tend to be distorted and blurred38,39, while GANs are
susceptible to the issue of mode collapse and unstable training due to the
adversarial loss function40,41. In light of these concerns, the diffusion-based
generativemodels (DGMs)42–44 are currently gaining significant attention as
a promising state-of-the-art generative model. In particular, there are two
popular formulations of DGMs which are called the denoising diffusion
probabilistic models (DDPMs) and the score-based generative models
(SGMs). According to the formulation of DDPMs44, a DGM can be per-
ceived as a model of reverse Markovian chain, intended for progressive
denoising a data structure, while SGMs43 view DGMs as models for

estimating gradients of data distribution with denoising score matching45.
The DGMs can also be generalized to the problem of solving reverse sto-
chastic differential equations (SDEs) in order to transform the noise dis-
tribution into the data distribution42,46. By transforming the generation
problem into the progressive reverse diffusion (i.e., denoising) process,
DGMshave shown superior performance compared toGANs in generating
high-quality images47, and they are not prone to mode collapse or unstable
training which are commonly observed in GANs.

However, the possibility of usingDGMs for 2D-to-3D reconstruction of
microstructureshasnotbeenexplored, according to thebest knowledgeof the
authors. While some studies have suggested the use of DGMs for recon-
structing 2D microstructure samples5,48,49, the problem of dimensional
expansion (2D-to-3D) has not been explored extensively due to the lack of
knowledge in the latent space of DGMs. In order to bridge this gap, a
dimensionality-expansion framework for 2D-to-3D reconstruction of
microstructuresbasedondenoisingdiffusion, called ‘Micro3Diff’, isproposed
in this study. The proposed method does not require any 3D datasets, and it
only requires aDGMtrained for the generationof 2D images (i.e., 2D-DGM).
The feasibility of this approach lies in the fact thatMicro3Diff targets only the
manipulation of the reverse diffusion process for dimensionality expansion.
In addition, this greatly facilitates the application of this framework as the
commonly used 2D-DGM can be easily incorporated. The structure of this
article with the key contributions of this work are summarized as follows.
(1) In the Results section, various types of microstructures including

spherical inclusions, polycrystalline grains, battery electrodes, and
carbonates, sourced from both synthetic and experimental data, are
considered to be reconstructed using the proposed Micro3Diff. The
generated results are then quantitatively and qualitatively validated by
comparing spatial correlation functions to assess the similaritybetween
the generated 3D samples and the original data.

(2) In the Discussion section, future enhancements and potential appli-
cations of Micro3Diff are discussed in the contexts of both materials
science and generative modeling.

(3) In the Methods section, the formulations of DGMs are introduced
along with the SDE-based generalization to provide an understanding
of the basic theory of DGMs. The concept of transforming noise
distribution into data distribution through progressive denoising is
then employed to support the assumptions required for Micro3Diff.
The detailed procedure for 2D-to-3D reconstruction is also explained
in this section, based on the multi-plane denoising diffusion-based
approach. Furthermore, to mitigate potential discrepancies arising
frommulti-plane denoising, the technique of harmonized sampling is
introduced to enhance the quality of generated samples. By combining
these approaches, this section demonstrates how it becomes feasible to
simultaneously transform thenoise distribution inmultiple planes into
the data distribution while preserving connectivity and continuity in
3D space.

Results
Case I: Syntheticmicrostructural samplesof spherical inclusions
To validate the proposed multi-plane denoising diffusion in this study, 2D-
to-3D reconstruction of microstructures with spherical inclusions embed-
ded in a matrix was conducted. As shown in Fig. 1, the 2D microstructure
images used for training the 2D-DGMwere sampled from a synthesized 3D
data. The 3D sample of spherical inclusions was generated using Geodict®
software byMath2Market GmbH. The diameters of the inclusions were set
to follow a normal distribution with a mean value of 15 voxels and a stan-
dard deviation of 4 voxels in a volume of 64 × 64 × 300 voxels. Then, the 3D
data was sliced along the z-axis, generating a total of 300 images with
dimensions of 64 × 64.To facilitate the training of the 2D-DGM, the dataset
was augmented by manipulating each image eight times (i.e., eight folds).
This augmentation involves applying both horizontal and vertical flips, as
well as rotations of 90°, 180°, and 270° to the original images.

