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Evolution-guided Bayesian optimization
for constrained multi-objective
optimization in self-driving labs
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The development of automated high-throughput experimental platforms has enabled fast sampling of
high-dimensional decision spaces. To reach target properties efficiently, these platforms are
increasingly paired with intelligent experimental design. However, current optimizers show limitations
inmaintaining sufficient exploration/exploitation balance for problemsdealingwithmultiple conflicting
objectives and complex constraints. Here, we devise an Evolution-Guided Bayesian Optimization
(EGBO) algorithm that integrates selection pressure in parallel with a q-Noisy Expected Hypervolume
Improvement (qNEHVI) optimizer; this not only solves for the Pareto Front (PF) efficiently but also
achieves better coverage of the PF while limiting sampling in the infeasible space. The algorithm is
developed together with a custom self-driving lab for seed-mediated silver nanoparticle synthesis,
targeting 3 objectives (1) optical properties, (2) fast reaction, and (3) minimal seed usage alongside
complex constraints. We demonstrate that, with appropriate constraint handling, EGBO performance
improves upon state-of-the-art qNEHVI. Furthermore, across various synthetic multi-objective
problems, EGBO shows significative hypervolume improvement, revealing the synergy between
selection pressure and the qNEHVI optimizer. We also demonstrate EGBO’s good coverage of the PF
as well as comparatively better ability to propose feasible solutions. We thus propose EGBO as a
general framework for efficiently solving constrained multi-objective problems in high-throughput
experimentation platforms.

With the expansion of automation in laboratories and the development of
new machine learning tools to guide optimization processes, recent years
have seen a boom of materials acceleration platforms (MAPs) in material
science1–3. High-throughput experimental (HTE) platforms now enable
rapid synthesis procedures4, with inline material characterization5,6 and
parallelization of workflows to facilitate batch sampling. Many examples of
closed-loop optimization on HTE platforms can be found in the literature.

For example, Wagner et al.7 developed the AMANDA platform to produce
and characterize solution-processed thin-film devices for organic photo-
voltaic applications. OtherMAPs have been implemented for the discovery
of metal halide perovskite alloys8, polymer composites for photovoltaics9,10

and metal nanoparticles11–13.
Correspondingly, many scientific and/or engineering challenges in

materials science and chemistry require satisfying multiple objectives and
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constraints, resulting in increased interest in framing solutions for con-
strained multi-objective optimization problems (cMOOPs)5,14. A few exam-
ples of cMOOPs are reported inmaterial science literature. For instance, Erps
et al.15 demonstrated the optimization of 3D printing materials for maximal
compression modulus, compression strength and toughness, while Cao
et al.16 proposed liquid formulated products thatminimize viscosity, turbidity
and price and used classification to differentiate stable formulations.

While HTE platforms enable fast andmore extensive sampling of these
cMOOPs, evaluation budgets are often still limited to 102–103 samples due to
operating and chemical costs, finite available quantities of reactants and time
considerations. However, multi-objective optimization requires intensive
sampling, especially as the dimensionality of the decision space and the
number of conflicting objectives increases17. Moreover, the objective land-
scape can be complex with non-linear input-output relationships furthering
the need for more samples. The complexity of cMOOPs notably arises when
dealing with conflicting objectives, as one needs to find not only one global
optimum but an ensemble of the most optimal across all objectives, also
known as the Pareto Front (PF). Discovering the PF is often used to decide
how to operate theHTE platform to produce the bestmaterial. Alternatively,
knowledge extraction can be performed a posteriori to understand the rela-
tionship between each objective at the PF18. However, the accuracy of
knowledge extraction strongly depends on the sampling resolution at the PF.
Therefore, special attention should be given to the PF exploration during the
optimization process.

Another level of difficulty is reached with constraints that make some
of the trade-off solutions potentially impossible to evaluate19. To learn and
handle the constraint functions, the optimizer will inevitably suggest
infeasible candidateswhichmight damage theHTEplatform itself, a critical
consideration for scientists. Therefore, an ideal optimization algorithm
must not only (1) efficiently exploit towards the PF location, but also (2)
uniformly explore the PF, while (3) avoiding infeasible regions near the PF,
as illustrated in Fig. 1 (top left). Moreover, when the objectives are
experimentally measured, the optimizer would also need to deal with
fidelity/noise concerns in synthesis and characterization,which complicates
the objective landscape.

Amongst recently proposed optimizers, q-Noisy Expected Hypervo-
lume Improvement basedBayesianOptimization (qNEHVI-BO)20 is a state-
of-the-art Bayesian optimization approach that caters to constraint hand-
ling, batch sampling and noisy evaluations. It was successfully implemented
in a self- driving lab for multi-objective optimization of thin films by
MacLeod et al.21. However, Low et al.22 demonstrated that the optimization
procedure may lead to over-exploration, inevitably resulting in sampling
wastage. In this paper,we address this concern,which is particularly acute for
cMOOPs, by introducing selection pressure from an evolutionary algorithm
(EA) as a parallel optimizationmechanism, creating a hybrid framework we
hereby name as Evolution-Guided Bayesian Optimization (EGBO). For the
rest of this section, we first describe the self-driving platform and then the
proposed optimizer EGBO.

