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Complexity of many-body interactions in
transition metals via machine-learned
force fields from the TM23 data set
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This work examines challenges associated with the accuracy of machine-learned force fields (MLFFs)
for bulk solid and liquid phases of d-block elements. In exhaustive detail, we contrast the performance
of force, energy, and stress predictions across the transition metals for two leading MLFF models: a
kernel-based atomic cluster expansion method implemented using sparse Gaussian processes
(FLARE), and an equivariant message-passing neural network (NequIP). Early transition metals
present higher relative errors andaremoredifficult to learn relative to late platinum-andcoinage-group
elements, and this trend persists across model architectures. Trends in complexity of interatomic
interactions for different metals are revealed via comparison of the performance of representations
with differentmany-body order and angular resolution.Using arguments basedonperturbation theory
on the occupied and unoccupied d states near the Fermi level, we determine that the large, sharp d
density of states both above and below the Fermi level in early transition metals leads to a more
complex, harder-to-learn potential energy surface for thesemetals. Increasing the fictitious electronic
temperature (smearing) modifies the angular sensitivity of forces and makes the early transition metal
forces easier to learn. This work illustrates challenges in capturing intricate properties of metallic
bonding with current leading MLFFs and provides a reference data set for transition metals, aimed at
benchmarking the accuracy and improving the development of emerging machine-learned
approximations.

Molecular dynamics (MD) simulations can reveal atomisticmechanisms for
a wide range of fundamental material, chemical, and biological processes.
Ab initiomethods like density functional theory (DFT) can calculate atomic
forces, energies, and stresses, but are too expensive for MD simulations at
large time- and length-scales. Approximate surrogate models referred to as
interatomic potentials or ‘classical’ force fields (FFs) have bridged this gap
but can take months or even years to develop, where practitioners
exhaustively fit FF parameters to properties like experimental quantities
(e.g.,melting point, bulk lattice constant, structure factors, etc.)1.While their
fixed analytical forms make them efficient and interpretable2–7, predictions
from classical FFs are limited in transferability beyond their initial training
targets even for the same chemical system. Application to complex

chemistries and phenomena like bond-breaking in reactive systems requires
great care and close supervision, as e.g. assumptions that go into capturing
bonded interactions can make decisive differences in simulation
outcomes8,9.

In response to these challenges, atomistic FF development has, over the
past decade, been revolutionized by the advent of machine-learned force
fields (MLFFs), where the FF construction task is reduced to fitting a sur-
rogatemodel offlexible form tofirst-principles data. Simple analytical forms
of traditional FFs are replaced with flexible universal approximators to
achieve increased accuracy and transferability10,11. This has allowed practi-
tioners to fit MLFFs on demand for any desired system that can be com-
puted by ab initio methods. This approach has already yielded successes for

1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. 2John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA. 3Robert Bosch LLC Research and Technology Center, Watertown, MA 02472, USA. 4Present
address: Toyota Research Institute, Los Altos, CA, USA. 5These authors contributed equally: Cameron J. Owen, Steven B. Torrisi.

e-mail: cowen@g.harvard.edu; bkoz@g.harvard.edu

npj Computational Materials |           (2024) 10:92 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01264-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01264-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-024-01264-z&domain=pdf
http://orcid.org/0000-0002-2543-7415
http://orcid.org/0000-0002-2543-7415
http://orcid.org/0000-0002-2543-7415
http://orcid.org/0000-0002-2543-7415
http://orcid.org/0000-0002-2543-7415
http://orcid.org/0000-0002-0088-5123
http://orcid.org/0000-0002-0088-5123
http://orcid.org/0000-0002-0088-5123
http://orcid.org/0000-0002-0088-5123
http://orcid.org/0000-0002-0088-5123
mailto:cowen@g.harvard.edu
mailto:bkoz@g.harvard.edu


simple single-element systems, where MLFFs have been used to reveal
surprising long-range mechanical behavior using MD12,13 and yield highly
accurate and expressive power for determining a variety of material
properties.

