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Active learning graph neural networks for
partial charge prediction of metal-organic
frameworks via dropout Monte Carlo
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Metal-organic frameworks (MOF) are an attractive class of porous materials due to their immense
design space, allowing for application-tailored properties. Properties of interest, such as gas sorption,
can be predicted in silico with molecular mechanics simulations. However, the accuracy is limited by
the available empirical force field and partial charge estimation scheme. In this work, we train a graph
neural network for partial charge prediction via active learning based on Dropout Monte Carlo. We
show that active learning significantly reduces the required amount of labeled MOFs to reach a target
accuracy. The obtained model generalizes well to different distributions of MOFs and Zeolites. In
addition, the uncertainty predictions of Dropout Monte Carlo enable reliable estimation of the mean
absolute error for unseen MOFs. This work paves the way towards accurate molecular modeling of
MOFs via next-generation potentials with machine learning predicted partial charges, supporting in-
silico material design.

Metal-organic-Frameworks (MOF) have become a centerpiece of the
research on porous materials, building upon a tradition of research often
centered around Zeolites. The large surface area and pores allow for novel
applications such as physisorption for storage or filtering—both in
gaseous1,2 and solvent environments3,4, hosting catalytic processes5 or
innovative sensing mechanisms6. Compared to inorganic zeolites found in
similar applications, MOFs are characterized by a mesostructural arrange-
ment of metal nodes and organic linker-molecules, which form a network.
While these canmimic the network topology of zeolites, such as in the ZIF-
family ofMOFs7, continuous research has allowed for an ever wide range of
structures made possible by building block-like attachment chemistries of
linker molecules on metal-clusters8,9. Once a working experimental
mechanism has been established to create a MOF from a specific set of
precursor molecules, the subsequent modification of linker precursors
allows for a rapid combinatorial increase of possible structures with varying
properties10.

For standardized theoretical experiments across this diversity of
structures, computational scientists have started to collate datasets ready for
high-throughput computation. The earliest effort was the CoreMOF
dataset11,12 created from structures deposited in the Cambridge Structural
Database (CSD)13. The QMOF database significantly improved on this,

ensuring data provenance and proper deduplication of the CSD-data14,15

while also adding structures from the growing collections of hypothetical
MOFs16–18. The latter idea is fully embraced in theMOFX19 andARC-MOF20

projects, which both collate and standardize structures across databases of
hypothetical MOF-structures and zeolites.

Typically, high-throughput studies built on these databases target the
sorption capacities of the structures for a set of standard, commercially
relevant gases (e.g. CO2, N2, H2), which are computed via time-consuming
grand-canonical molecular mechanics simulations21. These simulations are
typically performed using generic force field parameters, empirical partial
charge models for coulombic interactions as well as rigid framework
structures22. However, the fidelity of this approach is hampered by the
accuracy of available classical force fields23,24 as well as the rigid framework
assumption, given that experiments show that properties can change
drastically by framework flexibility and naturally occurring defects25,26.
Direct surrogate modeling using recent Machine Learning (ML) methods
circumvents the cost of molecular mechanics simulations, but the under-
lying classical force field data limits the accuracy of theseML estimators27–29.

ML potentials promise significantly increased accuracy compared to
classical force fields30–33 and are increasingly used as a drop-in replacements
in molecular mechanics simulations34–38. Encouraging first results in MOF
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applications39 and growing evidence that with increasing system size,
separating the interactions into a short-rangeML potential component and
a classical long-range electrostatics component is beneficial to improve
accuracy and computational efficiency40–42, emphasize the importance of a
reliable partial charge assignmentmodelingmechanism. Standalone, such a
model can be used for diverse purposes, ranging from computing obser-
vables, such as dipole momenta for small molecules43,44, to replacing older
empirical chargemodels used inREAX-FF-MD45.With an appropriate loss,
themodel can also be trained end-to-end tomodel potential energy surfaces
for ionic materials46,47.