Fig. 1 | Closed-loopworkflowof the EGBO-guidedHTEplatform.The illustration
on the top left of the figure shows the unconstrained (blue dashed line) and con-
strained (red solid line) Pareto Optimal Set (POS) in a constrained decision space,
and its respective projection as the Pareto Front (PF) in the objective space. EGBO
algorithm (left) combines an evolutionary algorithm (orange) and a qNEHVI-BO

(blue) working in parallel to suggest 4 optimal candidates for the cMOOP. The
optimizer’s goal is to (1) efficiently reach the PF, (2) uniformly explore the PF and (3)
avoid infeasible domains near the PF (top left). The candidates are then sampled on a
hyperspectral HTE platform optimizing AgNP synthesis (right) and further analysis
is done to derive the objective values (bottom) before a new EGBO iteration.
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Self-driving silver nanoparticle synthesis
Silver nanoparticles (AgNPs) have received particular attention due to
their many applications, notably in chemical sensing23, photovoltaics24,
electronics25 and biomedicine26. AgNPs can take various sizes
(1–100 nm) and shapes (spheres, rods, prisms, cube, etc.), resulting in a
wide range of spectral signatures due to localized surface plasmon
resonance27. Here, we propose to optimize a AgNP synthesis method
based on seed-mediated growth. Our optimization goal is threefold: (1)
target a desired spectral signature, (2) maximize the reaction rate and
(3) minimize the usage of the costliest reactant, here silver seeds. For
this purpose, we develop a closed loop machine learning driven HTE
platform consisting of a microfluidic platform that produces droplets
containing the reacting chemicals and a line-scan hyperspectral ima-
ging system capturing the droplets UV/Vis spectral image in situ28 as
seen in Fig. 2.

The chemical composition of the droplets is controlled by the
flowrate Q of each reactant: silver seeds (10 nm, 0.02 mg mL−1 in
aqueous buffer stabilised with sodium citrate), silver nitrate (AgNO3,
15 mM), ascorbic acid (AA, 10 mM), trisodium citrate (TSC, 15 mM)
and polyvinyl alcohol (PVA, 5 wt%). These flowrates define the 5
decision variables of the cMOOP. DI water flowrate is adjusted to
maintain a constant total aqueous flowrate of 120 μL min−1, to get
stable droplets that are long enough to get accurate absorbance
measurements28.

The objectives and constraints of the cMOOPcanbewritten as follows:

max

y1 ¼ minð3; �δðAmaxðtendÞÞ× log10ð1� cosimðAðλ; tendÞÞÞ=3
y2 ¼ max

t
ðAmaxðtÞ

t Þ
y3 ¼ 1� Qseed=120

8>><
>>:

ð1Þ

st

QTSC; QAgNO3
; QPVA; Qseed; QAA 2 ½0:6 : 24� μLmin�1

c1 ¼ 0:3� QAgNO3
QAA

≤ 0

c2 ¼ 2� QAgNO3
QAA

� Qseed
QAgNO3

≤ 0

8>>><
>>>:

ð2Þ

The first objective y1 quantifies the closeness to the targeted spectral
signature, defined as the cosine similarity between the final absorbance
spectrum of the sampleA(λ, tend) and of the targetAtarget(λ, tend) to evaluate
how similar their normalized spectra are. We use logarithmic scale to
rebalance the distribution and favor sampling of cosine similarity values
from 0.9 to 0.999. We further multiply it by a gating function δ defined as:

δðAÞ ¼ 1 if A 2 ½0:3 : 1:2�
0 if A < 0:3 orA > 1:2

�
ð3Þ

with this operation, the objective value y1 is set to zero if thefinal absorbance
amplitude Amax(tend) does not fall in the operation range of the hyper-
spectral sensor, i.e., when Amax(tend) ∈ [0.3: 1.2]. This is to ensure precise
measurements, as low amplitude spectrum would lead to a noisy mea-
surement of the cosine similarity, while a saturating spectrum would make
its estimation inaccurate. Finally, the objective value is capped to 3 as the
sensor sensitivity does not allow sufficient precision when cosine similarity
goes above 0.999.

The second objective y2 is tomaximize the reaction rate (RR). The time
evolutionof theabsorbancepeak is extracted fromthe absorbancemap (Fig. 1
bottom) to estimate the maximal reaction rate, here defined as the ratio
between Amax(t), the maximal absorbance amplitude over the wavelengths
and t, the residence time of the reacting droplet. The best reaction rate of a
condition is defined as themaximal reaction rate obtained over the reaction
time. It indicates what would be the highest reaction rate achievable if the
reactor was cut to its optimal length. Finally, the third objective y3 is about
minimizing the consumption of silver seeds, the costliest reactant for this
synthesis method. This is done by minimizing the flowrate ratio of silver
seeds against the total aqueous phase. We note that objectives are normal-
ized to [0,1] within the optimization workflow, while values reported in the
following figures are unprocessed.

The cMOOP is subject to box constraints for the 5 decision variables.
Two additional non-linear engineering constraints are implemented to
prevent secondary nucleation of AgNPs, which could cause irreversible
cloggingof themicrofluidicdroplet generator.Basedonpreviouswork28 and
preliminary reproducibility tests on the HTE platform, we identified two
regions that could lead to clogging or fluctuations of the absorbance maps.
The constraints c1 and c2 are defined as an overconfident estimate of the

Fig. 2 |Overview of theAgNPHTEplatform. aDetailed schematic of themicrofluidic platform.Droplet generation is performed in a (b) customized chip. Reacting droplets
are then released in a 1.5 m long reactor tube (PFA, 1 mm ID) where the hyperspectral image (c) is taken. d Workflow of the HTE platform.
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boundary planes of these two regions. They are consistentwith our expertise
knowledge, as secondary nucleation could either come froman excess of the
reducing agent AA with respect to the quantity of silver atoms, or from a
deficiency of silver seeds for silver atoms to grow on.

Evolution-guided Bayesian optimization
Bayesian Optimization (BO) is a popular technique for optimization of
expensive functions. Most commonly, a Gaussian Process (GP) prior is
defined over the objective and constraint functions, expressed as f(x) ~
GP(μ(x), k(x,x′)) where μ(x) and k(x, x′) represent themean and covariance
respectively29. TakingobservationsD ¼ fðxi; yiÞgNi¼1 whereN is thenumber
of data points, theGP is then updated to a posterior distribution of form f(x|
D) ~GP(μpost(x), kpost(x,x′))withupdatedmeanandcovariance. Thereafter,
an appropriate acquisition function α(x) is defined, and then optimized to
provide xnew = argmaxxa(x) as the candidate(s) to sample formaximal gain.

