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Towards atom-level understanding of
metal oxide catalysts for the oxygen
evolution reaction with machine learning
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Green hydrogen production is crucial for a sustainable future, but current catalysts for the oxygen
evolution reaction (OER) suffer from slow kinetics, despite many efforts to produce optimal designs,
particularly through the calculation of descriptors for activity. In this study, we develop a dataset of
density functional theory calculations of bulk and surface perovskite oxides, and adsorption energies
of OER intermediates, which includes compositions up to quaternary and facets up to (555). We
demonstrate that per-site properties of perovskite oxides such as Bader charge or band center can be
tuned through element substitution and faceting, and develop a machine learning model that
accurately predicts these properties directly from the local chemical environment. We leverage these
per-site properties to identify promising perovskites with high theoretical OER activity. The identified
design principles and promising materials provide a roadmap for closing the gap between current
artificial catalysts and biological enzymes such as photosystem II.

Atomic-level design of highly active catalysts that rival the efficiency of
natural enzymes is one of the ultimate goals of chemistry and materials
science.Whereas enzymeshavebeenfine-tuned residue-by-residue through
biological evolution for millions of years, human-designed homo- and
hetero-geneous catalysts to date remain far from optimal. For example, for
the oxygen evolution reaction (OER), oneof themost important reactions in
both photosynthesis and renewable chemical and fuel production, the
turnover frequency in photosystem II is at least two or three orders of
magnitude higher than state-of-the-art heterogeneous catalysts1–3. More-
over, enzymatic catalysis demonstrates the significance of site-dependent
reactivity, as reactions occur within highly specialized pockets and tailored
chemical environments3,4.

Efforts to design heterogeneous catalysts with activities rivaling
enzymes will require breaking scaling relations, which dictate that
binding energies of reaction intermediates are linearly dependent and
thus limit the minimum theoretical overpotential to ~0.37 V5,6. Of the
various strategies for breaking scaling, facet engineering7 and element
substitution8 remain some of the simplest and most widely used.

Multicomponent metal oxide surfaces, which take advantage of both of
these strategies, thus offer an opportunity to move beyond these lim-
itations, due to their vast design space comprising billions of possible
local atomic structures and active site environments. However,
exploration of such a vast chemical space to design optimal artificial
active sites will require atom-by-atom design beyond current approaches
using trial-and-error coupled with human intuition9.

One effective strategy to go beyond Edisonian design of complex oxide
catalysts is to use a descriptor-centered approach, which captures the
quantitative relationship between structure, energetics, and function9.
Descriptors are especially powerful as they can be calculated in silico with
low cost, such thatmaterials with desired properties can be predicted before
they are even synthesized. For instance, catalytic activity has been shown to
correlate with d-band center for metals10 and oxygen 2p-band center for
metal oxides11,12. Moreover, eg orbital filling

13, spin state14,15, and magnetic
ordering14 have also been shown to have a profound effect on catalytic
activity.While the use of such descriptors in catalyst designs has already led
to successful catalyst discoveries11,16–18, most of these previous efforts have
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mainly relied on bulk descriptors, which assumes that surface electronic
structure is correlated with bulk electronic structure characteristics19.

Despite their effectiveness, average bulk descriptors alone cannot
capture local effects from substitution or surface effects, limiting the spaceof
atom-by-atom design for surface reactivity20. Such limitation is particularly
severe for complex multimetallic oxide surfaces21 due to the diverse and
near-continuousdistributions of surface sites.Moreover, it has been recently
shown that for RuO2, a state-of-the-art catalyst for the oxygen evolution
reaction (OER), the catalytic activity is highly dependent on the local
environment of coordinatively unsaturated surface oxygen7,22. Specifically,
CUS-oxygen as the active sites on (100) is shown to have an order of
magnitude higher specific OER activity that of (110)7. Design of hetero-
geneous catalysts with activity rivaling that of enzymes thus requires the
understanding and efficient prediction of site-specific activity.

Budding efforts to go beyond bulk descriptors and to link local, site-
dependent descriptors to catalytic activity include the report that the site-
dependent 2p-band center of adsorbed oxygen correlates strongly with
OER-intermediate binding energies23,24. Nevertheless, this proposed
descriptor requires the same DFT calculation as calculating the binding
energy itself so it does not result in a significant computational advantage.
Site-dependent structural descriptors, such as generalized coordination
number, are cheaper to calculate since they only require the pristine slab and
have been shown to correlate with intermediate binding energies25,26. While
coordination number is able to capture local structure-property trends, it
alone cannot be generalized across different local chemistry and coordi-
nation. Recent efforts to overcome these limitations have included encoding
elemental as well as coordination information27,28, often relying on hand-
crafted features that are difficult to generalize and extend to new materials
classes29,30. Machine learning approaches have revolutionized computa-
tional materials science31,32 given their ability to learn very complex non-
linear functions, efficiently process structural information without hand-
tuning33,34, and combine this information with other data fidelities35 or
physics-based priors, typically through graph-convolutional neural net-
works. Some recent works have leveraged these tools to predict OER-
intermediate binding energies directly from structure36, circumventing the

need for hand-crafted features, but the models to date have not taken
advantage of site-dependent descriptors beyond local structure37.

In this work, we develop a graph-based neural network model that
accurately learns site-dependent descriptors from structure and leverages
these descriptors to predict OER intermediate binding energies auto-
matically from structure, without the need for hand-crafted features. We
consider density functional theory (DFT)-computed site-specific descrip-
tors based on local electronic structure (Bader charges38,39, site-projected O
2p-band23,24, and metal d-band centers10), local magnetic moments40, and
local phonon band centers41. By combining in-house data with previous
datasets12,36,42–44, we develop and curate, to the best of our knowledge, the
largest andmost diverse dataset of OER energetics on perovskite surfaces to
date. We show that per-site descriptors across this dataset vary widely with
composition and surface coordination, and can be predicted purely from
structure. We demonstrate per-site properties that are both independent of
one another and linearly correlated toOER binding energies, such that they
can be leveraged independently to tune OER energetics. We compare the
OER energetics across this dataset with previous efforts on metals45, rutile
RuO2

7,22 and IrO2
46, metal hydroxide-organic frameworks (MHOFs)18,

single atom catalysts47, and enzymes48, and show that by tuning per-site
properties of the active site and adsorbed species it is theoretically possible to
extend beyond the scaling relations and bridge the gap between current
state-of-the-art heterogeneous catalysts and enzymes such as photosystem
II. Finally, we list several of themost promisingmaterials identified through
this work.