Recent work has shown that ML partial charge predictors can also be
used to replace computationally expensive density functional theory (DFT)
computations for MOFs48–50. However, due to the high dimensionality of
chemical space, achieving a sufficient training data coverage by labeling
randomly generated structures tends to be computationally prohibitive.
This applies particularly to the context of screening for compounds, where
theMLmodel needs to predict the labels for parts of chemical space, where
by definition, there are no experimental or simulation data yet51. Active
learning52,53 (AL)promises to efficiently generate diverse trainingdatasets by
only labeling configurations for which the model is uncertain, maximizing
the information content per structure to reduce the required amount of
labeled data significantly. To achieve this goal, AL builds the training data in
an iterative manner by screening for high uncertainty inputs, labeling them
and re-training the model on the extended training data. Consequently, AL
efficacy critically depends on the quality of the employed uncertainty
quantification (UQ) scheme to estimate the prediction error. For state-of-
the-art graph neural network (GNN) surrogate models, popular UQ
schemes include the Deep Ensemble method54,55, stochastic-gradient Mar-
kov chain Monte Carlo (SG-MCMC)56–59 and Dropout Monte Carlo60,61

(DMC). However, the former twomethods are inefficient for AL given that
they require retraining of several models at each AL iteration.

In this work, we investigate the efficacy of DMC for AL of MOF
partial charges. To that end, we predict partial charges using a charge
neutrality-enforcing48 GNN model, which we augment with Dropout
layers to enable UQ via DMC. DMC represents a computationally effi-
cient UQ scheme in an AL setting given that only a single parameter set
needs to be re-trained at each AL iteration. We showcase the efficacy of
DMC-based AL by training the GNN on the QMOF database and
comparing its performance with an optimal AL oracle and a random
baseline. Beyond AL, DMC can assess the model validity in the face of
novel datapoints – allowing practitioners to estimate the expected error
of the prediction. To evaluate the generalization andUQ capability of the
obtained GNN under distribution shift, we benchmark the model on a
subset of ARC-MOF and IZA-Zeolite.

Results
Active learning scheme
Figure 1a visualizes the AL pipeline used to train the GNN partial charge
prediction model. The GNN enforces charge neutrality and features
Dropout62 with a probability of p = 10% at all linear layers to enable UQ via
DMC60 (more details in themethods section).We split the available training
data into two sets: An initially small labeled set and an initially large pool set
that is considered to be unlabeled. The AL cycle starts by training the GNN
on the labeled set. Afterwards, we evaluate the uncertainty of themodelwith
respect to allMOFs in thepool set. To this end,wepredict thepartial charges
q associated with the atoms of each MOF for D = 8 different random
Dropout configurations to estimate the mean μ and standard deviation σ
across the D different predictions as

μ ¼ 1
D

XD
d¼1

qd ; σ ¼ 1
D� 1

XD
d¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqd � μÞ2

q
; ð1Þ

where qd are the predicted partial charges corresponding to Dropout con-
figuration d.

From the predicted standard deviation σ for each atom, we compute
the average standard deviation of each MOF

δMOF ¼
1

Natoms

XNatoms

k¼1

σk ; ð2Þ

whereNatoms is the number of atoms in theMOF. This allows to select the 16
MOFs with the largest δMOF in the pool set. As an alternative to δMOF, the
MOFs could also be selected based on the maximum σk. Afterwards, we
retrieve the labels of the selected MOFs, which emulates computing partial
charge labels via DFT in practice. The newly labeled MOFs are added to the
labeled set and retrainingcloses theAL loop.Trainingendsafter apre-defined
accuracy threshold is reached or the whole pool set has been added to the
labeled set. Refer to themethods section for a full set of AL hyperparameters.

After finishing training, the goal is to test the performance of the
obtained model and its uncertainty estimates under the realistic scenario of
distribution shift. To this end,webenchmark themodelwith respect to three
datasets distinct from the training data (Fig. 1b): first, structurally bigger
MOFs from the same distribution, second, MOFs from a different dis-
tribution and last, Zeolites representing related, but different structures.

Datasets
We deploy v13 of the QMOF dataset (as documented on the project home-
page: https://github.com/Andrew-S-Rosen/QMOF/blob/main/updates.md),
which contains 20375 MOFs with 77 different atom types. To test the gen-
eralization capabilities of the obtained NN model with respect to large
structures of the samedistribution, we hold-out allMOFswithmore than 100
atoms (Fig. 2a). Given that GNNs cannot be expected to accurately model
atoms that are not contained in the training data, we remove all MOFs
containing atom types that occur less than 10 times in the < 100 atomMOF
data subset. Consequently, the number of atom types reduces to 74, the set of
smallMOFs is reduced by 4 to 11173 and the set of largeMOFs is reduced by
42–9156. Finally, we obtain the training dataset by applying a random
80%–8%–12% training-validation-test split to the small MOF dataset.