BO can be extended to multi-objective by considering scalarization of
objectives into a single metric such as hypervolume (HV), which is defined
as the Euclidean measure of the space covered by non-dominated PF
solutions and bounded by a reference point30. Daulton et al.20,31 proposed an
acquisition function Noisy Expected Hypervolume Improvement
αNEHVI(x) = ∫αEHVI(x|Dn)p(f|Dn)df by considering the expected hypervo-
lume improvement (HVI) with uncertainty of the posterior distribution
conditioned on noisy observations Dn. The analytically tractable form is
derived by Monte-Carlo (MC) integration to give α̂NEHVIðxÞ ¼
1
N

PN
t¼1HVIð~f ðxÞjPtÞ where ~f ðxÞ are samples taken from the posterior and

Pt is the PF of the observations. In BoTorch
32, this is efficiently optimized by

performing gradient-based optimization from starting samples to attain
maximum α̂NEHVIðxÞ, implemented as the optimize_acqf function. Addi-
tionally, constraint handling is also integrated via sigmoid weighting the
acquisition value onconstraint predictions from theGP.Thereafter,we refer
to the overall optimization workflow as q-Noisy Expected Hypervolume
Improvement based Bayesian Optimization (qNEHVI-BO).

HV improvement as a strategy has been shown to be robust in multi-
objective optimization compared to decomposition or scalarization based
methods which may require more careful hyperparameter tuning33.
Furthermore, qNEHVI-BO has been demonstrated to outperform other
well-performing algorithms including Thompson sampling efficient multi-
objective optimization (TSEMO)34 and diversity-guided efficient multi-
objective optimization (DGEMO)35. We further note that these algorithms
do not include native constraint handling as well, making their imple-
mentation to cMOOPs less suitable.

The performance of qNEHVI-BO remains limited when considering
cMOOPs. Indeed, studies from Low et al.22 on high-dimensional problems
show that qNEHVI-BO can efficiently reach the PF but will fail to explore it
uniformly. Work by Rasmussen et al.36 also highlighted a key point in
understanding BO performance: a poorly calibrated surrogate model may
be inconsequential as optimization is driven by the search strategy or with
enough random sampling. In contrast, evolutionary algorithms are better at
exploring diverse points along the PF but require more evaluations to reach
the PF. In both cases, sampling wastage will occur, as sub-optimal or
infeasible candidates are suggested. Sampling wastage will even increase at
larger sampling batches.

Our proposed EGBO aims to improve upon qNEHVI-BO by inte-
grating an EA into the workflow for maximizing acquisition function
α̂NEHVIðxÞ. EAs are nature-inspired algorithms which rely on the idea of
natural selection and evolution to optimize37. The addition of an EA pro-
vides selection pressure to promote higher exploitation towards the PF,
better exploration along the PF and better handle constraints to minimize
sampling wastage, in line with the goals as illustrated in Fig. 1 top left.

The EGBO framework is illustrated in Fig. 1, left. For the work shown
here, we used unified non-dominated sorting genetic algorithm III (U-
NSGA-III)38 as the EA component in the EGBO framework, implemented
through pymoo39. Once the dataset and surrogate models are updated with
newly sampled objective and constraint values, two parallel processes
happen. On one side, q new samples (where q is the defined batch size) are

proposed by optimize_acqf (similar to the original qNEHVI-BO) to give us
the BO candidates.

In parallel, and independently, we perform one iteration of the evo-
lutionprocess inU-NSGA-III to form theEAcandidates. Firstly,wefilter for
non-dominated solutions to undergo selection of parents, whichwe dowith
the is_non_dominatedmethod from BoTorch. In U-NSGA-II the selection
is done using TournamentSelection, which hierarchically selects for parents
that belong todifferentniches/reference vectorfirst, before consideringnon-
dominance ranking and closeness to the reference vector. Given that we
consider the EA as a secondary optimization mechanism to ensure mini-
mumregret/wastagebybiasing exploitation,we take strictlynon-dominated
parents to form candidates, since otherwise it is possible to randomly get a
pair of dominated parents if they are reasonably diverse, getting poorer
exploitation.

Thereafter, the reproduction stepuses a crossover andmutation step to
form the children set. The crossover operator enables for recombination of
genes between parents for children, and the mutation operator introduces
variations in those genesas a formof injecting stochasticity. Inpymoo, this is
codedbyusing a .tellmethod toupdate the currentpopulation, and then .ask
which implements the actual sequence of selection, crossover andmutation.
Afterwards, the two sets of new candidates are then combined to greedily
maximize for α̂NEHVIðxÞ, taking the q best candidates for evaluation.

In the following, we evaluate EGBO’s performance on various
cMOOPs. Firstly, in a real closed-loop experimental self-driving lab (see
Fig. 1) and secondly, on synthetic problems of various complexities. We
successfully demonstrate that EGBO outperforms qNEHVI-BO in terms of
optimization efficiency and constraint handling, showing that selection
pressure helps EGBO to bypass infeasible regions located near the PF, even
in high dimensional decision spaces with very limited feasible space. Finally,
we perform studies to explore how EGBO could be adapted to further
improve constraint handling and comment on its wide applicability in the
physical and chemical sciences.

Results and discussion
For each problem, we first seek a qualitative understanding of the optimi-
zation procedure. For synthetic problems, the optimization is run 10 times
to consider results of stochasticity, and a probability density map is plotted
to visualize the sampling distribution in the objective space, as proposed by
Lowet al.22. This allows us to report themean and confidence intervals of the
different metrics, and additionally allows us to show the distribution of
sampling across all runs. For AgNP however, we report 2 parallel cam-
paigns, one for each optimizer as is reported in other self-driving labs15,16.
We then follow the optimization trajectory in the objective space in real time
and track the location of new sampling points at each iteration.