Results and discussion
The local environment around the active site strongly influences the
materials properties of that site. For example, the Mn atoms in bulk
CaMnO3 (Fig. 1a), on the CaMnO3(111) surface (Fig. 1b), and inside
photosystem II (PSII) have different local environments and thus different
d-band centers (Fig. 1c). To study the effects of the local environment on the
properties of the active site, we curate, to the best of our knowledge, the
largest dataset ofmulticomponent perovskite oxides by combining in-house
DFT calculations with results compiled from the literature12,36,42–44. This

Fig. 1 | Per-site properties. Structures for (a) bulk CaMnO3, b CaMnO3 (111)
surface, and (c) PSII with Mn atoms colored by d-band center (eV vs. Fermi level)
and the active site circled with a black dashed line. The structure for PSII is taken
from Lohmiller et al., and a single self consistent field cycle is done to extract band
centers69. d–g Site-level material descriptors relevant for atom-by-atom catalyst
designs, including O 2p-band center, M d-band center, atomic vibration frequency,

Bader charge, and magnetic moment. Schematic of the model architecture for (h)
predicting and leveraging per-site properties to (i) ultimately learn binding energies.
The explicit mapping between local environment and site property is made evident
by following oxygen atom i and ii, which have different local environments leading to
different convolved representations and site properties.
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dataset includes over 20,000 substituted bulk perovksite oxides up to qua-
ternary, and over 10,000 surfaces cut along facets up to and including (555).
The dataset additionally includes over 10,000 O*, OH* and OOH* adsorp-
tion energies. For all bulk and surface structures we calculate per-site
properties relevant to OER, including the oxygen 2p-band center andmetal
d-band center (Fig. 1d), and magnetic moment (Fig. 1g). For surface
structures we additionally calculate Bader charge (Fig. 1f). Atomic vibration
frequencies (Fig. 1e), not calculated for our dataset but available from pre-
vious works41, are also considered (Fig. 1b). Using this dataset, we develop
and train per-site graph-convolutional neural network machine learning
models that are able to learn per-site properties (see Fig. 1h) and ultimately
OER intermediate binding energies (see Fig. 1i) directly and automatically
from atomic structure without the need for hand-crafted features.

Learning compositional effects on per-site properties in bulk
perovskites
Weshow that by automatically encoding the local environment aroundeach
site, graph-based per-site models are able to capture the effect of chemical
environment on per-site properties with high accuracy and without
requiring hand-tuned features. We train and hyper-parameter tune several
different site-aware deep learning models (see more details in Supplemen-
tary Information) on the bulk perovskites in our dataset to predict a number
of DFT-derived atomic properties (metal d-band center, O 2p-band center,
and magnetic moment), which are functions of the geometry and compo-
sition of the local chemical environment of each atom.We additionally train
thesemodels on external datasets for predicting Bader charge44 and phonon
band center41, which are described in more detail in the Methods section.
Performance is reported as Pearson’s correlation coefficient on a held-out
test-set for these per-site properties in Table 1, and parity plots for each
property are reported in Supplementary Fig. 1. The per-site model based on
Crystal Graph Convolutional Neural Network (CGCNN)33 and Polarizable
Atom Interaction Neural Network (PAINN)49 architectures have very
similar performance, and out-perform per-site CrabNET50 which is based
on stoichiometry alone without encoding local environments. The best
results are shown in bold in Table 1, and are 0.952, 0.969, 0.950, 0.962 and
0.997 for metal d-band center, oxygen 2p-band center, magnetic moment,
phonon band center, and Bader charge, respectively. While for magnetic
moment, Bader charge and phonon band center, element type alone maps
well to the property with correlation coefficients of 0.904, 0.957, and 0.924,
respectively, the site-projected metal d-band and oxygen 2p-band centers
are highly dependent on the environment around the site as these properties
are a result of orbital overlaps with neighboring atoms. Moreover, we
consider predictions from the bond-valence method51, where per-site
properties are estimated fromneighbor distances (Pi=

P
jexpð

r0�rij
b Þ, having

rij as the bond distance between site i and neighbor j, r0 as the fit for a given
cation-anion pair, and b as an empirical constant typically set to 0.37 Å51).
Bond-valence method parameters were fit for each property using our
dataset, and an example of this fitting for predicting oxygen 2p-band center
and oxygen Bader charge is shown for O-Ti, O-Mn, O-Fe and O-Co bonds
in Supplementary Fig. 2. Fitted bond-valence parameters are reported in
Supplementary Table 1. It is shown that R0 for predicting oxygen Bader
chargedecreases from2.12 to2.08, to 2.05, to2.02 forO-Ti,O-Mn,O-Fe and

O-Co bonds, respectively, suggesting that oxygen 2p-band center is
increasingly pushed down by oxygen-neighboring elements from left to
right across thed-band.Thebondvalencemethodoftenoutperforms simple
element averages by accounting for neighboring atom types and distances.
By encoding for several shells of neighbors through multiple graph con-
volutions, the per-site model is able to significantly outperform both ele-
ment averages and the bond-valence method without the need for hand-
tuned parameters (Table 1).

We compare the calculated and predicted per-site materials prop-
erties across a held-out test set on an element-wise basis to highlight the
ability of the per-sitemodel to explicitly learn physical principles dictated
by local environments. Calculated and predicted magnetic moments
(Fig. 2a), Bader charges (Fig. 2b), atomic vibration frequencies (Fig. 2c),
metal d-band centers (Fig. 2d), and oxygen 2p-band centers (Fig. 2e) on a
held-out test set are shown as a function of element for a sample of
elements (V through Ni for metal d-band center, magnetic moment, and
Bader charge; H through O for atomic vibration frequency; and O for
oxygen 2p-band center). The models are shown to accurately capture
both overall periodic trends (predictable from basic physical principles)
as well as element-wise distributions (non-trivial effects of local envir-
onment). For example, the magnetic moments follow Hund’s rules52: the
number of unpaired electrons increases fromV toMn as separate d states
are filled, then decreases from Mn to Ni as electrons co-fill d-states and
spin is canceled (Fig. 2a). The model recreates that elements become
more negatively charged going fromV toNi as electronegativity increases
going from left to right along the periodic table, as reflected by decreasing
Bader charge (Fig. 2b). Per-site atomic vibration frequency is shown to
generally decay for the first 10 elements in the periodic table as mass of
the element increases (Fig. 2c). Periodic trends in d-band center are also
captured: as the number of electrons in the d-band increases across the
periodic table, the d-band width must widen to maintain the Fermi level
thus pushing the d-band center more negative5 (Fig. 2d).