After training the 2D-DGM, the multi-plane denoising with the har-
monizing steps was conducted to create a 3D volume with spherical
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inclusions. To investigate the effect of number of harmonizing steps nh (see
Methods section), 2D-to-3D reconstruction was conducted with varying nh
as illustrated in Fig. 2. As depicted in the figure, the quality of the generated
samples improves with an increase in the number of harmonizing steps
from nh ¼ 0 to nh ¼ 10. The results also show that the spherical shapes of
the inclusions were well reproducedwith nh ¼ 10. This implies that there is
a minimal value of nh to guarantee the quality of the generated sample.
Figure 3 shows the amount of time needed to generate a 3D sample with
varying nh using a single GPU (i.e., Nvidia RTX A6000). Since each har-
monizing step entails one cycle of renoising and denoising (as discussed in
Methods section), the computational time increases almost linearly with the
number of harmonizing steps. In otherwords, since the only neural network
model employed for the multi-plane denoising diffusion is the 2D-DGM,
the computational time for generation of 2D samples become the reference
time. Then, the total computational time for 2D-to-3D reconstruction will
increase linearly with nh. For the sake of simplicity in the validation process,
nh was set to be constant value of 10 for the example cases demonstrated in
the following sections. Furthermore, the 3D visualization and sectional
views in Fig. 2 demonstrate that the inclusions (i.e., white pixels) along the
three orthogonal planes are well connected, preserving continuity in
3D space.

To quantitatively evaluate the quality of the samples, the error rate
(see Methods section) between the correlation functions of the original
data (Fig. 1) and generated data was evaluated, as shown in Fig. 4a. For
validating purpose, a total of 25 samples were generated for each case
study using Micro3Diff to calculate the averaged two-point correlation
function S2 and the lineal path function LP (seeMethods section). More
examples of generated 3D samples can be also found in Supplementary
Fig. 1. In the case of spherical inclusions (case I), the error rates for S2

and Lp are 1.88% and 4.56% (Fig. 5), respectively, indicating that the
generated samples are in good agreementwith the original data. In other
words, the original and generated samples exhibit similar spatial cor-
relations, indicating that they have statistically equivalent morpholo-
gies. Additionally, it is worth noting that since the source of training
data (i.e., 2D images) for case I was sampled from the synthesized 3D
volume, the 3D correlation functions were computed (as discussed in
Methods section) to evaluate the sample quality.

The results show that the proposed multi-plane denoising diffusion
with, aided by the harmonized sampling, effectively guides the distribution
of images at different planes simultaneously to the original data distribution
p x0
� �

, which is the distribution for imagesof spherical inclusions. It can also
be said that the generation of 3D data with conditional distribution of
images at different planes is addressed by the dimensionality expansion
problem using the gradual multi-plane diffusion process and harmonized
sampling. In the following sections, additional example cases to evaluate the
performance of Micro3Diff are explored, including the cases with the

Fig. 2 | 2D-to-3D reconstruction results of micro-
structure with spherical inclusions usingMicro3Diff
with different numbers of harmonizing steps.

Fig. 1 | A synthesized 3D Microstructure sample
with spherical inclusions and sampled 2D micro-
structural images for training the 2D-DGM.

Fig. 3 | Computational time to generate a 3D sample with 2D-to-3D reconstruction
using the multi-plane denoising diffusion process.
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microstructure of polycrystalline grains with grain boundaries (case II) and
the real-world experimental micrographs (case III and IV)

Case II: Synthetic microstructures of polycrystalline grains
For further assessing the effectiveness of the proposed Micro3Diff, this
section focuses on the microstructural images of polycrystalline grains
as the case study. To acquire 2D images of polycrystalline grains for the
2D-to-3D reconstruction task, a set of 300 synthetic images were gen-
erated using Laguerre tessellation50 as shown in Fig. 9. In each generated
2D image, the white pixels represent the grain boundaries. Three values
of grain sizes were considered (6, 9 and 12 pixels) to be distributed, each
occupying an equal fraction within a 64 × 64 image. The synthesized
images were then augmented eightfold, similar to case I for training the
2D-DGM.

It is worth noting that the synthetic 2D samples of polycrystalline
grains (Fig. 6) considered in this case are genuinely independent
samples, meaning that they were not sampled from a 3D data as in case
I. Consequently, while the 2D-DGM lacks the ability to learn the 3D
relationship for both cases I and II, the authors hypothesized that case
II poses a more challenging problem since it lacks an intermediate
image that can connect different slices. Thus, the Markov chain of
pθ x�t�1jx�t
� �

may have a higher likelihood of deviating from the tra-
jectories of the Markov chain of pθ xt�1jxt

� �
(as discussed in Methods

section).

Figure 7 shows a generated 3D volume with polycrystalline grains
usingMicro3Diff, along with its sectional views at each orthogonal plane.
To show the connectivity and the grain structures clearly, the 3D volu-
metric view includes the normal view, where only the grain boundaries
(i.e., white voxels) are visualized, and its inverted view. At first glance, the
grain boundaries appear to be well connected in 3D space, which is the
important feature of polycrystallinematerials. However, the 2D sectional
views show that there are some disconnected and curved grain bound-
aries in the generated 3D volume. This error is likely due to the lack of
intermediate images in the training dataset for connecting different slices
in the 3D volume, which makes the model to generate sample with lower
probabilities in pðx0Þ. In addition, the occurrence of disconnected grain
boundaries has been commonly reported even in the recent studies with
the descriptor-basedMCRmethod17,19 and GAN-based reconstruction36.
Meanwhile, the error rates for S2 and LP are 6.43% and 5.88%, respec-
tively, indicating the good agreement between the original and generated
data (Figs. 4b and 5). It is worth noting that, since the source of the
training data for case II is 2D images (Fig. 6), the 2D correlation functions
were computed to evaluate the generated sample quality at the three
orthogonal planes. Then, the mean values of the computed correlation
functions were used to evaluate the error rate. To enhance the perfor-
mance of 2D-to-3D reconstruction for microstructures of polycrystal
materials such as alloys, the authors suggest considering preprocessing
and augmentation of dataset to address the lack of intermediate images,
as well as optimizing the hyperparameters (e.g., nh and T).