To further evaluate themodel performancewith regards to inputs from
a different distribution of MOFs, we consider the ARC-MOF database20.
The database collates structures from 14 pre-existing datasets and includes
additional synthetic structures generated with pormake17. We neglected the
ARC-MOF databases 12 and 14 to minimize the overlap with the QMOF
dataset to create real-world out-of-sample distributions. We chose a stra-
tified sampling scheme that selects a minimum of 5% or a maximum of 20
structures per database to distinguish performance discrepancies among
distinct datasets. We have included further comparisons illustrating the
difference between these distributions in the Supplementary Figs. 1–3.
Finally, we benchmark our model on 20 randomly selected structures from
the IZA-Zeolite dataset acquired via MOFX-DB19. Zeolites have a different
atomic structure thanMOFs, but are commonly used in similar application
areas, providing a challenging benchmark for generalization. In order to
maintain consistency with the QMOF dataset, we computed partial charge
labels of the structures sampled fromARC-MOF and IZA-Zeolite using the
DFT settings used in QMOF as outlined in the methods section.

Evaluation metrics
Due to the chemical structure ofMOFs, themajorityof atoms correspond to
organic linkers. Only four atom types (H, C, N, O) constitute 92.6% of the
atoms in the QMOF dataset (Fig. 2b). Consequently, partial charge pre-
diction for MOFs is a highly class-imbalanced ML problem.

The mean absolute error (MAE) is most commonly used to evaluate
the performance of partial charge predictions for MOFs50, likely due to its
straightforward interpretability. However, given the class imbalance of
MOFatoms,MAE is dominated by organic linker atoms and is therefore an
insufficientmetric to evaluatemodel performance across the broad range of
metal nodes. We therefore propose the per-species MAE (SMAE) as an
alternative, interpretable metric to evaluate model performance for highly
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class-imbalanced datasets:

SMAE ¼ 1
Nspecies

XNspecies

i¼1

MAEðiÞ with MAEðiÞ ¼ 1
N i

XN i

k¼1

μðiÞk � q̂ðiÞk

��� ��� ; ð3Þ

where Nspecies is the number of different atom types, Ni is the number of
atoms of atom type i in the data (sub)set and q̂ðiÞ is the corresponding partial

charge label. All atom types contribute equally to SMAE, effectively
increasing the weight of metal nodes compared to the MAE.

Partial charge prediction performance
We evaluate the performance of the GNN for partial charge prediction by
training themodel on the full training data for 500 epochswithoutDropout.
On the test set, the resulting model yields MAE = 0.0083e and SMAE=

Fig. 1 | Graph neural network training and testing. a Active learning scheme to train a partial charge prediction graph neural network. Dropout Monte Carlo60 is used to
compute the standard deviation (SD). b Test of generalization capabilities of partial charge predictions and uncertainties of the trained model under distribution shift.
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0.0339e, respectively (Table 1). This is in line with reported performance of
partial charge prediction for MOFs in the literature with MAE values of
0.0192e50 and 0.025e48 on theCoREMOF-2019dataset12. Training theGNN
with a Dropout probability of p = 10% yields test set errors of MAE =
0.0115e and SMAE = 0.0437e. We found that increasing p monotonously
increases the test set errors (Supplementary Fig. 4). Consequently, we
selected a small Dropout rate of p = 10% for the subsequent active learning
task to minimize the model accuracy penalty from Dropout. Throughout
themanuscript, we consider themean overD = 8Dropout configurations μ
as the prediction of GNNmodels with Dropout. We choose this evaluation
scheme because generating a single prediction by simply deactivating the
Dropout layers at inference time yields significantly worse predictions
across all our experiments.