For amorequantitative evaluationof the optimizationprocess,weused
three performance metrics:
1. Hypervolume (HV) –directly shows the convergence ability and speed

in reaching the PF. For synthetic problems, we consider the log func-
tion against the true PF: logΔHV = log10(HVtrue − HVcurrent).

2. Non-uniformity (NU) – quantifies the PF exploration by measuring
the non-uniformity of the non-dominated solutions along the PF. We
define the non-uniformitymetric NU ¼ σðdÞ

μðdÞ, where d is the distance to
the nearest neighbour, μ(d) is the averaged distance and σ(d) the
distance variance, considering only the non-dominated points.

3. Constraint handling performance – quantifies sampling wastage dur-
ing the optimization through:

a. Infeasibility (%infeas) – the cumulative fraction of infeasible solutions
suggested by the optimizer since the initialization until the considered
iteration.

b. Constraint violation (CV)– the constraint violation is evaluatedat each
iteration by: CVi = ∑j∈batch max(0, ci(xj)), where xj are the batch of
candidates suggested for the considered iteration.

An ideal optimizer would reach highHVvalues in a limited number of
sampling iterations, with a low non-uniformity and a low percentage of
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infeasible samples. Both HV andNUmetrics are equally important, as high
HV values indicate that the extrema of the PF have been sampled while low
NU values show a uniform spread of the sampling points on the PF. The
uniformity of non-dominated solutions is particularly important when a
posteriori knowledge needs to be extracted on the PF18.

Self-driving lab for AgNP experimental campaign
The performance of two optimizers – (1) qNEHVI-BO and (2) EGBO
employing a U-NSGA-III variant - are simultaneously tested on the AgNP
cMOOP (detailed in Self-driving silver nanoparticle synthesis section). For
each iteration, if the flowrates suggested by the optimizers are infeasible
according to constraint equations c1 and c2, they are repaired first before
evaluation (details in Methods section).

Figure 3a, b (top) illustrate the optimization trajectories of
qNEHVI-BO and EGBO in the objective space. We observe a clear
trade-off between y1 and y2 as seen by the concave shape of the PF.
While both optimizers converged to similar maximum objective
values (Supplementary Fig. 1.1), EGBO maintained a superior HV
score throughout, and was able to sample the highest y1 value on the 1

st

iteration (highlighted with the dark purple arrow in Fig. 3b top). The
corresponding shape of the final absorbance spectrum (dark purple
line) is closer to the spectral shape of the target, while the best
qNEHVI-BO sample along y1, obtained only on the 7th iteration, has a
significant λ-shift, resulting in a lower cosine similarity. This explains
the delay in HV improvement observed in Fig. 3c (top) between the
two algorithms.

To elucidate further on the results, Fig. 3a, b (bottom) report the final
absorbance spectra and time evolution of the reaction rate for 3 non-
dominated points. The best y2 candidates (pink arrows and curves) exhibit
widely spread absorbance spectra, suggesting AgNP agglomeration in the
droplets, whereas high y1 candidates have a bell-shaped evolution of reac-
tion rate (purple arrows and curves), potentially caused by an underlying
slow growth process. Thus, we observe a large variety of behaviours among
the non-dominated points.

EGBO exhibits a reduced number of solutions where y1 equals
zero, indicating that the gating function was better handled. However,
when analysing the feasibility of the candidates before repair with

respect to constraint functions c1 and c2, both algorithms show a high
percentage of infeasible samples (see Fig. 2c, bottom), going above the
percentage of infeasible points in the decision space (grey dashed
line). Most notably, EGBO proposed more infeasible solutions
compared to qNEHVI-BO despite a better HV metric and leads to
concentrated sampling in the high y2 region. Consequently, EGBO
finds more non-dominated points and gets a wider PF by picking
more extreme objective values, qNEHVI-BO showcases a more uni-
form sampling on the PF (see the squares distribution in Fig. 3a, b,
top). This is supported by Fig. 3c (middle), where EGBO gets a higher
HV of roughly 14% compared to qNEHVI-BO and qNEHVI-BO a
lower NU of 24% compared to EGBO. This can be explained by how
the post-repair affects the optimization in a problem where the
constraint functions intersects with the PF, which we discuss fur-
ther below.

To summarize, we showcased the implementation of EGBO in a self-
driving lab for theoptimizationofAgNPsynthesis, a real-world cMOOPwith
3 objectives and 2 complex constraints in a 5-dimensional decision space.
Here, a single run of 15 iterations with batch size of 4 was performed for each
optimizer (EGBO and qNEHVI-BO respectively). The obtained results
suggest that EGBO reaches the PF faster than qNEHVI-BO, with an early
sampling of extrema solutions, leading to a wider PF, although the spread of
non-dominated solutions and the percentage of infeasible points were
comparable for both optimizers. However, a single run can be sensitive to the
choice of initial candidates and random noise. To demonstrate EGBO’s
improved performance, statistical analysis onmultiple runs is required across
problems of various complexities. For this purpose, we propose to consider
synthetic problems below.

Synthetic studies
To complement the observations reported from the AgNP synthesis
cMOOP in a more rigorous form, we further investigate in detail the per-
formance of EGBO on various synthetic datasets, starting with MW7 from
the MW test suite19. The complexity of the synthetic problem MW7 is
similar to theAgNP synthesis cMOOPdescribed earlier in terms ofmultiple
objectives paired with complex constraints that intersect the PF. The