Fig. 4 | Two-point correlation functions (S2) and
lineal path functions (LP) for different types of
microstructures: (a) case I: spherical inclusions, (b)
case II: polycrystalline grains, (c) case III: NMC
battery cathode, and (d): case IV: carbonates.

Fig. 6 | Synthesized 2Dmicrostructure samples of polycrystalline grains for training
the 2D-DGM.

Fig. 5 | Error rates of two-point correlation function (S2) and lineal path function
(LP) for different cases. For the cases where 2D samples from3Ddata (i.e., 3Dmicro-
CT data) were used for training the 2D-DGM (Case I and Case III), the error rate is
evaluated in 3D space. For the cases where 2D samples were used for training the 2D-
DGM (Case II and Case IV), the error rate is evaluated in 2D space.
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Case III: Experimental micro-CT scan images of battery
electrodes
Thenext example case is the realmicro-CTscan imagesofnickelmanganese
cobalt (NMC) cathode. The micro-CT data of NMC cathode was obtained
from open-access collected data in reference51, and a volume of
64 × 64 × 300 voxels was created for sampling 300 images with dimensions
of 64 × 64 (Fig. 8). Subsequently, the sampled imageswere augmentedusing
eightfold augmentation as the previous cases.

Figure 9 illustrates the generated 3D volume of NMC cathode and its
2D sectional views (for simplicity, only the active material phase and pore
were considered). Similar to case I and II, the results show that the con-
nectivity of thewhite voxels (i.e., activematerial phase) is preserved.Both the

3Dvolumeand the2Dsectional views exhibit visual similarity to the original
data in Fig. 8. The error rates of 4.56% for S2 and 1.26% for LP (Figs.
4c and 5) also demonstrate that the generated samples have close spatial
correlations compared to the original micro-CT data. This is particularly
encouraging as it demonstrates the effectiveness of the proposedMicro3Diff
in 2D-to-3D reconstruction, utilizing both synthetic (case I and II) and
experimentally observed data. Since obtaining a reliable dataset of micro-
structure is crucial for characterizing the material behavior, there has been
significant attention given to the reconstruction of battery electrode
microstructures in recent years52–54. Although the performance of the pro-
posedmethodologymust be validatedwithmore diverse experimental data,
the results highlight thepotential applicationofMicro3Diff in the systematic

Fig. 8 | An experimentally obtained 3D micro-
structure sample of NMC battery cathode and
sampled 2D microstructural images for training the
2D-DGM.

Fig. 9 | 2D-to-3D reconstruction results for micro-
structure of NMCbattery cathode usingMicro3Diff.

Fig. 7 | 2D-to-3D reconstruction results of micro-
structure with polycrystalline grains using
Micro3Diff.
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exploration and design of materials for battery applications aided by ICME
methods3,4.

Case IV: Experimental micro-CT scan image of carbonates
Lastly, amore challenging scenario is consideredwhere the availability of 3D
microstructure data is severely restricted, and only obtainable data is a single
representative 2D micrograph image. Suppose a single 2D sample of
carbonates55 is available, and we aim to reconstruct a 3D volume from this
2D sample, which should have an equivalent statistical distribution of
material phases in 3D space. To train 2D-DGM first, multiple cropped
images can be sampled from the representative image as shown in Fig. 10. In
particular, a total of 250 images were sampled and augmented using
eightfold augmentation, as in the previous cases.

Figure 11 shows the generated 3D volume of carbonates with its sec-
tional views. As can be seen, the generated 3D volume exhibits visually
similar sectional views at the three orthogonal planes, demonstrating the
capability of Micro3Diff to create a 3D volume from a single experimental
representative image.Meanwhile, the error rates for S2 andLP are 9.21%and
6.31%, respectively (Figs. 4d and 5). The higher error rates compared to the
previous cases are likely due to the lack of diversity in the data used to train
the 2D-DGM, which could lead to incorrect estimation of the data dis-
tribution during the multi-plane denoising process. In other words, the
absence of intermediate data to ensure connectivity in 3D space could be a
reason for the higher error rates (similar to case II). However, the results are
remarkably encouraging, as the sectional views display morphological
similarities with the training data, and the volumetric view illustrates
Micro3Diff’s ability to discover potential combinations of 2D images from
the estimated p x0

� �
(derived from a single micrograph) to construct a 3D

volume. Moreover, the proposed Micro3Diff enables the generation of
multiple and diverse volumes with comparable visuals and spatial correla-
tions to the original data, as shown in Supplementary Fig. 1. This capability
could significantly assist in the quantitative assessment ofmaterial behavior

in 3D space13,56–58, taking into account the microstructures and inherent
randomness.