Whether studying materials systems of one element or many, reliable
reference data sets are of incredible importance to the task of MLFF model
training and benchmarking14–16, where model architectures can be com-
pared using the same set of training and test labels. Presently, no dedicated
benchmark data set exists for the d-block of the periodic table, whichmakes
it difficult to comparemodel architectures across a common standard in this
set of elements, important for a wide range of applications e.g. hetero-
geneous catalysis on bulk and nanoparticle (NP) structures, (high-entropy)
alloys, surface reconstructions, and metallurgy. Another major challenge,
which reference benchmark databases can help address, is the need to
broker a compromise between efficiency and accuracy in the choice of ML
formalism and hyperparameters, which also depends on the complexity of
the system to be modeled. Simplifications in the representation fidelity of
atomic environments or in model architecture typically come at a cost to
accuracy of the predictions made by the resulting MLFF, which must be
weighed against the demands of the target application. To further compli-
cate this task, users typically lack the means and data to gauge what level of
model architecture and representation fidelity is needed when approaching
new systems, i.e., it is hard to know in advance when a simpler model will
suffice.

Benchmark data sets and subsequent studies have been curated before
within the community for solid-state materials: previous work carefully
benchmarked the performance of a wide variety of model forms (GAP,
MTP, NNP, SNAP, and qSNAP), with Zuo et al.17 releasing the associated
data set. This data set focused on a variety of structural motifs across a set of
six elements (Li, Mo, Cu, Ni, Si, and Ge) chosen to represent different
electronic character (metallic vs. covalent/semiconducting).

The models trained in this work, and in a followup investigation in
ref. 18, highlight larger force and energy errors on early transition metals,
like Mo, as opposed to later transition metals, like Cu. By explicitly com-
paring these metallic systems across model architectures in terms of pre-
dictive accuracy on energies and forces, hints of the strong disparity in
model performance appear, but were not commented on in further detail.
More comprehensive reviews of theperformance ofmodel architectures like
GAP and MTP on body-centered-cubic transition metals and alloys have
been performed19,20, but the discussion of predictive accuracywas, again, not
at the forefront. Despite the potential of high predictive errors, correlated
with where the models are trained on the periodic table, these efforts have
demonstrated that one can still obtain proper physical descriptions of the
systems (e.g. phonons, alloy compositions, etc.), but there has been no
systematic investigation into thesemodelperformancesacross the transition
metals, which would yield increased understanding of the problem ele-
ments, and push the field towards better model architectures.

Another common benchmark data set used to compare accuracy of
MLFFs is MD1721–24 which is comprised of small, organic molecules in
vacuum containingmain-group elements (i.e., C, O,N, andH), where bond
topology is typically rigid and many models can achieve chemical accuracy
( < 1 kcal/mol)11. While the latter is useful for the molecular chemistry
community, a reference data set for transition metals would provide enor-
mous benefit for the heterogeneous catalysis and metallurgical commu-
nities, among others tasked with building MLFFs for these elements.

Thus, better understanding of the tradeoffs between efficiency and
efficacy in leading MLFFs for targeted elements could help to drive new
methods development, as well as accelerate future model training. More-
over, there are increasingly many options for practitioners: MLFF devel-
opment is now well into its second decade of application25–28, and many
improvements have been made to the fitting processes, with uncertainty-
based active learning10,29–31 followed by exact mapping onto low-
dimensional surrogate models (e.g., polynomial and spline models)29,32,33.
A plethora of MLFF architectures exist: such as MTP34, GAP35, ACE36,
MACE37, PAiNN38 SNAP39, SchNet40, DeepMD41, with each model

architecture exhibiting its own strengths and weaknesses. More recently,
equivariant neural networkmethods, e.g. NequIP andAllegro11,42 have been
shown to accurately predict the behavior of a diverse range ofmolecular and
materials systems ranging from solid-state ionic diffusion and hetero-
geneous catalysis to small molecules and water. The models considered in
this work (FLARE and NequIP) represent two of the recent leading MLFF
approaches with inherent differences in how the representations are con-
structed for atomic environments.

Consideration of inherently more challenging material and chemical
systems, however, will inevitably prompt further MLFF development. To
this point in time, MLFFs have demonstrated near-chemical accuracy on
available organic molecule benchmark data, but have shown mixed results
on materials17. By extending the composition and structural space wherein
theseMLFFsoperate, novelmodel architectures that achieve state-of-the-art
accuracy on organic systemsmay have to evolve from their current form to
accomplish this task. In hinting to the results presented here, we find that
high angular resolution of NequIP is required to improve the predictive
accuracy for more difficult transition metals in TM23, albeit at significantly
increased computational cost. Hence, novel model architectures are
required that combine efficiency with representation resolutions to accu-
rately capture these difficult solid state systems.