Fig. 3 | qNEHVI-BO and EGBO performance on the self-driving AgNP synthesis
platform. Optimization trajectory of (a) qNEHVI-BO and (b) EGBO from initi-
alization (blue) to the 15th iteration (purple). The final HV is highlighted in cyan.
Non-dominated points are represented by squares. For each optimizer, three non-
dominated points are chosen (purple/pink arrows) to highlight the diversity of final

absorbance spectra (coloured solid lines) compared to the target spectrum (grey
dashed line) and time evolution of the reaction rate (coloured solid lines) obtained
over the PF. c Evolution of the performance metrics for qNEHVI-BO (blue) and
EGBO (orange solid) with the number of iterations. The percentage of infeasible
points in the whole decision space is represented as a grey dashed line.
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equations for MW7 are stated below:

min
f 1ðxÞ ¼ g3x1

f 2ðxÞ ¼ g3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf 1=g3Þ2

q
8<
: ð4Þ

st
c1ðxÞ ¼ ð1:2þ 0:4 sin ð4lÞ16Þ2 � f 21 � f 22 ≥ 0

c2ðxÞ ¼ ð1:15þ 0:2 sin ð4lÞ8Þ2 � f 21 � f 22 ≤ 0

(
ð5Þ

g3 ¼ 1þ
Xn
i¼2

2ðxi � ðxi�1 � 0:5Þ2 � 1Þ2

l ¼ arctanðf 2=f 1Þ
In contrast to the AgNP experimental campaign, we allowed infeasible
solutions to be evaluated rather than rejected, and no repair was performed,
since they do not cause the optimization to stop. Thus, the optimizer learns
the objective and constraint values in the infeasible space. This allows us to
showcase the superior ability of EGBO to learn and handle constraints, as
reported by the constraint violations. We evaluate the optimization per-
formance of qNEHVI-BO and EGBO, and include pure U- NSGA-III and
qNParEGO20 for comparison. qNParEGO is an acquisition function which
relies on scalarized vectors to adapt single objective expected improvement
and is implemented in BoTorch alongside qNEHVI-BO utilizing the same
acquisition function optimization and constraint handling mechanisms.

Each computational experiment is run several times to extract statistical
trends.

Figure 4a illustrates the simple case ofMW7at onlyn = 2variableswith
EGBOafter 3 runs consistingof 30 iterations.Thegrey feasible regions in the
decision and objective spaces are both a single continuous region made of
two large islands connected by anarrowbridgewith a disjointedconstrained
ParetoOptimal Set (POS) for input space and PF in output space (shown as
red solid lines). The first constraint c1 defines the upper boundary of the
feasible grey region, while the second constraint c2 is the one that restrains
the PF. Therefore, sampling points in the top right corner of the objective
space corresponds to c1 violations, while sampling points between the
unconstrained PF (blue dashed line) and constrained PF (red solid line) are
linked to c2 violations (Supplementary Fig. 2.1).We see inFig. 4a that EGBO
seems to properly explore the whole constrained POS and PF, despite a few
infeasible samples.

We then performed MW7 optimization at n = 8 variables, following a
similar or higher dimensionality compared to other examples in the
literature16,21,40,41. Figure 4b shows the probability maps obtained for
qNEHVI-BO and EGBO after 10 runs. EGBO is observed to be superior to
qNEHVI-BO in exploiting the constrained PF with a higher probability
densitynear thePFand28% lower logΔHVreported inFig. 4c,meaning that
more solutions are closer to the true PF. However, this was done to the
detriment of the sampling uniformity on the PF, with a 44% higher NU
metric compared to qNEHVI- BO. The probability density shows that the
central part of the PF ismore sampled than the sideswhich can be explained

Fig. 4 | Performance of qNEHVI-BO and EGBO on MW7 problem.
aOptimization trajectory in the decision (left) and objective (right) spaces, obtained
for n = 2 variables after 3 runs of 30 iterations with EGBO. b Probability density map
in the objective space, obtained for n = 8 variables after 10 runs of 48 iterations with
qNEHVI-BO (left) and EGBO (right). The feasible region is highlighted in grey and
the infeasible one in red. Lowprobably density values (blue) indicate sparse sampling
in the objective space, while high values (yellow) highlight regions that are

intensively sampled. The true unconstrained PF is shown in blue, and the true
constrained PF in red. c Evolution of the performance metrics (logΔHV, NU and
constraint violations) with the number of iterations for qNEHVI-BO (blue) and
EGBO (orange). TheHV reference location is indicated by an orange star.We report
the mean value of the metric (solid line) as well as its 95% confidence interval across
10 runs (shaded region).
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by the bias introduced by the HV reference point22, as the PF extrema are
associated with lower HV improvement.

While qNEHVI-BO proposed many infeasible candidates far away
from the PF (Fig. 4b, top right corner), EGBO does not waste as many
samples in that region beyond the HV reference point (orange star) where
HV improvement is null. We noted that EGBO reaches its highest prob-
ability density near the region where the PF is discontinuous, since many
data points are required to learn a disjointed POS. The probability maps
suggest that qNEHVI-BO did not handle constraints well, whereas EGBO
managed to minimize sampling far from the feasible space. This is sup-
ported by the evolution of constraints violation over the iterations (Fig. 4c,
bottom). EGBO c1 violation converges towards zero within the first few
evaluations.

Indeed, as selection pressure preserves and transfers parent fea-
sibility to the children via crossover, EGBO candidates are more likely
to evolve within the feasible region towards the PF. On the contrary,
EGBO c2 violation values consistently remain above zero. This can be
explained by the perturbation introduced by mutation when pro-
posing new candidates from parents that already are near the con-
strained PF. Since the c2 violation values are two orders of magnitude
smaller than the c1 violation values (Supplementary Fig. 2.1), EA
children near the PF easily cross the c2 boundary. In contrast, pure
qNEHVI relies solely on the constraint values predicted by the GP
surrogate model. This presents a similar scenario to our observations
on the AgNP experimental campaign, where it was noted that EGBO
had a worse fraction of infeasible solutions despite a better HVmetric,
since qNEHVI-BO did not evaluate as many solutions near the POS.
This phenomenon of sampling bias is also known as Simpson’s
Paradox42.

Figure 4c also reports the optimization performance of qNPar-
EGO and pureU-NSGA-III.We see that both qNEHVI-BO and EGBO
clearly outperform qNParEGO and U-NSGA-III in terms of HV
improvement and sampling wastage. The sampling non-uniformity of
qNParEGO is the lowest and, unsurprisingly, that of U-NSGA-III the
highest since it prioritizes diversity of the parents first before non-
dominance. Interestingly, qNEHVI-BO has a NU metric close to
qNParEGO and EGBO lies between qNEHVI-BO and U-NSGA-III.
Overall, EGBO balances a good spread of the solutions across the PF
while maintaining superior HV improvement.