Discussion
The results in this study demonstrate the capability of Micro3Diff for
reconstructing 3Dmicrostructure samples from 2Dmicrographs using the
proposed multi-plane denoising diffusion and the harmonized sampling.
Based on the multi-plane denoising, a 2D-DGM can be used to effectively
guide the noised samples across multiple planes towards the data dis-
tribution while maintaining connectivity in 3D space. The disharmony
caused by potential deviations from the intended trajectories in the trained
2D noise-to-data denoising diffusion process can be addressed by the
proposed harmonized sampling method.

It is worth noting that one of important topics in the field of
materials engineering is the performance-based design of material
microstructures. From this perspective, the proposed methodology in
this study can facilitate the overall materials design process. For
instance, one may possibly find novel designs of material micro-
structures using the proposed 2D-to-3D reconstruction framework by
following the ICME-based design approaches, including: (1) recon-
structing equivalent 3D microstructure samples from 2D micrographs
using the proposed Micro3Diff, (2) analyzing the material properties
using computational mechanics, (3) constructing 3D microstructure-
material property data pairs, and (4) training conditional generative
models5 to enable the inverse design of microstructures. The potential
applications of the proposed framework for materials design also
require further enhancement. Specifically, a broader range of micro-
structure types, including multi-phase and anisotropic micro-
structures, should be considered to improve the applicability of
Micro3Diff in the future. Given the increasing attention on the design
of multi-phase materials, such as multi-phase polycrystalline
metals59,60 and battery electrode materials54, it is recommended to

Fig. 11 | 2D-to-3D reconstruction results for
microstructure of carbonates using Micro3Diff.

Fig. 10 | An experimentally obtained single 2D
microstructure image of carbonates and random
sampling of 2D images for training the 2D-DGM.
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modify the architecture of DGMs (e.g., increasing the number of input/
output channels) depending on the number of material phases con-
sidered. Additionally, one possible solution for reconstructing aniso-
tropic microstructure samples is to train a conditional DGM to
generate 2D samples at the three orthogonal planes (i.e., xy, xz, and yz
planes). Then, the conditional DGM and the multi-plane denoising
diffusion proposed in this study can be employed together to generate
spatially connected 2D samples, thereby formulating a 3D anisotropic
microstructure. Controlling the relatively large discrepancy within the
reverse Markov chain, potentially resulting from different data dis-
tributions of 2D microstructure samples across different planes, may
be a worthwhile subject for future study. In addition, the data aug-
mentation must be also conducted carefully, as anisotropic structures
(unlike isotropic ones) exhibit preferred textures or different
morphologies along the orthogonal planes, rather than having
equivalent morphologies in all directions. In this case, it is crucial to
maintain the distinct morphological characteristics of 2D slices from
different directions during the data augmentation process.

In addition, the proposed Micro3Diff also introduces an approach of
manipulating the latent variables (i.e., noised samples) in DGMs for
dimensionality expansion. The authors suggest that this concept could
substantially expand the range of applications for DGMs in various fields,
including computational materials engineering and 3D generative
modeling.

Methods
Preliminaries
In this section, the formulations ofDGMsare introduced, encompassing the
twopredominant approaches (SGMs andDDPMs), forDGM-based 2D-to-
3D reconstruction of microstructures.

Generalization of DGMs. Over the past few years, there have been
several formulations and variations of DGMs42–44,61–66 proposed, yet
they all share two important common features: 1. the pre-defined
progressive noising process for transforming data distribution into a
prior noise distribution, and 2. the incorporation of a model that learns
to denoise a sample to transform the noise distribution towards a
desired conditional/unconditional data distribution. The formal is also
called the forward diffusion process and the latter one is called the
reverse diffusion process46,66. Among the different formulations, the
one that employs the SDEs can be regarded as a generalized form of
DGMs. A forward diffusion process for perturbing (i.e., noising) data x
can be defined in a form of It ô SDE67 with a continuous time variable
t 2 0;T½ � as

dx ¼ f x; tð Þ þ σ tð Þdω ð1Þ

where ω is a standard Wiener process, which can also be thought of as
Gaussian noise or Brownian motion42,68, f � tð Þ : Rn ! Rn and
σ tð Þ:R!R represent drift and diffusion coefficients of SDE at time step t,
respectively. To perturb data with the SDE, the drift coefficient can be
defined to nullify the data while the diffusion coefficient is adopted to
progressively add noise to the data in DGMs. In other words, the diffusion
process can be modeled with different choices of f(,t) and σ(t) while dω
represents the stochastic component. Considering this aspect, the two
popular formulations of DGMs, which are SGMs43 and DDPMs44, can also
be interpreted as discretized variations of the SDE with different drift and
diffusion coefficients.