Such a data set curation task has the potential to benefit more than just
MLFF developers. Within the domains of surface science, heterogeneous
catalysis, and alloys, crucial mechanisms such as surface restructuring43,
active site dynamics, and cooperative reaction mechanisms on metal sur-
faces occur on long time- and length-scales9, making gains in MLFF effi-
ciency and accuracy critical for the interpretation of experimental
observables. With important use-cases like this in mind, it behooves us to
understand the role that varying atomic representations and model fidelity
can play acrossmachine-learning architectures, and tomake the TM23 data
set available for the MLFF development and broader scientific community.
More available testing benchmarks will aid the overall project of developing
and judging both purpose-built and general purpose FFs which can be
flexibly applied to a wide variety of systems.

Finally, of central importance to this work is a demonstration of a new
mode of use of MLFFs as a probe to extract fundamental physical and
chemical trends from first-principles reference data, and to obtain a better
understanding of the relationship of the predictive errors to the parameters
employed in the underlying quantum mechanical method. Specifically, by
varying the DFT andMLFFmodel hyperparameters, such as the electronic
temperature, or body-order and angular resolution of the representation,
and comparing the accuracy with respect to first principles calculations, we
can directly assess the complexity of the quantum many-body interatomic
interactions and connect it to domain-knowledge intuition in terms of
electronic structure of different metals.

Results and discussion
Overview of the benchmarking task
Webegin by presenting theTM23 data set, comprised of ab initiomolecular
dynamics simulations of 27 d-block metals, fromwhich we sample a subset
of training structures and associated energy, force, and stress labels from
high-fidelity DFT calculations. These benchmark data are then used to
evaluate the performance of two different MLFF architectures employing
different representations of the atomic environments. To limit the breadth
of comparison between the swath of available MLFF approaches, we only
focus on two architectures: (1) Gaussian processes based on the atomic
cluster expansion descriptors and (2) equivariant neural networks. Open-
source implementations of these architectures are employed, namely
FLARE10 and NequIP11, respectively. By evaluating a large set of relevant
elements across two model architectures, it is demonstrated that even
chemically simple systems – mono-elemental bulk materials with a single
vacancy in low-temperature crystalline, high-temperature crystalline, and
molten phases –present significant challenges for accurate learning by these
leading models and a persistent trend of errors across the d-block of the
periodic table.
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In benchmarking the accuracy of these methods, trade-offs that arise
with differing model fidelities are explored and reasonable references in
accuracy are provided for other practitioners approaching these systems. A
schematic of the benchmarking workflow is provided in Fig. 1, and the
explicit details of each component are provided in the “Methods” Section.
Importantly, clear trends in accuracy are found across the d-block which
hold regardless of model architecture, as quantified by relative errors of
force, energy, and stress.Thesebenchmarksdemonstrate the role thatmodel
architectures play across the same set offirst principles referencedata,where
the choice ofmodel parameters can influence their performance in amarked
fashion for the more ‘difficult’ metals as opposed to ‘easier’ metals. The
TM23 data set is made freely available (see “Data Availability” Section) in
order to facilitate direct comparison across the wide range of actively
developed MLFF methods, and it is envisioned that this will act as a useful
benchmark comparison target within the computational materials science
community.

Lastly, we note that the data set used here was not intended to provide
high-fidelity models for dynamic evolution of these systems. Rather, the
primary task was to uncover the drastic differences in predictive accuracy
across transitionmetals aswell as the fundamental relationships between the
DFT parameters employed, meaning that future work will consider the
dynamic evolution of these systems and, importantly, if further augmen-
tation of the data set is necessary.