To set these metrics into perspective and judge whether the perfor-
mance of theGNN is sufficient for surrogatemodeling, we compare them to
the error resulting from using a computationally less expensive DFT
simulationwith Γ-only sampling (as performedbyKancharlapalli et al.50) as
a predictor for the results with a finer k-point grid (as in the work of
Nazarian et al.63 and the QMOF dataset14). Using the 1260 identical struc-
tures that are shared between the works of Kancharlapalli et al.50 and
Nazarian et al.63,wefindMAE = 0.058e andSMAE= 0.136e.Accounting for
possible outliers and noise, we set the target accuracy for our model to 50%

of those values (Fig. 3).Thus, the achieved accuracy levels of ourmodelswith
and without Dropout are more than sufficient for surrogate modeling.

Active learning
The goal of AL is to train aMLmodel that achieves the target accuracywhile
requiring the least amount of labeled training data. We benchmark the
DMC-based AL method against a baseline scheme that randomly selects
MOFs to be added to the training set as well as anAL oracle that uses the (in
practice unavailable) true MAE of the MOF as the AL selection criterion:

MAEMOF ¼
1

Natoms

XNatoms

k¼1

jμk � q̂kj: ð4Þ

As visualized in Fig. 3a, Dropout AL outperforms the random selection
baseline, reducing the required amount of training data to reach the SMAE
accuracy target to 13%of the training data compared to 24% for the random
selection. As expected, theALoracle outperforms theDropoutAL, reaching
the DFT accuracy target at 6% of the training data. Nonetheless, at more
than 14% of the training data, Dropout AL closes this gap and achieves the
same performance as the oracle.

The increase in data efficiency of AL becomes more pronounced if
duplicate structures exist in the dataset: We applied the AL pipeline to the
original CoreMOF-201912 dataset containing 817 duplicate structures,
which we detected via an improved de-duplication screening using the
method described by Rosen et al.14. For this dataset, the random selection
baseline required almost 4 times asmany labeled samples as theDropoutAL
scheme to reach the accuracy target (Supplementary Fig. 5). Interestingly,
when consideringMAE, AL appears to provide no significant benefit - even
with the true error as uncertainty metric (Fig. 3b). The performance mea-
sured byMAE seems to be simply a function of the amount of training data,
irrespective of the diversity of the structures.

Test set performance analysis
We analyze the performance of the GNN at the end of the active learning
training (100%of the trainingdata, termedALGNN)on the smallMOFtest
set. The AL GNN achieves a test set accuracy (MAE = 0.0136e, SMAE=
0.0325e) similar to the GNNdirectly trained on all the training data (Table.
1). Among organic linker atom types, theALGNN features very smallMAE
only for hydrogen (MAE= 0.0063e). Interestingly, despite the large amount
of atoms in the training data, the resulting MAE of carbon (0.0143e),
nitrogen (0.0180e) and oxygen (0.0174e) atoms are in line with theMAE of
manymetal nodes (Supplementary Fig. 6). There are 4 atom typeswith large
MAE > 0.1e: Hf, Nb, Fe, and, Sn (in error decreasing order). The largeMAE
of Hf and Nb can be explained by a lack of training data because both atom
types appear less than 10 times in the training data. In contrast, there are 354

Fig. 2 |QMOFv13 dataset statistics. aDistribution of the number of atoms perMOF in theQMOFdataset. The black dashed line indicates the split at 100 atoms between the
small and large subsets. b Distribution of atom types in the QMOF dataset.

Table 1 | Predictive performance summary

Model Dataset MAE [e] SMAE [e]

DFT-derived target 0.029 0.068

Kancharlapalli et al.50 CoRE MOF-201912 0.0192

Raza et al.48 CoRE MOF-201912 0.025

GNN p = 0 QMOF14 < 100 atoms
testset

0.0083 0.0339

GNN p = 0.1 QMOF14 < 100 atoms
testset

0.0115 0.0437

AL GNN QMOF14 < 100 atoms
testset

0.0136 0.0325

AL GNN QMOF14 > 100 atoms 0.0114 0.0468

AL GNN QMOF14 > 100 atoms
unseen atom types

0.0316 0.1485

AL GNN ARC-MOF20 0.0239 0.0696

AL GNN IZA-Zeolite 0.0368 0.0386

Comparisonof themeanabsolute error (MAE) andper-speciesMAE (SMAE)of graphneural network
(GNN) models trained in this work with the density functional theory (DFT)-derived target and lit-
erature benchmarks. AL GNN refers to the GNN obtained at the end of the active learning training
(100% of the training data) and p corresponds to the Dropout probability for models trained on the
full training data for 500 epochs.
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Fe and 233 Sn atoms in the training set. The cause for the largeMAEof these
more common metals is a topic for further research – a cursory visual
inspection of 6 samples with individual per-atom-errors larger than 0.2e did
not reveal any obvious commonalities, except 83% of samples
exhibiting nonstandard-topologies that evaded classification with
moffragmentor64.