The per-site model accurately captures per-element distributions in
material properties, which is remarkable as these distributions represent
complex effects of substitution and local environment not obvious from
basic physical principles alone. Additionally, the nodes in the calculated and
predicted magnetic moment (Fig. 2a) and Bader charge (Fig. 2b) for each
element represent different oxidation and spin states which are typically
difficult to predict. The element-wise distributions in atomic vibration
frequency (Fig. 2c), metal d-band center (Fig. 2d), and oxygen 2p-band
center (Fig. 2e) are even less obvious, as these spreads do not include nodes
corresponding to discrete oxidation states. For example, themodel captures
that oxygen atoms in Ca0.5La0.5MnO3 have a spread of 2p-band centers
between –2.85 and –2.50 eV vs. Fermi (Fig. 2e). Indeed, this range is an
interpolation of the oxygen 2p-band centers of –1.67 and –3.87 eVvs. Fermi
in CaMnO3 and LaMnO3, respectively. Notably, the 2p-band center is
higher for oxygen atoms with more Ca neighbors and lower for oxygen
atoms with more La neighbors.

Despite the non-obvious nature of the site-properties discussed here,
the presented models capture different local environments, match the cal-
culated data with high accuracy, and are a powerful tool for tuning site
properties through substitution effects.

Table 1 | Model and benchmark test performance in terms of Pearson’s correlation coefficients

per-site property per-site CGCNN per-site PAINN per-site CrabNET bond-valence method element average in dataset

Metal d-band center 0.952 0.939 0.827 0.722 0.515

O 2p-band center 0.969 0.962 0.836 0.588 --

magnetic moment 0.950 0.947 0.907 -- 0.874

phonon band center 0.940 0.962 0.983 0.934 0.918

Bader charge 0.997 0.994 0.995 0.821 0.946

For magnetic moment, only magnetic atoms (with moments greater than 0.5 μB) are considered and included in the test set statistics. The best performing model is highlighted in bold for each property. A
correlation coefficient for O 2p-bandcenter element averagewasnot computed as it is not defined for comparison against a single value. The bond-valencemethod formagneticmoment is not reported, as
the parameters were unable to be fit without high error.
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Learning facet and composition dependence of surface site
properties
Moving beyond bulk towards a more realistic representation of catalytic
sites, we use the surfaces in our dataset to show the strong influence of
surface coordination and composition on per-site properties of surface
atoms (adsorbed oxygens and active sites). The results for learning metal
d-band center and magnetic moment of the active sites, oxygen 2p-band
center of adsorbed oxygens, and Bader charge of the active sites and
adsorbed oxygens are summarized in terms of Pearson’s correlation coef-
ficient in Table 2, and parity plots for each property are also reported in
Supplementary Fig. 3. The per-site graph neural network models are pre-
dictive of these properties with a correlation coefficient of 0.980, 0.955,
0.969, and 0.995, respectively, and are thus able to capture surface effects.
The per-site CGCNNandPAINNmodels have similarly high performance,
analogously to that presented for bulk atoms in Table 1. It is shown that for

surfaceatoms thebondvalencemethod loses someof its predictability, likely
due to lack of accounting for undercoordination. We additionally compare
the per-site model results to a baseline of the element average in the cor-
respondingbulk structure,which is able to capture somecomposition effects
but cannot account for local environment effects such as facet dependence
(Table 2). That the per-site model significantly outperforms this reasonable
baseline shows that the model has successfully encoded local environment
of surface atoms specifically.

Wecompare the calculated andpredictedper-site surfacepropertieson
an element-wise basis across a held-out test set of benchmark surfaces to
further highlight the ability of the per-site model to explicitly learn com-
position and facet dependence. The predicted and calculated 2p-band
centers of surface oxygens in LaBO3 is compared as a function of B going
across the 3d band of the periodic table from V to Ni, where the model has
not been trained on any of these LaBO3 materials (Fig. 3a). Spreads in each

Table 2 | Model and benchmark test performance on surface atoms only in terms of Pearson’s correlation coefficient

surface per-site property per-site CGCNN per-site PAINN bond-valence method element average in corresponding bulk

Metal d-band center 0.980 0.975 0.512 0.670 ± 0.025

O 2p-band center 0.955 0.924 ± 0.007 0.493 0.582

magnetic moment 0.954 0.969 -- 0.894

Bader charge 0.995 ± 0.000 0.992 0.938 --

Errors are calculated by running 3 experimentswith randomweight initializations and test/train splits. The best performingmodel is highlighted in bold for each property. Element average in corresponding
bulk was not available for Bader charges. The bond-valence method for predicting magnetic moment failed due to lack of sufficient fitting.

Fig. 2 | Compositional effects of per-site properties. Predicted versus calculated
per-site (a) magnetic moment, b Bader charge, c atomic vibration frequency and (d)
metal d-band center as a function of element type going across the 3d band of the

periodic table. e Predicted versus calculated oxygen 2p-band center showing several
example compositions.
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of the violin plots are due solely to different surface coordinations in the
dataset, which range fromMO3 toMO6. Interestingly, the oxygen 2p-band
center of surface oxygens varies significantly with facet, evenmore than the
variation due to changing the B site. This wide spread is due to the sig-
nificantly different coordination environments of facets that are close-
packed versus not. Generally, the oxygen 2p-band centers of adsorbed
oxygens become less negative as the active site is more highly coordinated
(i.e. oxygens within MO6 have higher 2p-band centers than those inMO4).
These spreads,which cannotbe captured frombulkbandcenter calculations
(shown as a single point in white for each composition), provide compelling
evidence for the need to account for surface coordination. In contrast to
surface oxygen 2p-band centers, surface metal d-band centers are shown to
have a much more limited dependence on facet and surface atom coordi-
nation, and are more strongly a function of composition (Supplementary
Fig. 4). The model is able to capture both compositional effects (2p-band
centers of surface-oxygen generally become less negative as B goes from left
to right across the periodic table) as well as effects of faceting (calculated
versus predicted distributions visibly match).

We highlight a few example surfaces in the test set, namely the (110),
(100), and (111) facets of LaMnO3 (orMO4,MO5, andMO6 environments,
respectively), to show that the 2p-band centers of adsorbed oxygens are
most negative for thehigh coordination environment of (111)oxygen atoms
(MO6), and least negative for the lower coordination environment of (110)
oxygenatoms (MO4), and that theper-sitemodel is able to capture this effect
(Fig. 3b). This trend alsomatches thefindingsofRao et al.7, who showed that
bridge oxygen atoms on the edge-sharing (110) facet of unary RuO2 had a
less negative 2p-band center than the bridge oxygen atoms on the (101)
corner-sharing facet. We show that the per-site model is able to capture
these facet effects, both by matching the distributions in Fig. 3a and by
correctly ordering the highlighted surface oxygen atoms in Fig. 3b.