TM23 Data Set Description
Super-cells for 27 transition metals were created from their experimentally
verified ground state crystal structures, as provided by the Materials
Project16 at their 0 K lattice constants predicted using the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional44. Super-cells were gen-
erated with a requirement that each lattice vector was at least 7Å in length.
This value was chosen to balance the number of unique atomic environ-
ments observed within the finite radius cutoff of MLFF local structure
representations against the number of atoms required for DFT calculation.
A single vacancy was introduced into each super-cell in order to diversify
non-trivial atomistic configurations. Ab initiomolecular dynamics (AIMD)
simulations were then performed at three temperatures: 0.25 ⋅ Tmelt,
0.75 ⋅ Tmelt, and 1.25 ⋅ Tmelt, where Tmelt is the experimental melting tem-
perature, for a total of 55 ps. Each systemwas evaluated at a single volume as
defined by the ground state lattice parameters.We henceforth refer to these
temperatures as ‘cold’, ‘warm’, and ‘melt’, respectively. Melting tempera-
tures for each systemwere extracted from ref. 45.We note that even though
these are short time-scale AIMD simulations, the corresponding radial
distribution functions for each temperature were analyzed to confirm the
loss of crystalline-order at increased temperature. Examples of these

crystalline and amorphous radial distribution functions are provided in
Supplementary Figs. 57–83. This analysis is provided as a Jupyter notebook
paired with the data set on Materials Cloud.

The first 5 ps of each trajectory was used for thermal equilibration at
the desired temperature, and subsequently, representative frames (struc-
ture snapshots) were extracted from the remaining 50 ps of the trajectory
at 50 fs intervals, in order to reduce their correlation. Extracted frames
were used as input for high-fidelity static DFT calculations, which pro-
duced the energy, force and stress labels used for model training and
testing. To accelerate eachAIMD trajectory, k-point samplingwas limited
to only the Γ-point, whereas finer k-point grids were used for generating
training labels for each extracted frame. Spin-polarization was not
included for all high-fidelityDFT frames,which is discussed inmore detail
in the “Methods” Section. This procedure yielded 1000 frames for each of
the three AIMD temperatures and thus 3000 in total for each metal. The
entire collection of high-fidelity frames (81,000 in total) will be provided
via the Materials Cloud upon publication.

MLFF training on TM23
We then trained and tested both FLARE and NequIPmodels using energy,
force and stress labels for eachmetal using the set of 3000high-fidelity static
DFT calculations. For ourfirst test, we obtained a holistic overview ofmodel
performance by using as wide a training/testing set as possible. For each
element, the training set drew from a combined set of 2700 frames using the
first 900 extracted framesof eachAIMDtrajectory at the three temperatures.
The validation set for NequIP was chosen to be 10% of the training set,
selected randomly. The training weights in NequIP for forces and stress
were set to 1, while the energies also employed a coefficient of 1, but used the
‘PerAtomMSELoss’ as discussed in the NequIP GitHub repository. In the
FLARE code, weights were not set for the energy, forces, and stresses, rather
the noise hyperparameters were initially set according to the discussion in
the “Methods” Section, and are optimized over the course ofmodel training.
The test set contained a total of 300 frames taken to be the final 100 frames
from each AIMD trajectory at the three temperatures considered. Since
prediction accuracy is influenced by the model parameters, e.g., repre-
sentation cutoff, radial and angular bases for FLARE, or neural network
depth and angular resolution in the case ofNequIP, thesemodel parameters
were explicitly tested for eachmetal using a grid search on a smaller training
set (200 frames) and test set (100 frames). Results for each model archi-
tecture employing the best parameters are shown here in themain text, and
the complete set of values is provided in SupplementaryNote 6. Toput these
results in the context of model size, we also provide the descriptor dimen-
sionsused for theFLAREmodels andnumber ofweights used in theNequIP
models inTable 1. The descriptor dimension,nd is calculated using Eqn. (1),

Fig. 1 | TM23 data set construction and model testing overview. a Complete table
of transition metals studied. bAIMD sampling of atomic environments and the size
requirement for super-cell creation. c Extraction procedure and high-fidelity DFT
calculations. d Models were trained on high-fidelity labels via the FLARE and

NequIP codes. e We gauged the model performance by using test sets from all
temperatures, and by assessing transferability from ‘cold’ to ‘warm’ and ‘cold’ to
‘melt’ sets of data. We also compute learning exponents for Au, Cu, Ti, and Os and
phonon dispersion curves for Cu and Os.
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given as

nd ¼ ðnmax � nspecies þ 1Þ � nmax �
nspecies
2

� ð‘max þ 1Þ: ð1Þ

We then provide interpretation of the underlying trends across composi-
tions in predictive accuracy, and examine the influence of model error on
observable material properties.