Forward diffusion process. As stated above, the diffusion processes in
the various formulations of DGMs (e.g., SGMs and DDPMs) can be
generalized using the concept of SDE. For instance, SGMs employ the
concept of the score function (i.e., the gradient of the log probability
density) and the denoising score matching with Langevin dynamics45

for transforming random noise to data with high probability density.

According to the perturbation process with a specified noise dis-
tribution proposed by ref. 43, the SDE for SGMs can be written as

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½g tð Þ2�

dt

s
dw ð2Þ

where g t
T

� �
converges to gt (i.e., the noise level at time t) as T ! 1.

Considering a discrete sequence of samples ði:e:; x0; x1; . . . ; xT Þ, the update
rule for obtaining the noised sample ðxtþ1Þ from the sample at the previous
time step ðxtÞ can be defined as follows with the noise component
εt ∼N 0; Ið Þ.

xtþ1 ¼ xt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tþ1 � g2t

q
εt ð3Þ

On the other hand, DDPMs utilize the concept of Markov chain to
define the forward/reverse diffusion process, along with the variational
lower bound (VLB) for training the models to reconstruct an original data
structure from the prior noise distribution. Similar yet different, the SDE for
the forward diffusion process of DDPMs can be expressed as

dx ¼ � 1
2
β tð Þxdtþ

ffiffiffiffiffiffiffiffi
β tð Þ

p
dw ð4Þ

where β is the noise scheduling parameter and β t
T

� �
converges to Tβt as

T ! 1. According to this definition and the Stirling’s approximation, the
following update rule can be derived.

xtþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt þ

ffiffiffiffi
βt

p
εt ð5Þ

The schematic of the forward diffusion process of DGMs using the
introduced formulations is shown in Fig. 12. In particular, each colored line
in the schematic of the forwarding process (i.e., p x0

� �
p xT
� �

) represents an
exemplary noising (i.e., forwarding) trajectory, where p x0

� �
and p xT

� �
denote the arbitrary data distribution and the noise distribution, respec-
tively. It is again worth noting that the primary objective of defining the
forwarddiffusionprocess inDGMs is to transform thedata distribution into
the prior noise distribution, even though the drift and diffusion coefficients
may vary.

Reverse diffusion process. Based on the forward diffusion SDE
(Eq. (1)), the SDE for reverse diffusion of data can be derived as

dx ¼ f x; tð Þ � σ tð Þ2∇x log ptðxÞ
� �

dt þ σ tð Þdbω ð6Þ

where ω̂ is a standard Wiener process when the time is reversed. In an
intuitive sense, the SDE in reversed time (Eq. (6)) implies that it is able to
reconstruct data by starting with the noise distribution. It is worth noting
that the only unknown in Eq. (6) is the value of score function, which is
denoted as ∇x log ptðxÞ. In other words, if we can obtain the value of
∇x log ptðxÞ, it is able to generate asmany samples as desired from the noise
distribution. In this regard, the following loss function of SGMs for
denoising score matching43 can be optimized:

LSGM :¼ Ext ∼ pðxt Þ λ tð Þg2t jj∇xt
log p xt

� �� sθ xt ; t
� �jj2h i

ð7Þ

where λ(t) is a positive weighting function at time t and sθ xt ; t
� �

is a model
trained to estimate the value of the score function within the discrete time
interval. In addition, this canbe considered equivalent to solving the reverse-
time SDE.

On the other hand, the loss function of DDPMs originates from the
theory of variational inference44,69. This is the reason why a DDPM is also
called a hierarchical Markovian VAE46. Based on the Eq. (5), a process of
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forward diffusion can be defined in the form of conditional Gaussian dis-
tribution as follows.

p xt jxt�1

� � ¼ N xt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtI

� �
ð8Þ

Based on this forward process, a neural network model for the reverse
process can be defined as

pθ xt�1jxt
� � ¼ N xt�1;μθ xt; t

� �
;Σθ xt; t

� �� � ð9Þ

where μθ and Σθ are the predicted mean function and the covariance,
respectively. To estimate the original data distribution pðx0Þwith the reverse
process through the time steps, the Kullback-Leibler divergence (DKL)
between the joint distributions pθ x0; x1; . . . ; xT

� �
and p x0; x1; . . . ; xT

� �
need to be minimized. This is achieved by minimizing the VLE of the
negative log-likelihood as:

Lvlb :¼ L0 þ L1 þ . . .þ LT�1 þ LT ð10Þ

L0 :¼ � log pθ x0jx1
� � ð11Þ

Lt�1 :¼ DKL p xt�1jxt ; x0
� �jjpθ xt�1jxt

� �� � ð12Þ

LT :¼ DKL q xT jx0
� �jjp xT

� �� � ð13Þ

In particular, Lt�1 can be rewritten as the following expectation of ℓ2
loss as

Lt�1 ¼ Ep λ tð Þjjμt xt ; x0
� �� μθ xt ; t

� �jj2h i
ð14Þ

where μθ xt; t
� �

is the model trained to estimate the mean function and
μt xt; x0
� �

is the mean function of the noised sample at t according to the

pre-defined forward diffusion process (Eq. (5)). In particular, ref. 44
reparametrized Eq. (14) with the model εθ xt ; t

� �
for predicting the noise

component at t as follows.