Even though the per-species MAE of organic linker atoms is com-
paratively small, there are several atoms in the test data that exhibit very
large errors (Fig. 4). Interestingly, these large error atoms tend to cluster
together at similar DFT charge values (e.g. q̂≈ 0:65 e or q̂≈ � 0:15 e for
carbon and q̂≈ � 0:55 eor q̂≈ � 0:95 e for oxygen). TheALGNNappears
to contain little information about these clusters given that the model pre-
dicts almost the full range of partial charges found for this atom type (see
Supplementary Fig. 7 for dedicated parity plots for each organic atom type).
Manual inspection of structures with very large error ( > 0.2e per atom)
reveals several interesting features: First, 20 of the 24 structures exhibit both
abnormal errors for oxygen and carbon, while 70% of those are classified as
the lvt-topology. Visual inspection reveals that nearly every sample
exhibits characteristic wire-like structures of carbon-atoms (see a sample in
Supplementary Fig. 8), which appears to reduce the ability of our GNN to
model this structure. Further researchcouldhelp elucidate if these structures
are physically feasible or if database screening criteria need to be refined.

Dropout Monte Carlo inference
Next, we investigate the generalization capabilities and the quality of
uncertainty estimates of the AL GNN. The uncertainty estimate in Eq. (1)
typically underestimates uncertainties for held-out data65. This is

particularly true for the GNN in this work due to the small Dropout
probability p = 10%. While a grid search over the Dropout rate could be
performed to improve the calibration of the uncertainty estimates via a
higher Dropout rate60,66, this higher rate would decrease the predictive
accuracy (Supplementary Fig. 4). To avoid increasing the Dropout rate, we
compute a calibrated uncertainty ~σ by scaling the distribution of predicted
uncertainties σ (Eq. (1) such that the variance in the uncertainty estimates
matches the variance of the error on the validation set, as is common in the
literature65:

~σ ¼ α � σ with α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1
D
þ D� 3

D� 1
1

Nval

XNval

l¼1

ðμl � q̂lÞ2
σ2l

s
; ð5Þ

whereNval is the total number of partial charge labels q̂l in the validation set
and μl and σl are the DMC mean and standard deviations of the corre-
sponding atom (Eq. (1)). The calibration of the AL GNN via Eq. (5)
yields α = 1.504.

We investigate the model errors as well as the corresponding uncer-
tainty estimates on three levels for each dataset: First, we analyse the MAE
andSMAE for thewhole dataset. Second,we computeMAEMOF(Eq. (4)) for
each MOF to assess the performance of the UQ scheme to provide reliable
uncertainty estimates for individual MOFs. To this end, we estimate
MAEMOF via the mean calibrated standard deviation ~δMOF:

~δMOF ¼
1

Natoms

XNatoms

k¼1

~σk : ð6Þ

Last, we investigate the absolute errors on the atom level jμ� q̂j to assess
whether the calibrated standard deviation of the atom ~σ is able to identify
regions of high error within the MOF.

On the test set, we find that the calibratedDMCcan estimate aggregate
error metrics well: While the mean ~σ of 0.0159e slightly overestimates the
MAE of 0.0136e, the SMAE of 0.0354e is slightly underestimated with
0.0325e. On the level of single MOFs, the DMC uncertainty estimate is
reliable in identifying large MAEMOF (Fig. 5a): The vast majority of
MAEMOF errors are contained within the 3~δMOF credible interval and a
correlation coefficient of 0.94 indicates a strong correlation between the two.
However, this UQ performance does not translate to the atom level, where
the correlation coefficient between jμ� q̂j and ~σ is only 0.67. In addition,
many atoms are not contained in the 3~σ credible interval, which indicates
that DMC cannot reliably predict error bounds for single atoms (Fig. 5b).

Fig. 4 | Test set parity plot. Comparison of the partial charge μ predicted by the
GNN obtained via active learning with the DFT label q̂ for all atoms in the small
MOF test set.