Accuracy comparison of FLARE and NequIP
Before proceeding, we comment upon the choice of errormetric for each of
the target labels. Force errors are expressed as percentages, defined in
Equation (2), rather than mean absolute values (e.g., MAEs or RMSEs),
since these quantities correlate with the average magnitude of the force and
simultaneously the AIMD temperature, which naturally varies across
metals.

%Error ¼ MAE
MAV

� 100 ð2Þ

Full MAEs for forces, energies, and stresses are provided in Supplementary
Note 5. A comparison of force MAEs to the melting temperature are

provided in Section S2 as a demonstration of this relationship. Hence, test
percent errors for the best FLARE and NequIP models on TM23 are pro-
vided in Fig. 2 where trends in accuracy across the d-block can be imme-
diately observed. Moving from left to right across Fig. 2, we see that early
TMs exhibit higher test errors across forces, energies, and stresses relative to
the late Pt-group and coinage metals (Groups IX, X, and XI, respectively),
with the coinage metals producing the lowest errors of the entire set.

A trend across models can also be observed, where NequIP test errors
are systematically lower than FLAREusingACEB2 descriptors. FLARE test
errors obtained using the ACE B1 descriptor are provided in the Supple-
mentary Information, which are systematically higher than FLARE using
ACE B2 and NequIP. The observed trend between FLARE B2 and B1 ACE
descriptors can be explained by an increase in effective body-order, where
the 2-body B1 descriptor with a kernel power of 2 yields an effective but not
complete 3-body interaction between environments, while the 3-body B2
descriptor at the same power yields 5-body terms. Despite an overall
improvement in the force % errors using NequIP compared to either of the
FLARE models, the same trends remain persistent when comparing model
performance across thed-blockmetals, in that early transitionmetals exhibit
noticeably higher errors than late transition metals across all model archi-
tectures. Additionally, we note that we explicitly explored the relationship
between observed model accuracy and k-point density, as is provided in
Supplementary Fig. 1. We employ the minimum k-point density as a label
for the inherent accuracy of theDFT calculations, and find no correlation to
model test error.

Curiously, when moving from the coinage metals in Group XI to the
Group XII transition metals (Zn, Cd, and Hg), an increase in the % error is
also observed. However, GroupXIImetals exhibit the lowestmelting points
of the elements considered in this study, meaning that the absolute mag-
nitudes of the forces are small. Coupling this observation to the fact that the
forceMAEs for GroupXII systems are on the order of only 10s ofmeVÅ−1,
it can be reasoned that these systems are sampling near the inherent noise of
DFT given the convergence protocols, rather than reflecting difficulties in
model learning.

The % error values in Fig. 2 were determined using the entire training
set of 2700 frames and testing on the remaining 300 frames. Corresponding
meanabsolute error values for the samemodels anddata are provided inFig.
3. The training procedures for each model architecture are described in
explicit detail in the “Methods” Section, anddiffer since FLARE implements
a Gaussian process whereas NequIP is a neural network. FLARE uses
sparsification andMPIparallelization to circumvent thememorybottleneck
present when considering the full training set of 2700 frames, where sparse
representative atomic environments are selected from each training frame
by the predictive uncertainty of the GP8. This yielded a total sparse set of
2700 atomic environments. On the other hand, the NequIP model trains
using all atomic environments from each frame.

Transferability of FLARE and NequIP across temperatures and
phases of TM23
Measuring a model’s ability to generalize beyond the training set distribu-
tion is of central interest for the development of MLFFs: a long simulation
especially involving reactions and structural evolution may encounter new
configurations not sampled in the training set. A valuable advantage of the
TM23 data set is that the training data contains three distinct temperatures
for each metal. This provides an opportunity to explore the extrapolative
ability of ML models between temperatures and structural phases, where
thermal disorder can produce dramatically different atomic environments.
This latter statement is confirmed through the analysis of the radial dis-
tribution functions of the trajectories, where 0.25 ⋅ Tmelt retains crystalline
order, reflected by the persistence of well-defined peaks which broaden and
disappear at higher temperatures, indicating a transition to a molten phase.