Finally, we selected a few other synthetic problems from the MW test
suite19 and ZDT test suites43 which provide a range of scalable 2 and
3-objective constrained problems. They are representative of the variety of
complex problems that can be found in the real world.We report our results
for these cMOOPs in Supplementary Discussion subsection 2.2, where we
demonstrate that EGBO outperforms qNEHVI-BO in terms of HV across
all the selected problems.

We therefore elucidate that having selection pressure in the optimi-
zation process, is not only superior in reaching the PF, but also more
effective for handling objective constraints. In computing α̂NEHVI , constraint
handling is already integrated by predicting constraint values from the
surrogate model and weighting the acquisition value accordingly as
explained by Daulton et al.20. However, the TournamentSelection in U-
NSGA-III favours solutions far from eachother, encouraging exploration of
underexplored regions for enhanced PF coverage, while also inducing a
strong sampling bias exploiting feasible regions of the decision space, as
feasible solutions are always selected over infeasible ones.

Notably, this acts as a secondary means of constraint handling, which
means that the candidates are more likely to be feasible even before being
evaluated by the surrogate model.

In practice, this could be useful in real-world experimentation sce-
narios, where infeasible solutions cannot be evaluated at all. Common
implementations of constraint handling often involve training a separate
model to classify feasibility, which could present a challenge especially
during earlier iterations with limited data, and also in the case where the
constraint boundary is very complex.

Handling input and output constraints
In experimental campaigns, constraints can represent physical or engi-
neering limitations that cannot be violated and thus cannot be evaluated.
This is very different from computational problems in which infeasible
solutions can be evaluated44. We define two types of constraints: output
constraints which can only be evaluated alongside the objective functions
and input constraints which can be computed cheaply before any objective
evaluation. This is different from previous literature which categorizes
feasibility into defined constraints (being possible to compute) and unde-
fined constraints (when computing the constraint crashes the
simulation)45,46. Input constraints are defined in the decision space. They are
usually defined by domain expertise to pre-emptively minimize sample
wastage47, whereas output constraints present a more challenging optimi-
zation scenario since the goal of efficiently achieving multiple objectives
needs to be balanced with enough sampling of the feasibility boundaries to
learn the constraints. This was previously demonstrated byKhatamsaz et al.
for alloy design40,48 as well as by Cao et al. for liquid formulations16, where in
all cases an appropriate machine learning model needs to be trained a
posteriori to classify whether samples are feasible or not. Based on the good
performance of EGBO on both the self-driving AgNP platform and the
synthetic problems, we now explore how to adapt the algorithmic frame-
work to reduce sampling wastage.

While theMW7 synthetic cMOOP is subject to output constraints, the
two constraints of the AgNP cMOOP are input constraints, as they only
depend on the flowrate input parameters. However, we chose to handle
these as if they were output constraints, as the PF was not expected to be
strongly restricted by them. Candidates from the entire decision space,
including infeasible points, were considered during the optimization pro-
cess, relying on GP constraint learning and/or the EA selection operator to
avoid suggesting infeasible candidates. Infeasible candidates suggested by
the optimizer were then repaired afterwards (post-repair).

This method is hence sensitive to the definition of the repair operator
equations,whichprojects the infeasible solutions into the feasible space. The
equations defining the constraints for the AgNP synthesis project most of
the infeasible points along theQseed direction onto the constraint boundary
(Supplementary Fig. 1.3). Since part of the constraint boundary intersects
the POS, both algorithms benefit from the post-repair process to suggest
more points close to the PF. However, this comes with a bias, as part of the
unconstrained POS seems to be located at high QAA. As most of the high
QAA infeasible points project towards a small region of the decision space,
this leads to the oversampling detected at high y2 (see Fig. 3a, b top).

To avoid biased sampling linked to the arbitrary choice of the repair
operator, we propose to use the repair operator on the discrete candidate set
before optimization. This repair method is referred to as the pre-repair
process. For qNEHVI-BO, instead of α̂NEHVI optimization using optimi-
ze_acqf, a Sobol candidate set is first repaired, and then ranked by discretely
evaluating α̂NEHVI values, with the best q candidates are suggested for
evaluation.

Figure 5a illustrates the difference between post- and pre-repair
methods on a simple 2D case scenario with a single optimization direction
(red arrow). We see that the post-repair process favours infeasible samples
that are optimizing the objective, even though these points become sub-
optimal after the repairing operation. Therefore, even when the repair
function redistributes the infeasible points uniformly on the constraint
boundary, like in this simple example, post-repair might lead to a less
optimal selection of the candidates.

We performed further simulations to compare pre-repair to post-
repair for both qNEHVI-BO and EGBO (in this case the combined can-
didate set is repaired before ranking) on the AgNP synthesis problem. We
trained a GP model on all data obtained in the experimental campaign
(Supplementary Fig. 1.4) to provide a baseline ground truth. A total of 10
runs was performed over 30 iterations with a batch size of 4 for both repair
types. Additionally, a purely random sampling (also Sobol in this case) was
also performed as a baseline comparison to understand the distribution of
feasible samples.
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Sample position for a single run is shown in the decision and objective
spaces (Fig. 5b). We specifically plotted the decision space with QAgNO3,
Qseed andQAA, as these are theflowrates affected by the repair operator. The
sampling distribution of the non-dominated points (black square) in the
objective space indicates that EGBO with pre-repair achieves a good cov-
erage of the PF, without any oversampling at high y2. Part of these non-
dominated points project into a line in the decision space, corresponding to
the constraint boundary c2 (Supplementary Fig. 1.3). But the other non-
dominated points are still sampled within the feasible space. Interestingly,
we also note that most of the non-dominated points are located on the box
constraints, suggesting that better optimization results could have been
achieved by increasing the maximal flowrate values.