Atom-by-atom design strategies for OER
We next demonstrate the ability of per-site descriptors to predict DFT-
calculated binding energies of OER intermediates, and ultimately catalytic
activity.We fit amulti-linear function of per-site properties of the active site
(magnetic moment, Bader charge, d-band center, d-band width, and
coordination number) and of the adsorbed oxygen (Bader charge, 2p-band
center, 2p-band width, and coordination number) to OER intermediate
binding energies. The predicted versus calculated binding energies are
shown in Fig. 4a, with the linearmodel achieving excellent predictive power
with a correlation coefficient of 0.872. These simple linear relationships
between binding energy and per-site properties capture most of the varia-
tion in the data. A complex, non-linear model combining a per-site graph
neural network andper-site properties (Fig. 4a inset for results on a held-out

test set) moderately outperforms the linear model with a correlation coef-
ficient of 0.898. These results are in agreement with and extend beyond
previous studies1,23,38,53, which have shown that OER intermediate binding
energies correlate to bulk oxygen 2p-band center1,53 or to adsorbed oxygen
2p-band center23,38. We show these same correlations between binding
energies and bulk descriptors1,53, and between binding energies and indi-
vidual per-site descriptors23,38 in Supplementary Fig. 5 and Supplementary
Fig. 6. Combining these models with the above-presented per-site property
predictionmodels, andwithmodels that predict relaxed structure54,55, would
enable end-to-end learning of binding energies without the need for DFT
calculations. Moreover, unlike these previous efforts1,23,38,53 which have only
included the (001) facet of perovskites, our work includes facets up to (555)
and multimetal complex perovskites up to quaternary.

By leveraging multiple per-site properties of the active site and
adsorbed oxygen simultaneously, we are able to improve upon these pre-
vious correlations (e.g. correlation coefficient of 0.61 for bulk oxygen 2p-
band center53, 0.66 for surface oxygen 2p-band center23,38, and 0.87 for the
linear model) as several of the per-site properties are found to simulta-
neously and independently influence the binding energy of OER inter-
mediates. A polar plot of the relative importance of each per-site property
assigned by normalizing the coefficients of the linear model is shown in
Fig. 4b. The two most important per-site properties are the 2p-band center
of the adsorbed oxygen (in agreement with previous work1,23,56), and Bader
charge of adsorbed oxygen, which is similar to eg filling

13 and has been
shown to be useful for both prediction of OER activity and metal oxide
formation energy13,57,58. The relative importance of these two per-site
properties differs among adsorbates. For example, for OH*, the least oxi-
dizing adsorbate, the 2p-band center is themost influencial while forOOH*,
the most oxidizing adsorbate, Bader charge is the most influential. For O*,
these two descriptors and the oxygen 2p-band width are of more equal
weight, as shown in Fig. 4b. For all three adsorbates, the remaining para-
meters studied in this work (i.e. coordination number of adsorbed oxygen
and Bader charge, d-band center, d-band width, coordination number, and
magnetic moment of the active site) are found to be of limited importance
for predicting DFT-derived OER binding energetics.

A correlation matrix of the per-site properties is shown in Fig. 4c.
While the 2p-band width and 2p-band center of adsorbed oxygen are
negatively correlated with a coefficient of -0.6, most of the other per-site
properties are not found to correlate stronglywith any of the others. Further
support comes from the sparsity (median degree of three) of the correlation
network after correcting for multiple hypothesis testing and filtering for
connections with greater than 0.01 p-value (Fig. 4d). Pairwise p-values were
calculated across surface per-site descriptors and normalized by total
comparison count as directed by the Bonferroni method for multiple

Fig. 3 | Facet effects of per-site properties. a Calculated and predicted per-site 2p-
band center of surface oxygens on LaBO3 surfaces, for B going across the 3d band and
cut alongmiller indexes up to (555). bCalculated versus predicted 2p-band center of

surface oxygens for a held-out test set. The surface oxygens on the (100), (110) and
(111) facets of LaMnO3 are highlighted and the corresponding structures are shown.
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hypothesis correction (Supplementary Fig. 7). Of interest, the metal d-band
center does not significantly correlate with other metal descriptors sug-
gesting it cannot be easily tuned by changing metal coordination. Further,
the metal d-band center is of low feature importance to binding energy
(Fig. 4b) counter to common metal catalyst behavior59. Most notably, the
2p-band center and Bader charge of adsorbed oxygen, the two per-site
properties that most influence the binding energies, are found to be only
weakly correlated with a correlation coefficient of 0.3 (Fig. 4c), suggesting
that these two per-site properties can be tuned independently.

We compare the energetics for OER across the surfaces dataset to
identify themost promising catalysts forOER, and develop design strategies
for navigating this landscape as a function of per-site properties. The
binding energies of OER intermediates (O*, OH*, andOOH*) are known to
be linearly dependent60, fundamentally limiting the OER overpotential to
above 0.37 eV and preventing catalyst design via DFT, assuming proton-
coupled electron transfer61. For example, ΔEOH is known to scale with ΔEO
with a slope of 0.5 eV and intercept of 0.44 eV, andΔEOOH scales withΔEOH
with a slope of 0.88 eV and intercept of 3.21 eV19. These well-known scaling
relationships19,60 compare well with our calculated values of ΔGO−ΔGOH

and ΔGOOH−ΔGO for the dataset of complex multimetal perovskites

studied in this work (Fig. 5a), with data-points colored by their calculated
theoretical overpotential. An additional scaling relationship, the “ideal"
scaling, is plotted in orange in Fig. 5a, where the well-known slope remains
the same but the coefficient is adjusted such that scaling passes through 0 V
overpotential. Interestingly, the spread in the perovksite oxides dataset is
wide enough to touch the ideal scaling line due to the large diversity in
composition and facet. We highlight several substituted rutile oxides of
interest, which deviate from typical scaling and are closer to the ideal line
due to substitution effects on the per-site properties and thus on OER
binding energetics. Additional scaling relationships between ΔGOH and
ΔGO, and between ΔGOH and ΔGOOH are shown in Supplementary Fig. 8,
where the materials in this work are additionally compared to previous
efforts on metals (purple circles)45, single-atom catalysts (pink circles)47,
RuO2 facets (dark green)7, IrO2 facets (light green)46, metal hydroxide-
organic frameworks (MHOFs, light gray)18, and PSII (orange star)48. While
previously studied single-atom and metal catalysts fall more tightly on the
typical scaling line (black, Supplementary Fig. 8), the oxides studied in this
work showmore deviation from thewell-known scaling relations due to the
large variation in both element substitution and faceting. RuO2 facets from
the work of Rao et al.7 are also shown to deviate from this scaling, due to