Et ∼ 1;T½ �;x0 ∼ p x0ð Þ;ε∼N 0;Ið Þ λ tð Þjjε� εθ xt ; t
� �jj� �

ð15Þ

To show the linkage between DDPMs and SGMs, Eq. (7) can be
rewritten according to Eqs. (2) and (3) as

LSGM ¼ Et ∼ 1;T½ �;x0 ∼ p x0ð Þ;xt ∼ pðxt Þ λ tð Þg2t jj∇xt
log p xt jx0

� �� sθ xt ; t
� �jj2h i

¼ Et ∼ 1;T½ �;x0 ∼ p x0ð Þ;xt ∼ p xtð Þ λ tð Þjj � xt � x0
gt

� gtsθ xt ; t
� �jj2	 


¼ Et∼ 1;T½ �;x0 ∼ p x0ð Þ;ε∼N 0;Ið Þ λ tð Þjjεþ gtsθ xt ; t
� �jj2h i ð16Þ

which shows that DDPMs are equivalent to SGMs if
εθ xt; t
� � ¼ �gtsθ xt ; t

� �
.

Denoising diffusion-based 2D-to-3D reconstruction with har-
monized sampling
Equation of sampling. In the previous section, the equivalence of the
different formulations of DGMs is introduced. Particularly, DDPMs
have been widely used for implementing DGMs in various applica-
tions, including image generation44,47, text generation70, and text-
conditional image generation63,71. Dhariwal and Nichol47 also demon-
strated that their DDPMs outperformed GANs in the context of image
generation tasks. Modified and improved versions of DDPMs are also
being intensively developed for high-quality image synthesis63,72. In
this study, the formulation of DDPMs is adopted to buildDGMs for the
reconstruction of microstructures. Thus, Eq. (15) is utilized as the
objective function for training the model εθ xt ; t

� �
. After training the

model, it is able to obtain the mean function of xt in Eq. (9) with the

Fig. 12 | Schematic of the forward diffusion process
(i.e., noising process) with the formulations based on
SDE, SGM and DDPM.
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prediction of ε using the following equation:

μθ xt ; t
� � ¼ 1ffiffiffiffi

αt
p xt �

βtffiffiffiffiffiffiffiffiffiffiffi
1� �α

p εθ xt ; t
� �� �

ð17Þ

where

αt ¼ 1� βt ð18Þ

�αt ¼
Yt
s¼0

αs ð19Þ

It is worth noting that Σθ is assumed to be constant, which can be
simply computed using the pre-defined noise schedule (i.e., Σθ ¼ βtI), as
learning only the mean function leads to better sample quality according to
ref. 44. In addition, the variance can be also learned by incorporating a
parameterized diagonal Σθ into the VLE (Eq. (10))72.

Reverse diffusion process for dimensionality expansion (2D-to-3D).
One of the most distinct characteristics of DGMs, compared to other
generative models such as VAEs and GANs, is the progressive and
gradual diffusion process. As discussed in the previous section, DGMs
incorporate the forward/reverse diffusion process to estimate the data
distribution p x0

� �
and generate samples from the known prior

distribution p xT
� �

. For instance, if a DGM for the generation of 2D
images (i.e., 2D-DGM) is prepared, it can generate 2D images start from
Gaussian noise through the diffusion times steps and the pre-defined
noise schedule47,63. In addition, this process is equivalent to the gradual
transformation of p xT

� �
to p x0

� �
in 2D pixel space. Drawing from this

perspective, this study introduces a method for 2D-to-3D dimension-
ality expansion through the multiplane denoising diffusion process
(Figs. 13 and 14). As shown in Fig. 13, we can define three orthogonal
planes (yz, xz, xy-planes) and use a trained 2D-DGM for generation of a
sample at each plane. According to the original formulation of DDPMs,
the generation process of each sample on each plane is independent of

the others, resulting in the creation of three distinct samples that follow
the data distribution p x0