Fig. 3 | Active learning curves.Test set per-speciesmean absolute error (SMAE, (a)) andmean absolute error (MAE, (b)) as a function of the training set size for theDropout
Monte Carlo active learning (AL) scheme, the AL oracle benchmark and the random selection baseline compared to the density functional theory-derived accuracy target.
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Fig. 5 | Generalization performance. Parity plot of the absolute error of atoms
jμ� q̂j and the mean absolute error of MOFs MAEMOF with the corresponding
calibrated standard deviation ~σ and the calibratedmean standard deviation ~δMOF for
(a, b) the test set, (c, d) the held-out set of large MOFs with and without unknown
atom types and (e, f) the ARC-MOF and IZA-Zeolite validation sets. The black

dashed line indicates the optimal UQ estimate, where the UQ standard deviation
matches the error. It separates regions of underconfidence (below) and over-
confidence (above). The green dashed line visualizes the ± 3~σ credible interval,
where points below the curve lie within the credible interval.
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Quality of dropout Monte Carlo under distribution shift
First, we assess the generalization capabilities of the GNN with respect to
large MOFs of the same distribution by predicting the partial charges of
MOFs with more than 100 atoms in the QMOF dataset (Fig. 2a). The
resulting errors of MAE = 0.0114e and SMAE = 0.0468e demonstrate that
the obtained GNN generalizes to large MOFs very well. Compared to the
small MOF test set, the MAE is slightly lower, while the SMAE is slightly
larger. We attribute the smaller MAE in parts to the larger ratio of organic
linker atoms of 94.5% compared to 92.6% in the small MOF test set. The
DMC uncertainty estimates also show similar properties: The MAE is
slightly overestimated with a prediction of 0.0140e, the SMAE is slightly
underestimated with a prediction of 0.0405e and the vast majority ofMOFs
are included in the 3~σ credible interval (Fig. 5c).

Next, we evaluate the prediction errors for MOFs with more than 100
atoms from theQMOFdataset that containunseenatom types.As expected,
with an MAE of 0.0316e and a SMAE of 0.1485, the prediction error is
substantially larger compared to the case without unknown atom types.
However, the corresponding UQ estimates for MAE and SMAE of 0.0141e
and 0.0389e significantly underestimate the errors. On the MOF level, the
errors are mostly contained within the 3~δMOF credible interval (Fig. 5c).
However, theDMCUQestimate does not assign large uncertainties to these
MOFs. This becomes particularly clear at the atomic level (Fig. 5d): Even
though, as expected, the predictions for atom types unknown to the model
are highly inaccurate, the predicted uncertainty is comparatively small,
resulting in significant overconfidence.

Last, we test the generalization capacity of the obtained GNN to dif-
ferent structures by evaluating themodel on our DFT-labeled subsets of the
ARC-MOF database20 and the IZA-Zeolite dataset. As expected, the pre-
diction error increases in both cases due to the distribution shift: Themodel
yields errors of MAE = 0.0239e, SMAE = 0.0696e and MAE = 0.0368e,
SMAE = 0.0386e for the ARC-MOF and IZA Zeolite datasets, respectively.
Considering that these errors remain in the range of the target accuracy, the
generalization capabilities of theobtainedGNNappear tobe sufficient for its
application under distribution shift in practice. In the case of ARC-MOF
data, the UQ prediction underestimates these aggregate error metrics, with
predictions of 0.0153e and 0.0369e for MAE and SMAE, respectively.
Nonetheless, the vastmajority ofMOFs are contained in the 3~δMOF credible
interval (Fig. 5e). In the case of IZA Zeolites, with uncertainty estimates of
0.0887e and 0.0914e for MAE and SMAE, DMC overestimates these
aggregate errormetrics. TheDMCUQclearly highlights that predictions for
these Zeolites are uncertain (Fig. 5e), enabling practitioners to interpret
obtained partial charge predictions accordingly or re-train the GNN with
additional Zeolite training data. These findings are reflected at the atomic
level, where DMC is overconfident in ARC-MOF prediction and slightly
underconfident in IZA Zeolite predictions (Fig. 5f).