Fig. 4 | Atom-by-atomdesign of OER energetics. a Binding energy of O*, OH*, and
OOH* as a linear function of surface per-site properties. Binding energies compared
to predictions from a neural network based on per-site properties are shown in the

inset. b Feature importance of each per-site property with respect to binding ener-
gies. c Correlation matrix of surface per-site properties. d Surface per-site property
correlation network with Bonferroni corrected p values > 0.01 filtered out.
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corner-sharing versus edge sharing effects as well as stabilization of OOH*

byneighboring coordinatelyunsaturatedoxygen.The effect of this deviation
fromscaling is that some surfaces studied in thisworkare able to outperform
the well-known OER thermodynamic overpotential limit, with over-
potentials as low as 0.21 V La0.5Sr0.5CoO3 (211).We note that the deviation
fromscaling for someof these perovskites is even as extremeas the deviation
for photosystem II (PSII)48 (Supplementary Fig. 8) The typical activity
volcano for theoretical potential as a function ofΔGO−ΔGOH is also shown
(Fig. 5b), including standard and ideal scaling (black and orange lines,
respectively), perovskites (dark gray), and rutile oxides (green). Perovksite
oxides in our dataset that are unstable (energy above hull of the corre-
sponding bulk structure above 0.3 eV) are semi-transparent while stable
perovskites (energy above hull below 0.3 eV) are fully opaque. Energetics for
PSII48 are additionally compared to the perovskites and rutiles in this work,
and several materials with overpotentials approaching that of PSII are
plotted in Fig. 5b and listed in Table 3. This activity volcano is based on a
very simple mechanism for OER that may not hold for all oxides. Further
work will need to be done to consider more complex OER mechanisms.

A version of the activity volcano as a function of relevant per-site
properties rather than binding energies is shown (Fig. 5c), to show the
physical origin of the deviation from the standard scaling relationships. The
2p-band center and Bader charge of adsorbed oxygen are considered,
because these properties have the strongest influence on binding energies,
are not correlated, and can be tuned independently to break the scaling

relationships. While the 2p-band center of adsorbed oxygen is a good
descriptor for traversing the standard scaling line, by simultaneously
adjusting theBader charge of the adsorbedoxygen closer to 0qe, it is possible
to move toward ideal scaling. We compare the R0 fitted bond-valence
parameters for how transition metal neighbors affect oxygen Bader charge
and oxygen 2p-band center, to build amap for simultaneously tuningBader
charge and 2p-band center of adsorbed oxygen through substitution
(Fig. 5d). R0 gives us a measure of how an individual neighboring atomwill
affect the site properties of the oxygen in question, and by comparing R0 for
different metal types we can tune the per-site properties of the oxygen
(neighbor atoms with lower R0 increase the value of the site property). We
compare the R0 for band-center and Bader charge to showhow it is possible
to substitute neighbor atoms to control 2p-band center and Bader charge
independently. It is shown that as the atomic number of neighboring atoms
increases, the R0 fitted parameter for predicting oxygen 2p-band center
increases and the oxygen 2p-band center therefore decreases. In contrast,
the R0 fitted parameter for predicting oxygen Bader charge given the
neighbor atoms decreases (and therefore oxygen Bader charge increases)
going from left to right across the periodic table. This map helps guide
researchers forwhat substitutions tomake in a perovskite tomodify the per-
site properties of adsorbed oxygen, and therefore to tune the catalytic
activity. On the strong binding side of the volcano, metal substitutions that
increase the 2p-band center of adsorbed oxygen while decreasing Bader
charge will be appropriate, so in this region Co substitution is

Fig. 5 | Atom-by-atom design of activity. a Thermodynamic overpotential as a
function of ΔGO - ΔGOH and ΔGOOH - ΔGO. Well-known scaling relations (black)19

and ideal scaling (orange) are also plotted. Substituted rutile oxides of interest are
highlighted in green. bVolcano plot of the theoretical overpotential as a function of
ΔGO - ΔGOH. For PSII, the energy difference between the S2 and S1 states is used in

place of ΔGO - ΔGOH. c Thermodynamic overpotential is shown as a function of
adsorbed oxygen 2p-band center and Bader charge. d Fitted R0 values for predicting
oxygen Bader charge, vs. R0 values for predicting oxygen band center as a function of
neighbor atom type.
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recommended.On theweak binding side of the volcano,metal substitutions
that decrease the 2p-band center of adsorbed oxygenwhile decreasingBader
charge will be appropriate, so in this region Ir/Ru substitution is recom-
mended. This matches with our intuition, as many promising perovskites
for OER contain these metals38,58. We compare Ru0.5In0.5O3 and
Ru0.5Co0.5O3 to illustrate this point. Replacing neighboring In with Co
slightly decreases the R0 for oxygen 2p-band center, while dramatically
decreasing the R0 for oxygen Bader charge (Fig. 5d). By swapping out In
(Ru0.5In0.5O3) for Co (Ru0.5Co0.5O3), the 2p-band center increases slightly
(moving toward the peak along the scaling line in Fig. 5c) and the Bader
charge of adsorbed oxygen also increases. The result is that Ru0.5Co0.5O3 has
amuch higher activity than Ru0.5In0.5O3. This example illustrates a strategy
for navigating activity space by tuning per-site properties through compo-
sition tuning. Additional strategies could involve facet engineering, which
modulates the2p-bandcenterof adsorbedoxygenwhile having less effecton
the Bader charge7.

Finally, the thermodynamic overpotential as well as the energy above
hull of the corresponding bulk structure are used to screen the dataset for
materials showing promising activity and stability (see Supplementary Fig.
9), and the most promising stable (energy above hull less than 0.3 eV) and
active (thermodynamic overpotential below 0.6 V) materials are summar-
ized in Table 3.Whilemany of the interestingmaterials identified and listed
in Table 3 have not yet, to the best of our knowledge, been tested for OER
activity, several identified materials (such as La0.5Sr0.5CoO3, LaNiO3,
PrNiO3, and La0.75Sr0.25MnO3) have already been tested and shown to be
promising OER catalysts13,58. Although the dataset curated and analyzed in
this work includes over 10,000 binding energies, the phase space of multi-
component perovskite surfaces remains far from exhausted and we remain
hopeful that many more promising perovskite materials may yet to be
discovered. Toward this end, future work could include pairing per-site
descriptors with effective strategies for intelligent search of the remaining
phase space, such as Bayesian optimization62. Also of interest are high
entropy oxide systems with five or more metals, where the phase space is

even more daunting and rich with opportunities for catalyst
optimization63,64 through control of chemical ordering65.

Methods
Lead contact
Further information and requests for resources should be directed to and
will be fulfilled by the lead contacts, Rafael Gomez-Bombarelli,
rafagb@mit.edu and Yang Shao-Horn, shaohorn@mit.edu.

Materials availability
This study did not generate any new materials.

Model details
In this work, we implement machine learning models to both predict per-
site properties directly from structure (see Fig. 1h) and leverage these
properties to predict OER intermediate binding energies (see Fig. 1i).