� �
. However, if each generation process

(i.e., reverse diffusion process) at each plane proceeds concurrently and
is conditioned on the others, we could potentially achieve samples with
connectivity and continuity ensured at the junctions of the planes.
Thus, the problem now becomes developing a model for estimating the
conditional distributions at each time step during the reverse diffusion
process as:

pθ xð�Þt�1jxð1Þt ;xð2Þt ;xð3Þt

� �
ð20Þ

where xð�Þt�1 denotes the denoised sample at a certain plane, and xð1Þt ;xð2Þt and
xð3Þt represent the samples before denoising at the three orthogonal planes.
However, to train the model in Eq. (20), it is evident that a 3D dataset with
samples at three orthogonal planes is required. In addition, the model
requires additional channels or modules to impose conditional signals
during the generation process, which necessitates modifying the model
architecture, such as incorporating classifiers or using classifier-free
guidance47,73. Thus, this cannot be classified as 2D-to-3D reconstruction
because both the dataset and the training process need to extend beyond the
confines of 2D space

To avoid the preparation of a 3Ddataset andmaintain the architecture
of 2D-DGM, the proposedmethod for 2D-to-3Ddimensionality expansion
in this study solely focuses on the reverse diffusion process. Consequently,
the training process for the 2D-DGM remains unchanged, following the
procedures used to train generative models for conventional image gen-
eration tasks with 2D datasets. Therefore, throughout this paper, the only
neural network model we deal with is pθ xt�1jxt

� �
trained on 2D micro-

structure images without any additional conditions incorporated. In this
regard, the key idea of the proposed multi-plane denoising diffusion is to
generate 3D voxels using 2D-DGM by changing the target denoising plane
periodically as shown in Fig. 14. The procedure of themulti-plane denoising
diffusion is as follows:
1. Initialize voxels with dimensions of n× n× n using Gaussian noise

(Fig. 14a). It is worth noting that the size of n should match the size of
input/output size of 2D-DGM (i.e., n × n).

2. For the first reverse diffusion step, denoise the n samples with
dimensions of n × n (which are from the initialized voxels) using the
trained 2D-DGM (i.e., pθ xT�1jxT

� �
) along a particular plane.

3. Before the second reverse diffusion step, change the target denoising
plane and obtain x�T�1, which represents the samples arranged in a
different plane (Fig. 14c). Then, denoise the samples by taking x�T�1 as
the input of the trained 2D-DGM (i.e., pθ x�T�2jx�T�1

� �
). It is worth

noting that pθ x�T�2jx�T�1

� �
is not a new model; it is the same as

pθ xT�1jxT
� �

, but the input comes from a different plane.
4. Repeat the above process until the last reverse diffusion step is com-

pleted to obtain the 3D sample where all the images at different planes
follow the data distribution p x0

� �
.

It is important to mention the proposed multi-plane denoising is
based on the assumption that x�t closely resembles Xt since both the
forward and reverse diffusion processes comprise multiple time steps to
align the discrete DGMs with the continuous diffusion process in SDE
formulation. In other words, the reverse Markovian process with the
model pθ xT�1jxT

� �
would function effectively with the input x�t because

the denoising process operates in a gradual manner. Furthermore, since
the denoising diffusion is performed at multiple planes together in a
single reverse diffusion process, it allows for enforcing connectivity
among the samples along different planes. Another perspective to
comprehend this process is to consider x�t as the input of the model,
which is manipulated before denoising using a transformation function
ψT (Fig. 15). For instance, ψT of the proposed multi-plane denoising is a
function for rearranging Xt (i.e., manipulating rows and columns of
samples to get x�t ) to change the target denoising plane. The interesting

Fig. 13 | Schematic ofmulti-plane denoising diffusion in the three orthogonal planes
(i.e., yz, xz, xy-planes) for transforming the noise distribution into the data dis-
tribution while ensuring connectivity between the planes. The colored lines within
the time interval represent the trajectories of reverse diffusion (pðxT Þ ! pðx0Þ).
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part is that ψT can be modified for different purposes, such as rearran-
ging the Xt to perform denoising diffusion at a much higher dimension
and denoising multiple samples connected to each other for obtain a
single high-resolution image (which is recommended for the future
research works).

However, one remaining issue is that x�t is not exactly same asXt even
with thousands of diffusion steps, although theymay closely resemble each
other. Due to the discrepancies in the distributions of x�t andXt, theMarkov
chain of pθ x�t�1jx�t

� �
would produce lower-quality samples compared to

those from pθ xt�1jxt
� �

. To fill the gap between pθ x�t�1jx�t
� �

and
pθ xt�1jxt
� �

for generation of 3D sample with acceptable quality, the next
sectionpresents themethod forharmonizing the samples at differentplanes.