The Zeolite example with its large uncertainty predictions with respect
to a shift in input structures is in stark contrast to the low uncertainty
predictions with respect to unknown atom types (Fig. 5d). While the latter
UQ error is more severe due to providing overconfident predictions, it can
be easily avoided by only applying the model to MOFs with known atom
types. The reason behind the different UQ results can be likely found in the
GNN architecture: Evaluating DimeNet++33,67 on unknown atom types
retrieves a randomly initialized atom type embedding from a look-up table,
while changes in the input configuration propagate through the network via
perturbations in the radial and spherical Bessel functions67. The variance in
GNN activations introduced by DMC appears to be amplified more by
unexpected radial and spherical Bessel function values than by unexpected
atom type embeddings, leading to comparatively smaller uncertainty pre-
dictions in the latter case. However, further research is required to uncover
the detailed mechanisms that cause the difference in UQ estimates.

Discussion
The obtained GNN model yields partial charge prediction errors sig-
nificantly below our DFT-derived target, promoting its application to
downstream computational studies: The GNN could be used out-of-the-

box to extend the feature set of ML-based MOF screening studies such as
those performed by Ren et al.68 –while only studied noble gases are studied,
ML-predicted partial charges could help simulations with more complex
molecules or provide additional, tabulated features to the gradient-boosting
model. Additionally, the obtainedGNN is suitable to predict partial charges
for neural network potentials that model long-range electrostatic
interactions40 or could be used as an enhancement for descriptor-based
models69. Importantly, high-quality partial charge predictions can be
obtained even under distribution shift, given that the GNN is able to gen-
eralize to largeMOFstructures, hypotheticalMOFs andZeolites,with errors
below or close to their target values. This is particularly important for in-
silico screening tasks, where the training and inference distributions are
inherently different, representing a challenging setting for ML models
trained on existing benchmark datasets51,70,71. Nonetheless, the GNNmodel
could still be inaccurate in some cases, as shown for MOFs with unknown
atom types, highlighting the need for reliable UQ.

This work demonstrated that DMC provides sensible uncertainty
estimates: The 3~δ credible interval contains the MAEMOF in the vast
majority of cases, even for out-of-distribution settings, allowing practi-
tioners to judge whether the expected error is sufficiently small for the
application at hand. In addition, DMC is able to recognize zeolites as
unknown structures. This is important because it indicates that MOFs
with defects or with a perturbed framework might also be recognizable.
On the other hand, this work has also revealed some shortcomings of
DMC: First, adding Dropout to linear layers in GNNs tends to decrease
predictive accuracy for larger Dropout probabilities. Second, in order to
obtain the most accurate results with a DMC-trained model, we found
that simply deactivating all Dropout layers was insufficient. Hence,
approximating the mean over multiple Dropout configurations is
necessary, which increases the computational cost at inference time.
However, it should be noted that inference is nonetheless several orders
of magnitude faster than querying the DFT calculation. Retraining the
GNNmodel without Dropout on the dataset obtained by AL would be a
straightforward solution to these issues, avoiding any penalty on accu-
racy and obtaining predictions in a single forward pass. While the
retrained model does not have UQ capabilities on its own, the DMC
uncertainty estimates might be distilled into it via student-teacher
learning72–74. Alternatively, Gaussian Processes are attractive models for
UQ because they provide uncertainty estimates without computational
overhead75. In particular, recent method developments such as Deep
Kernel Learning76,77 and linear scaling Gaussian Processes using graph-
based feature-extractors78 have the potential to increase the efficiency of
UQ without compromising predictive performance compared to state-
of-the-art GNNs. Benchmarking their performance, in particular in an
AL context, against GNN baselines such as DMC60 and the Deep
Ensemble method55 is an interesting direction for future research.