Per-site graph-based and composition only neural network models
(extensions of previous models33,49,50) were individually trained on several
calculated per-site properties including metal d-band center, oxygen 2p-
band center, Bader charge,magneticmoment, and phonon band center. For
graph-based models, convolutional layers are used to automatically fea-
turize the structure based on local environments and a linear layer is used to
convert this featurization to predicted per-site properties. Although all
models in this study are trained onDFT-relaxed structures, we propose that
an extension to unrelaxed structures will be possible using cheap surrogate
models for predicting relaxed structure from unrelaxed structure54,55.

For all properties, we perform a benchmark comparison between per-
site modified versions of CGCNN33, PAINN49, and CrabNET50. Per-site
CGCNN is initialized with physics-informed, curated atomic descriptors
which improves generalizability and performance, especially with smaller
datasets. For each per-site property in bulk structures, the per-site model
performance is additionally compared against a baseline of element average
across the dataset. For surface atoms, the per-site model performance is
additionally compared against a baseline of the element average in the
corresponding bulk structure, and to the bond-valence method.

Linear models and neural networks were implemented to predict
OER intermediate binding energies from calculated per-site properties.
The linear model was regressed on calculated Bader charges, d-band
centers, 2p-band centers, magneticmoments, and coordination numbers
of surface active sites and adsorbed oxygens. A neural network archi-
tecture was also developed, using these properties appended to learned
embeddings from the per-site graph-based models as input. This input
was passed though graph convolutional layers and a final pooling to
predict binding energies.

All results presented are on held-out test data. The models are trained
on 60% of the data, validated on 20%, and tested on 20%. Random train-
validation-test splitswere used in all cases.Modelweightswere chosenbased
on optimal validation set performance. Error ranges were calculated using
statistics from three different experiments, where model weights and train-
test splits are seeded randomly, and were found to always be below 0.02.
Hyperparameter tuning was performed on all models using SigOpt66. All
models were run on Nvidia GeForce RTX 2080 Ti GPUs.

Datasets
Multicomponent bulk perovskite oxides were compiled from the
literature12,42–44, including > 3,600 binary, > 1300 ternary, and > 900 qua-
ternary oxides. This dataset was augmented by in-house DFT calculations
up to quaternary with unit cell size 2 × 2 × 2, resulting in > 4600 quaternary
oxides and > 19,000 total bulk perovskite structures. Cation substitutions
were arranged both in the rock salt configuration as well as randomly
distributed. Models for predicting metal d-band centers, oxygen 2p-band
centers, and magnetic moments were trained and tested on this bulk per-
ovskite dataset using a multi-task learning scheme that learns these three
properties simultaneously for every atom. Moreover, to train and test the
model on Bader charges, over 170,000 structures with Bader charges

Table 3 | Materials in the dataset with bulk energy above hull
below 0.3 eV/atom and thermodynamic overpotential below
0.6 V

chemical formula miller index thermodynamic overpotential (V)

La0.5Sr0.5CoO3 (211) 0.21

Co0.5Ru0.5O2 (110) 0.27

CaAuO3 (010) 0.29

EuMnO3 (010) 0.31

LaBeO3 (111) 0.32

KSbO3 (101) 0.35

CaBiO3 (010) 0.40

SrRhO3 (010) 0.41

LiNbO3 (010) 0.41

MnVO3 (010) 0.41

LiRhO3 (110) 0.43

CaVO3 (001) 0.45

BaRhO3 (010) 0.46

La0.75Sr0.25MnO3 (100) 0.50

AgTeO3 (010) 0.50

BaMnO3 (010) 0.51

BaCoO3 (010) 0.51

BiScO3 (010) 0.57

LaNiO3 (211) 0.57

PrNiO3 (320) 0.59

Materials are sorted by thermodynamic overpotential, showing lowest to highest.
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available were compiled from across the entirety ofMaterials Project44. This
dataset includes amuchmore diverse set of structures than just perovskites.
Lastly, to train and test themodel on phonon band centers, a dataset of over
9,800 structures with phonon calculations was downloaded from the Pho-
nonDatabase at Kyoto University41. All structures available in this database
were used, not limited to oxides and perovskites.

We prepared a dataset of perovskite oxide surfaces for predicting
surface per-site properties and OER intermediate adsorption energies by
augmenting the Open Catalyst 2022 (OC22)36 dataset with data generated
by an in-house automated pipeline (see Supplementary Fig. 10). A subset of
the bulk perovskite structures are randomly sampled from the bulk per-
ovskite dataset described above, cut with a random choice of miller indices
between (001) and (555), andoptimizedwith andwithout adsorbedO*,OH*

and OOH*. All in-house adsorbate calculations consider adsorption to
B-sites at low surface coverage, and further work should be done to addi-
tionally consider adsorption on lattice oxygen sites67. This augmented
dataset includes over 10,000 clean surfaces and 7,800 surfaces with single
adsorbates (O*, OH* or OOH*).

All DFT calculations were performed using projector augmentedwave
pseudopotentials, within the Vienna ab initio simulation package. Perdew-
Burke-Ernzerhof functionals were used, and Hubbard-U corrections were
employed to correctly capture the localization of metal d-electrons. Ueff

values consistent with the defaults from Materials Project were chosen for
each metal44. Forces were converged to within 0.02 eV/Å. Slabs were cut to
be greater than 10 Å. The 2p-band and d-band center values of each atom
were obtained by projecting the density of states onto each site and inte-
grating between -10 below and 2 above the Fermi level. Magnetic moments
were obtained directly from VASP output, and moments for f-band ele-
ments were left out of the test set due to unreliable pseudopotentials. To
account for the well-known overbinding of O2, the oxygen reference was
corrected to the experimental formation enthalpy of water, calculated as
+0.29 V correction per O. Standard formation energies of H2O(l), OH(g),
and HO2(g) were taken from NIST-JANAF thermochemical tables rather
than being computed68. All binding energies were converted to free energies
by using a standard contribution of adsorbate atoms to the ZPE and
vibrational entropy, calculated as+0.30, –0.01, and+0.34 V correction for
O*, OH* and OOH* respectively. Rotational and translational entropy of
adsorbates on surfaces were assumed to be negligible, given that adsorption
on surfaces typically results in loss of translational and rotational entropy in
favor of vibrational entropy5. Additional electronic structure calculations
were performed on all structures from OC22 to generate per-site metal
d-band center, O2p-band center and magnetic moment.

Data availability
All data from this study are made available at https://github.com/
learningmatter-mit/atom_by_atom. Instructions for downloading the
datasets are included in the repository README file.

Code availability
All code from this study is made available at https://github.com/
learningmatter-mit/atom_by_atom.

Received: 7 November 2023; Accepted: 11 April 2024;

References
1. Hong, W. T. et al. Toward the rational design of non-precious

transition metal oxides for oxygen electrocatalysis. Energy Environ.
Sci. 8, 1404–1428 (2015).

2. Dau, H. et al. The mechanism of water oxidation: From electrolysis
via homogeneous to biological catalysis. ChemCatChem 2,
724–761 (2010).