Figure 5c reports the performancemetrics of qNEHVI-BO and EGBO
with post-repair (dash line) and pre-repair (solid line), compared to a pure
Sobol sampling (grey line).We see a decrease of logΔHVwith the pre-repair
process for both qNEHVI-BO and EGBO, meaning that the algorithms get
closer to the true PF. Furthermore, theNUmetric for the pre-repair process
remains as low as pure Sobol sampling, suggesting a relatively uniform
sampling of the PF, as already suggested by Fig. 5b.

Finally, Fig. 5c (bottom) shows that optimization with post-repair
suggested more infeasible points than Sobol sampling. The performance of
such an approach strongly depends on the choice of the repair function,
especially in the case of a constrained PF. If the repair operator projects
infeasible points non-uniformly on the constraint boundary, or if it projects
multiple infeasible points on the same place of the constraint boundary, as
here in the case ofAgNPsynthesis, then the optimizationwill be biased.This
bias can have dramatic effect if the POS is located at the constraint
boundary, since most of the samples will be used to only explore a narrow
region of the PF. Thus, post-repair requires a careful choice of the repair
functionaswell as a priori knowledgeonhow the constraints restrain thePF.
In contrast, pre-repair algorithms do not suggest any infeasible points. The
only infeasible points will come from the initialization step. Therefore, pre-
repair algorithms are ideal for handling input constraints on MAPs.

Further discussion
Overall, our pre-repair EGBO approach effectively combines the
ability to deal with cMOOPs. The concept of integrating a gradient-
based approach and EAs has been previously explored by Hickman
et al.41. This constraint handling method is close to the approach
reported in Handling input and output constraints section, as the
objectives are only evaluated in the feasible region. However, their
approach uses the constraint as a stop criterion for the gradient-based
approach. As for the EA, infeasible children are projected onto the
feasible boundary using binary search. This post-repair approach is
more reliable than the one using a repair operator, as the binary search
simply looks for the best feasible point located between the feasible
parent and the infeasible offspring without bias. Although these two
methods can converge towards the constrained PF, EGBO with pre-
repair demonstrates a more robust approach that can cater to output
constraints, as discussed above. Furthermore, Hickman’s approach is
limited to input constraints, where suggested infeasible samples are
rejected, while EGBO is also designed to handle output constraints.

To showcase the generality of our results, we performed ablation stu-
dies where the EA sampling in EGBO is replaced with Multi-Objective
Evolutionary Algorithm based on Decomposition with Improved Epsilon
(MOEA/D-IEpsilon)49, and the BoTorch optimization method optimi-
ze_acqf with a discrete Sobol sampling. We reported the results of these
variants in Supplementary Discussion subsection 2.2, where we observed
comparable performance using either U-NSGA-III or MOEA/D-IEpsilon
in EGBO framework across multiple synthetic problems. We therefore
confirm that the good performance obtained with EGBO is due to an
intuitive balance of exploration from optimize_acqf/Sobol sampling and
exploitation from EA sampling, where sample wastage and constraints are
handled well. In essence, we can consider EGBO to be a no-regret imple-
mentation of BO, since there is an elitist algorithm (the EA component)
which guarantees convergence while also maintaining sampling which are
near-optimal (via considering only non-dominated parents).

Fig. 5 | Handling of input constraints using pre- and post-repair. a Example of a
2D optimization towards a single optimum (blue star). In post-repair mode, sto-
chastic sample points (black disks) are all considered during the optimization
process, best candidates (red disks) are then repaired (gray line) to the nearest
feasible point. In pre-repair mode, stochastic samples are first repaired (gray line) by
projection to the feasible space, and the best repaired candidates (red disks) are

selected. b Location of dominated (grey disks) and non-dominated (black squares)
points in the decision and objective space after a single run of EGBOwith pre-repair.
c Performance metrics for pure qNEHVI-BO (blue) and EGBO (orange), with
dotted lines for post-repair and solid lines for pre-repair demonstrating the super-
iority of EGBO. We also include Sobol sampling (grey) as a baseline comparison.
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Additionally, we note that our implementation of the AgNP self-
driving lab used synchronous batch samplingwhere all samples in the batch
must be evaluated at each iteration of optimization. Batch sampling is
imperative for efficient optimization especially for a complex problem
landscape. In our case, the experimental platform is technically q= 1, butwe
evaluate all 8 samples (4 from each optimizer) sequentially as a batch since
the experimental run time for 8 samples is reasonable with a consistent time
window (described in Fig. 2), where larger batch sizes would result in very
long run times (leading to water wastage and need to refill the syringes) as
well as to align the timing for the Juptyernotebook running theoptimization
code. A potential avenue for future work would be to extend EGBO to
handle asynchronous batching50,51 to better handle this.

In conclusion, we have presented an efficient and general imple-
mentation of Evolution-Guided Bayesian optimization (EGBO) for multi-
ple objectiveswith constraints – a problem that is common inmaterials and
chemical sciences and engineering. We built a fully automated self-driving
lab for silver nanoparticle synthesis and solved the challenge of high-quality
synthesis with high yield and low seed particle usage using the EGBO
approach. On both experimental and synthetic problems, we demonstrated
the improved performance of EGBO based on 3 quantifiable metrics: (1)
hypervolume, (2) non-uniformity and (3) sampling wastage. We also
visualized the optimization results in terms of sampling distribution via
probability density. Our optimization results on the self-driving lab high-
lighted the importance to properly integrate the repair operator into the
overall optimization workflow when handling input constraints. We pro-
posed a strategy to pre-repair these constraints.

Further simulations on the silver nanoparticle optimization problem
predicted a significant increase in EGBO performance compared to the
post-repair approach. Our approach allows handling of multiple objectives
with explicit constraints,whether theyare inputoroutput, tomap thePareto
Front effectively with limited sampling wastage – especially useful for
industry-relevant problems where experiment time and chemical reactants
are limited.