Our results show that UQ is not only important for trustworthy pre-
dictions, but also allows to train ML models efficiently using AL. However,
the benefits of AL only become apparent if an evaluationmetric is used that
accounts for the strong class imbalance of MOFs, highlighting the impor-
tance of selecting appropriate evaluation criteria. In the context of MOFs,
while DFT-labeled databases kept increasing in size over the past
years11,12,14,20, they will never contain all possible MOF structures. Based on
our emulated database-building experiment, where AL clearly out-
performed the random selection baseline, AL could play an important role
in constructing the next iteration of MOF databases, maximizing the
information content per structure. In addition, AL may prove valuable in
addressing deduplication problems in MOF datasets: These range from
faileddeduplication inwidelyuseddatabases12 to themore subtle problemof
different compounds containing the same structural motifs. AL may pro-
vide an elegant solution, as motifs with similar properties will be identified
rapidly. MOF databases with broad structural coverage are the foundation
to obtain transferable ML partial charge prediction models, paving the way
towards accurate molecular modeling of MOFs, e.g. for in-silico material
design.
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Methods
Probabilistic GNN for partial charge prediction
To predict partial charges, we build on our custom DimeNet++33,67

implementation79with default hyperparameters, which learns for each atom
type an embedding vector. We augment the original backbone architecture
via a scheme that enforces charge neutrality. Given that the output blocks of
DimeNet++ predict per-atom scalars, we consider these scalars to be raw
partial charges �qj. In order to enforce charge neutrality, we subtract the
average net charge of the MOF from each atom to obtain the final partial
charges48

qj ¼ �qj �
1

Natoms

XNatoms

k¼1

�qk : ð7Þ

The performance of the simple charge neutrality approach in Eq. (7) has
been shown to be similar to more sophisticated schemes available in the
literature48.

Supplementary Fig. 9 shows the net charge per atomof theALGNN for
MOFs in the small MOF test set when deactivating the charge neutrality
scheme.Given that eq. (7) corrects shifts in thenet charge, theGNNmeannet
chargepredictionbecomesarbitrary. In the caseof theALGNN, themeannet
chargeper atom is shifted to− 0.0284e.The average charge redistributionper
atom of the AL GNN is comparatively small with 0.0048e per atom.

To enableDMC,we applyDropout to all output neurons of each linear
layer in the DimeNet++ architecture across all Embedding, Interaction,
Residual and Output blocks (see fig. 1 in the original manuscript67). In
particular, we do not apply Dropout to the message passing connectivity,
nor to the initial edge embedding vectors. This way, we leave the molecular
graph representation unaltered and only introduce noise into the learned
transformations.

Active learning hyperparameters
We initialize the labeled set with 89 randomly selected MOFs from the
training data (1% of the overall training data). We select a batch size of 8
MOFs and initially train theGNNmodel for 1000 epochs on the labeled set.
After adding newly labeled MOFs, we preferentially train on these data
pointsgiven that themodel is already trainedon the remainderof the labeled
set. To this end, we employ a two-step training procedure: First, we train the
model for 200 epochs of the newly labeled data on mini-batches consisting
of 2 newly labeledMOFs and 6 randomly drawnMOFs from the labeled set.
This represents a trade-off between avoiding overfitting to the newly labeled
data and improved computational efficiency due to preferential training.
Second, we train the GNN for 3 more epochs on the full labeled set to
ameliorate the bias towards newly labeled MOFs from the previous pre-
ferential training.

Density functional theory setup
For computing partial charge labels, we employ the Vienna ab initio
Simulation Package (VASP)80 version 6.2.1 and chargemol v09_02_201781.
Using version 54 of the Projector-Augmented-Wave (PAW) pseudopo-
tentials, we perform simulations using the PBE-functional, a kinetic energy
cutoff of 520 eV,Gaussian smearing for the bandoccupancies of 0.01 eVand
an energy convergence criterion of 1e-6. We choose k-point sampling such
that (#k-points ⋅ real space cell-vector) > = 24, in line with chargemol best
practices. The partial charges are then assigned from the resulting scf-charge
density using the Density Derived Electrostatic and Chemical (DDEC)-
charges assignment scheme81. We verified that these settings reproduce the
partial charges from the QMOF-settings to numerical accuracy.

Data availability
Data (weights of the final trained model and data used for training and
evaluation) is publicly available at: https://github.com/tummfm/mof-al.
Instructions to acquire the QMOF-dataset including structural data and
DFT-based labels are available here: https://github.com/Andrew-S-Rosen/

QMOF. Structures for the ARCMOF-database can be found at https://doi.
org/10.5281/zenodo.10818822. For the IZA-database they where acquired
via the MOFDB-X-project: https://mof.tech.northwestern.edu/databases
(version dc8a0295db).

Code availability
The active learning code is publicly available at the following GitHub
repository: https://github.com/tummfm/mof-al.
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