Harmonized sampling for dimensionality expansion. To address the
discrepancies caused by the proposed multi-plane denoising diffusion,
this study introduces the method of harmonized sampling (or
resampling74) for 2D-to-3D reconstruction ofmicrostructures. Since x�t is
manipulated data from xt , there is disharmony introduced to x�t which
may lead to incorrect operations of pθ x�t�1jx�t

� �
. Although pθ x�t�1jx�t

� �
would attempt to generate the most probable data with the estimation of
p x�t�1jx�t
� �

at every time step, the model cannot converge if it severely
deviates from the correct trajectory at certain time step in the Markov
chain of reverse diffusion (as the output at the current time step affects the

output at the next time step). Therefore, a harmonizing step is adopted
during the denoising process as depicted in Fig. 16, which involves a cycle
of renoising and denoising the sample at time t. In other words, we give
more chances to the model to harmonize the conditional information x�t
before proceeding to the next denoising step. The renoising process is the
same as the original forward process (Eq. (8)) which can be written as
follows.

p x�t jx�t�1

� � ¼ N x�t ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
x�t�1; βtI

� �
ð21Þ

In addition, the concept of renoising (or harmonizing) was initially
introduced for ‘inpainting’ with masked inputs to obtain the most probable
inpainting result conditioned on the unmasked region by ref. 74 Their work
demonstrated that incorporating several harmonizing steps can result in
moreharmonized images, compared to samplingwithoutharmonizing steps.

Taking inspiration from this idea, this study utilizes harmonizing
steps to mitigate the disharmony introduced during the 2D-to-3D
reconstruction with the multi-plane denoising diffusion. To be more
specific, the harmonizing steps are applied nh times at each time step

Fig. 15 | Comparison between (a) conventional 2D
denoising diffusion and (b) multi-plane denoising
diffusion in terms of the conditional probability and
Markov chain based on the formulation of DDPM.
The upper-left superscript denotes the i th sample
along a particular plane.

Fig. 14 |Multi-plane denoisingwith the discrete times steps of the reverse diffusion: (a) Initial voxelswithGaussian noise, (b) Slice viewof the voxels according to the reversed
time steps, (c) Corresponding planes and samples for denoising at each time step with the trained model pθ xt�1jxt

� �
, and (d) reconstructed 3D microstructure sample.
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along with ψT to enable sampling conditional to the samples at different
planes. This approach allows us to obtain more realistic 3D data,
ensuring that all the samples viewed from the three orthogonal planes
follow the original data distribution and maintain connectivity. The
entire process ofmulti-plane denoising diffusionwith harmonizing steps
for 2D-to-3D reconstruction of microstructures is described in Supple-
mentary Algorithm 1.

Implementation. The implementation of the 2D-DGMs for sampling 2D
microstructural images and the incorporation of the multi-plane
denoising diffusion with harmonizing steps were carried out using the
Pytorch library75. In order to build models for reverse diffusion process
(i.e., pθ xt�1jxt

� �
), this study adopted the Imagen model, proposed by

ref. 63 which proved to be highly effective in generating photorealistic
images, to generate 64 × 64 sized 2D samples. The details of the model
architecture with the hyperparameters are described in Supplementary
Table 1.

The training of these models was conducted using Nvidia RTX A6000
graphics processing units (GPUs) coupled with the Adam optimizer,
employing a learning rate of 3× 10�4. For each exemplary case, the batch
size was set to 32 per GPU, and the training process consisted of 50,000
training steps. The diffusion time steps for allmodels were set to beT=1000
with the linear noise schedule44, where βt s are evenly spaced values over the
interval β1 ¼ 10�4 and βT ¼ 10�2.

Evaluation metrics for validation. To quantify the quality of the gen-
erated samples using the proposed methodology in this study, the fol-
lowing criterion metrics are considered: two-point correlation function
(S2) and lineal path function (LP) in 2D/3D space. The two-point cor-
relation function, which characterizes the statistical distribution of the
material phase, can be written as follows:

S2 r1; r2
� � ¼ B r1

� �
B r2
� � ð22Þ

whereB �ð Þ is a binary function that becomes 1 if amaterial phase of interest
is present at a given location and 0 otherwise. In a similarmanner, the lineal
path function to evaluate the connectivity between clusters ofmaterial phase
can be computed as follows:

LP r1; r2
� � ¼ 1 if a line connecting r1 and r2 is on thematerial phase of interest

0 otherwise



ð23Þ

In addition, the lineal path function is adopted to assess not only the
spatial distributions of the material phase but also the phase connectedness

quantitatively26,76. Then, the error rate(%) between the correlation functions
of training data and generated data can be computed using the following
discrepancy equation48,77:

Error rateð%Þ ¼ Adis

Aori
× 100 ð24Þ

where Aori denotes the area under the correlation function of the training
dataset, and Adis represents the area between the two correlation functions
computed with the training and generated data. In other words, the error
rate represents the relative error between the two curves. Depending on the
sources of training data (e.g., 2D images sampled from 3D volume, or 2D
images themselves), the correlation functions are evaluated in either 3D
space or 2D space for each case study.

Data availability
The study used open-access microstructural data for training models from
the following sources: battery electrodes (NMCcathodes)78 and carbonates55.
All generated data used are available from the authors on request.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon reasonable request.
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