3. Cox, N. et al. Eectronic structure of the oxygen- evolving complex in
photosystem ii prior to o-o bond formation. Science 345, 804–808
(2014).

4. Vogt, C. & Weckhuysen, B. M. The concept of the active site in
heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

5. Norskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T.
Fundamental concepts in heterogeneous catalysis. John Wiley Sons
1, 32 (2014).

6. Ferri, P. et al. Approaching enzymatic catalysis with zeolites or how to
selectone reactionmechanismcompetingwithothers.Nat.Commun.
14, 2878 (2023).

7. Rao, R. R. et al. Operando identification of site-dependent water
oxidation activity on ruthenium dioxide single-crystal surfaces. Nat.
Catal. 3, 516–525 (2020).

8. Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano
limitations in electrocatalysis – oxygen evolution reaction. Phys.
Chem. Chem. Phys. 16, 13682–13688 (2014).

9. Peng, J. et al. Human-andmachine-centreddesigns ofmolecules and
materials for sustainability and decarbonization. Nat. Rev. Mater. 7,
991–1009 (2022).

10. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals.
Nature 376, 238–240 (1995).

11. Grimaud, A. et al. Double perovskites as a family of highly active
catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4,
2439 (2013).

12. Jacobs,R.,Mayeshiba, T., Booske, J. &Morgan,D.Material discovery
and design principles for stable, high activity perovskite cathodes for
solid oxide fuel cells. Adv. Energy Mater. 8, 1702708 (2018).

13. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-
Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis
from molecular orbital principles. Science 334, 1383–1385 (2011).

14. Biz, C., Fianchini, M. & Gracia, J. Strongly correlated electrons in
catalysis: Focus on quantumexchange.ACSCatal. 11, 14249–14261
(2021).

15. Vennelakanti, V., Nandy, A. & Kulik, H. J. The effect of hartree-fock
exchange on scaling relations and reaction energetics for c–h
activation catalysts. Top. Catal. 65, 296–311 (2022).

16. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal
oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

17. Kuznetsov, D. A., Peng, J., Giordano, L., Román-Leshkov, Y. & Shao-
Horn, Y. Bismuth substituted strontium cobalt perovskites for catalyzing
oxygen evolution. J. Phys. Chem. C. 124, 6562–6570 (2020).

18. Yuan, S. et al. Tunable metal hydroxide–organic frameworks for
catalysing oxygen evolution. Nat. Mater. 21, 673–680 (2022).

19. Calle-Vallejo, F., Inoglu, N. G., Su, H. Y., Kitchin, J. R. & Rossmeisl, J.
Number of outer electrons as descriptor for adsorption processes on
transition metals and their oxides. Chem. Sci. 4, 1245–1249 (2013).

20. Dickens, C. F. & Norksov, J. K. A theoretical investigation into the role
of surface defects for oxygen evolution on ruo2. J. Phys. Chem. C.
121, 18516–18524 (2017).

21. Choubisa, H. et al. Accelerated chemical space search using a
quantum-inspired cluster expansion approach. Matter 6, 605–625
(2023).

22. Rao, R. R. et al. Towards identifying the active sites on ruo2(110) in
catalyzing oxygen evolution.Energy Environ. Sci. 10, 2626–2637 (2017).

23. Dickens, C. et al. An electronic structure descriptor for oxygen
reactivity at metal and metal- oxide surfaces. Surf. Sci. 681,
122–129 (2019).

24. Hwang, J. et al. Regulating oxygen activity of perovskites to promote
nox oxidation and reduction kinetics. Nat. Catal. 4, 663–673 (2021).

25. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing
structural sensitivity into adsorption–energy scaling relations by
means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

26. Ruck, M. et al. Oxygen reduction reaction: Rapid prediction of mass
activity of nanostructured platinum electrocatalysts. J. Phys. Chem.
Lett. 9, 4463–4468 (2018).

27. Batchelor, T. A.A. et al. High-entropyalloysasadiscoveryplatform for
electrocatalysis. Joule 3, 834–845 (2019).

https://doi.org/10.1038/s41524-024-01273-y Article

npj Computational Materials |           (2024) 10:80 9

https://github.com/learningmatter-mit/atom_by_atom
https://github.com/learningmatter-mit/atom_by_atom
https://github.com/learningmatter-mit/atom_by_atom
https://github.com/learningmatter-mit/atom_by_atom


28. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide
discovery of electrocatalysts for co2 reduction and h2 evolution.Nat.
Catal. 1, 696–703 (2011).

29. Fernandez, M., Barron, H. & S. Barnard, A. Artificial neural network
analysis of the catalytic efficiency of platinum nanoparticles. RSC
Adv. 7, 48962 (2017).

30. Li, Z., Ma, X. & Xin, H. Feature engineering of machine-learning
chemisorption models for catalyst design. Catal. Today 280,
232–238 (2017).

31. Axelrod, S. et al. Learning matter: Materials design with machine
learning and atomistic simulations.Acc.Mater. Res. 3, 343–357 (2022).

32. Kitchin, J. R.Machine learning in catalysis.Nat. Catal.1, 230–232 (2018).
33. Xie, T. &Grossman, J. C. Crystal graph convolutional neural networks

for an accurate and interpretable prediction of material properties.
Phys. Rev. Lett. 120, 145301 (2018).

34. Damewood, J. et al. Representations of materials for machine
learning. Annu. Rev. Mater. Res. 53, 399–426 (2023).

35. Greenman, K. P., Green, W. H. & Gómez-Bombarelli, R. Multi-fidelity
prediction of molecular optical peaks with deep learning. Chem. Sci.
13, 1152–1162 (2022).

36. Tran, R. et al. The open catalyst 2022 (oc22) dataset and challenges
for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2022).

37. Back, S. et al. Convolutional neural network of atomic surface
structures to predict binding energies for high-throughput screening
of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).

38. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science
358, 751–756 (2017).

39. Rawal, T. B. et al. Interaction of zinc oxide nanoparticles with water:
Implications for catalytic activity. ACS Appl. Nano Mater. 2,
4257–4266 (2019).

40. Zhong,W. et al. Electronic spinmoment asa catalytic descriptor for Fe
single-atom catalysts supported on C2N. J. Am. Chem. Soc. 143,
4405–4413 (2021).

41. Phonon database at kyoto university – phonondb documentation.
Phonondb.mtl.kyoto-u.ac.jp [Online] (2022).

42. Castelli, I. E.etal.Computational screeningofperovskitemetaloxides for
optimal solar light capture. Energy Environ. Sci. 5, 5814–5819 (2012).

43. Emery, A. A., Saal, J. E., Kirklin, S., Hegde, V. I. & Wolverton, C. High-
throughput computational screening of perovskites for
thermochemical water splitting applications. Chem. Mater. 28,
5621–5634 (2016).