Methods
Experimental platform
Themicrofluidic platform is a customized droplet generator connected to a
1.5m long serpentine reaction tube (Fig. 2a). The droplet generator (Fig. 2b)
is 3D-printed by stereolithography with Somos®Waterclear Ultra material
and coated with 10H ceramic coating to ensure stable droplet generation.
Droplets are generated at the T-junction using silicone oil (10 cSt,
100 μLmin−1) as continuous phase and six coflowing aqueous solutions as
dispersed phase. Small indentations are designed around the T-junction to
prevent possible AgNP deposition in the T-junction inlet. After exiting the
droplet generator, droplets continue flowing in the reaction tube (PFA,
1mm ID), allowing the mixing of the reactants.

Flushingof all aqueous inlets is performed at the start of every sampling
condition to prevent cross-contamination between conditions. Allflowrates
are then set to the values proposed by the algorithm and kept constant to
generate droplets with the requested chemical composition. Due to AgNP
size and shape evolution during the reaction, droplets change colour as they
flow in the reactor.Once the reactor is full of droplets, a hyperspectral image
of the reaction tube is taken (Fig. 2c). Data analysis is then performed to
extract the absorbance spectra of each droplet and combine them into an
absorbance map containing the temporal evolution of the absorbance
spectra with the residence time (Fig. 1 bottom). The objectives and con-
straints are then derived from this absorbance map as well as from the
flowrate values. Each sampled condition takes 10min30s to go through the
whole experimental workflow (Fig. 2d).

Optimization algorithm
Below, we describe the pseudo-code for implementing the optimization
loop in EGBO, with inputs: training data x, problem f(x), reference point
ref_pt, surrogate model GP, batch size q

1: while i < maximum iterations:

2: train GP on f(x)
3: acq_func = α̂NEHVIðGP; ref ptÞ
4: χBO = optimize_acqf(acq_func, q)
5: non_dom solutions = is_not_dominated(x)
4: EA. tell(non_dom solutions)
6: χEA = EA. ask(pop_size, reference_vector)
6: χpool = χBO ∪ χEA
7: χnew = sortmaxðχpool; α̂NEHVIðχpoolÞ; qÞ
10: Xi+1 = f(χnew)
11: i+ = 1

For both EGBO and qNEHVI-BO, a list of SingleTaskGP (using
ModelListGP) is used for training all objectives and constraints, taking a
constant mean μ(x) = C and a Matern covariance kernel kðx; x0Þ ¼
21�v

ΓðvÞ ð
ffiffiffiffiffi
2v

p
dÞvKvð

ffiffiffiffiffi
2v

p
dÞ withν = 2.5. We applied the same optimization

hyperparameters for defining α̂NEHVIðxÞ with num_samples = 128 for MC
approximation, and optimization via optimize_acqf is performed with
initial heuristic of raw_samples = 256.

The U-NSGA-III component is defined with pop_size = 256 as
number of children proposed, and we set q reference vectors for Tourna-
mentSelection using s-energy distribution proposed in pymoo for good
spacing.We take the default crossover andmutation operators with default
hyperparameters, usingSimulatedBinaryCrossoverwith eta=30andprob=
1.0, and PolynomialMutationwith eta = 20. The specific library versions are
as follows: GPyTorch 1.10, BoTorch 0.8.5, and pymoo 0.6.0.

Experimental campaign
For the optimizers’ initialization, Sobol sampling is chosen as a space-filling
design to provide good coverage of the decision space. Both algorithms start
with the same 2 * (5 + 1) = 12 initial candidates, implemented using
draw_sobol_samples in BoTorch. At each new iteration, each optimizer
suggests a batch of q= 4 new candidates. The reference point for computing
qNEHVI acquisition function α̂NEHVI in both algorithms is set at [0,0,0]. At
each new iteration, both optimizers suggest a batch of 4 new candidates.

The 8 (4 from each optimizer) post-repaired flowrate conditions
proposed by both algorithms are sent to the HTE platform for evaluation.
Experimental accuracy is ensured by performing a control condition at the
start of the iteration to ensure the experimental reproducibility over pre-
vious iterations. To close the loop, the Jupyter notebook which runs the
optimizationwill wait for the objectives and constraints tables to be updated
beforeproceedingwith thenext iteration.The entireprocess is automatedby
setting appropriate delay times in LabVIEW (syringe pump control and
hyperspectral imaging) and Python (data retrieval and optimization). The
experimental campaign was stopped after 15 iterations due to time and
resource considerations, giving a total of 72 samples per optimizer and
132 samples across the entire experimental campaign.

Repair operator
The feasibility of each candidate is first evaluated on the constraint equa-
tions, and the suggestedflowrates repaired if infeasible, following these post-
repair equations:

if c1 > 0 : Qrepaired
AA ¼ min

Qsuggested
AgNO3

0:3
; Qsuggested

AA

 !
ð6Þ

if c2 > 0 : Qrepaired
seed ¼ max 2�

Qsuggested
AgNO3

Qrepaired
AA

 !
:Qsuggested

AgNO3
; Qsuggested

seed

 !
ð7Þ

Synthetic studies
For the MW7 problem, we also initialized with a Sobol sampling of 2 *
(n + 1) points, where n is the number of dimensions, with a batch size of
q = 4. The reference point for HV computation is set to [1.2, 1.2].
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Data availability
The source code for our work, as well data generated and analyzed during
the current study can be found at Kedar-Materials-by-Design-Lab/
Constrained-Multi-Objective-Optimization-for-Materials-Discovery
(github.com). A supplementary document is also available.

Code availability
The source code for our work, as well data generated and analyzed during
the current study can be found at Kedar-Materials-by-Design-Lab/
Constrained-Multi-Objective-Optimization-for-Materials-Discovery
(github.com). A supplementary document is also available.
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