44. Jain, A. et al. Commentary: Thematerials project: Amaterials genome
approach to accelerating materials innovation. APL Mater. 1,
011002 (2013).

45. Kulkarni, A., Siahrostami, S., Patel, A. & Norskov, J. K. Understanding
catalytic activity trends in the oxygen reduction reaction. Chem. Rev.
5, 2302–2312 (2018).

46. Gauthier, J. A., Dickens,C. F.,Chen, L.D., Doyle,A.D. &Norskov, J. K.
Solvation effects for oxygen evolution reaction catalysis on iro2(110).
J. Phys. Chem. C. 121, 11455–11463 (2017).

47. Deng, Q. et al. 2d transition metal–tcnq sheets as bifunctional single-
atom catalysts. J. Catal. 370, 378–384 (2019).

48. Siegbahn, P. E. M. Water oxidation mechanism in photosystem ii,
including oxidations, proton release pathways, o—o bond formation
and o2 release. Biochimica et. Biophysica Acta 1827,
1003–1019 (2013).

49. Schutt, K. T., Unke, O. T. & Gastegger, M. Equivariant message
passing for the prediction of tensorial properties and molecular
spectra. International Conference on Machine Learning
9377–9388 (2021).

50. Wang, A. Y. T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D.
Compositionally restricted attention-based network for materials
property predictions. npj Comput. Mater. 7, 77 (2021).

51. O’Keefe,M. &Breese,N. E. Atomsizes andbond lengths inmolecules
and crystals. J. Am. Chem. Soc. 113, 3226–3229 (1991).

52. Kutzelnigg, W. & Morgan, J. D. I. Hund’s rules. Z. Phys. D. 36,
197–214 (1996).

53. Jacobs, R., Hwang, J., Shao-Horn, Y. & Morgan, D. Assessing
correlations of perovskite catalytic performance with electronic
structure descriptors. Chem. Mater. 3, 785–797 (2019).

54. Chen, C. & Ong, S. A universal graph deep learning interatomic
potential for the periodic table. Nat. Comput. Sci. 2, 718–728
(2022).

55. Deng, B. et al. Chgnet: Pretrained universal neural network potential
for charge-informed atomistic modeling. Nat. Mach. Intell. 5,
1031–1041 (2023).

56. Lee, Y. L. et al. Prediction of solid oxide fuel cell cathode activity
with first-principles descriptors. Energy Environ. Sci. 4,
3966 (2011).

57. Craig, M. J., Kleuker, F., Badjdich, M. & Garcia-Melchor, M. Fefos: A
method to derive oxide formation energies from oxidation states.
Catal. Sci. Technol. 13, 3427–3435 (2023).

58. Hong, W. T., Welsch, R. E. & Shao-Horn, Y. Descriptors of oxygen-
evolution activity for oxides: A statistical evaluation. J. Phys. Chem.C.
120, 78–86 (2016).

59. Sun, S., Zhou, X., Cong, B., Hong,W. & Chen, G. Tailoring the d-band
centers endows (nixfe1–x)2p nanosheets with efficient oxygen
evolution catalysis. ACS Catal. 10, 9086–9097 (2020).

60. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on
oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

61. Rossmeisl, J., Dimitrievski, K., Siegbahn, P. & Norskov, J. K.
Comparing electrochemical and biological water splitting. J. Phys.
Chem. Lett. C. 111, 18821–18823 (2007).

62. Pedersen, J. K. et al. Bayesian optimization of high-entropy alloy
compositions for electrocatalytic oxygen reduction. Angew. Chem.
1333, 24346–24354 (2021).

63. Svane, K. & Rossmeisl, J. High-entropy oxides for the oxygen
evolution reaction. ChemRxiv. Cambridge Open Engage 1 (2022).

64. Nguyen, T. X., Liao, Y. C., Lin, C. C., Su, Y. H. & Ting, J. M. Advanced
high entropy perovskite oxide electrocatalyst for oxygen evolution
reaction. Adv. Funct. Mater. 31, 2101632 (2021).

65. Peng, J., Damewood, J. & Gómez-Bombarelli, R. Data-driven,
physics-informed descriptors of cation ordering in multicomponent
oxides. arXiv (2023).

66. Clark, S. & Hayes, P. SigOpt Web page. https://sigopt.com (2019).
67. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox

activity of surface oxygen anions in oxygen-deficient perovskite
oxides during electrochemical reactions. Nat. Commun. 6,
6097 (2015).

68. Chase, M. Nist-janaf thermochemical tables. Am. Inst. Phys. 4,
1261–1359 (1998).

69. Lohmiller, T. et al. Structure, ligands and substrate coordination of the
oxygen-evolving complex of photosystem ii in the s2 state: a
combined epr and dft study. Phys. Chem. Chem. Phys. 16,
11877–11892 (2014).

Acknowledgements
This work was supported by the Advanced Research Projects Agency-
Energy (ARPA-E), US Department of Energy under award number DE-
AR0001220. This research used resources of the National Energy Research
ScientificComputingCenter (NERSC),aU.S.DepartmentofEnergyOfficeof
Science User Facility operated under Contract no. DE-AC02-05CH11231.
We would additionally like to thank James Damewood for many fruitful
discussions and suggestions, especially with regard to the bulk perovskite
oxide data.

Author contributions
Conceptualization, R.G.B., Y.S.H., J.R.L. and J.K.; Methodology, R.G.B.,
Y.S.H., J.R.L., J.K.; Formal analysis, J.R.L., J.K. and H.C.; Investigation,
J.R.L., J.K., H.C., Y. T. and C.H.S.; Resources, R.G.B., Y.S.H. and B.H.;

https://doi.org/10.1038/s41524-024-01273-y Article

npj Computational Materials |           (2024) 10:80 10

https://sigopt.com
https://sigopt.com


Writing - original draft, J.R.L., J.K., J.P., R.G.B. and Y.S.H.; Visualization,
J.R.L. and J.K.; Supervision, R.G.B., Y.S.H. and B.H.; Funding Acquisition,
R.G.B., Y.S.H. and B.H.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-024-01273-y.

Correspondence and requests for materials should be addressed to
Yang Shao-Horn or Rafael Gómez-Bombarelli.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41524-024-01273-y Article

npj Computational Materials |           (2024) 10:80 11

https://doi.org/10.1038/s41524-024-01273-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Towards atom-level understanding of metal oxide catalysts for the oxygen evolution reaction with machine learning
	Results and discussion
	Learning compositional effects on per-site properties in bulk perovskites
	Learning facet and composition dependence of surface site properties
	Atom-by-atom design strategies for�OER

	Methods
	Lead contact
	Materials availability
	Model details
	Datasets

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