We explore model transferability across temperatures in a similar
fashion to an earlier work onmotion of a single-molecule46.Models are thus
trained using low temperature frames (0.25 ⋅ Tmelt) and are tested using
frames from higher temperatures (0.75 ⋅ Tmelt or 1.25 ⋅ Tmelt). Results for

Table 1 | Training statistics for FLARE and NequIP

FLARE NequIP

ACE Total Train. Train. Speed GPU
Elem. Dim. Time (hr) Nwts (hr/epoch) Arch.

Ag 180 18.799 265580 4.037 A100

Au 220 39.308 612744 3.680 A100

Cd 364 11.365 265580 3.375 A100

Co 330 13.747 265580 2.760 A100

Cr 270 9.904 265580 4.728 A100

Cu 140 16.363 265580 7.271 V100

Fe 462 10.499 612744 46.000 V100

Hf 225 8.348 265580 5.440 V100

Hg 225 9.869 265580 1.780 A100

Ir 765 18.367 612744 17.121 A100

Mn 462 13.497 265580 13.455 V100

Mo 330 11.357 265580 11.074 A100

Nb 225 10.711 265580 3.234 A100

Ni 330 18.375 612744 10.897 V100

Os 225 11.833 265580 1.961 A100

Pd 225 10.420 612744 25.407 V100

Pt 225 10.270 265580 1.486 A100

Re 225 14.124 265580 3.484 A100

Rh 330 13.770 265580 0.850 V100

Ru 225 12.128 612744 6.453 V100

Ta 225 11.543 265580 10.428 A100

Tc 225 15.695 265580 2.695 V100

Ti 270 16.619 265580 17.391 V100

V 270 12.413 265580 11.146 V100

W 330 11.342 265580 8.543 A100

Zn 364 13.429 265580 3.288 A100

Zr 225 8.138 612744 2.564 A100

FLARE ACE descriptor dimensions, total training times, and number of CPUs, as well as NequIP
networkweights, training speeds, andGPUarchitectures employed for themodels used togenerate
the results in Fig. 2. All NequIP models were trained using a single GPU.
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FLARE (using ACE B2) and NequIP models are provided in Figs. 4 and 5.
We note similar accuracy trends to the full multi-temperature training set
results of Figs. 2 and 3. With regards to metal-dependent performance,
Group IX,X, andXImetals yieldmarkedly lower errors than early transition
metals (Group VIII and below) in forces, energies, and stresses for both
transferability tasks. Trivially, both FLARE and NequIP yield lower pre-
dictive errors when tested on ‘warm’ as opposed to the ‘melt’ frames. From
the model architecture perspective, the global trend noted in the previous
section remains consistent, namely that NequIP outperforms FLARE at the
B2 descriptor, yielding lower errors across nearly all of the metals.

Disparate learning behaviors of NequIP across TM23
In an effort to better understand the error as a function of the available
training set size and model parameters, we investigated the effect of the
NequIP architecture on the training exponent of a subset of these systems, a
procedure discussed in the original NequIP paper11. It has been observed
that the test error of deep learning systems follows a power law of the form
ϵ = aNb, where ϵ refers to the predictive error,N is the training set size, and a
and b are constants. In ref. 11, it was shown that equivariant interatomic
potentials, with the tensor rank, or angular rotation order of spherical
harmonics, ℓmax ≥ 1 exhibit higher values of b as compared to invariant
methods (ℓmax = 0), meaning they learn faster with the number of data
points. Here, we increase the value of ℓmax (see “Methods” section for more
detail) within the NequIP architecture, and demonstrate differences in the
learning behavior. The complete set of model weights, training speeds,
irreducible feature coefficients, andcomputational architecture areprovided
in Table 2. To determine differences in the learning behavior across a subset
of the metals, we vary ℓmax from 0 (limiting the model to invariant scalar
features) to ℓmax = 3 (a fully equivariantmodel). For twometals (AuandOs),

ℓmax is increased further to 4 and 5 to explore the effect of even higher
angular resolution of the equivariant representation. Models are trained on
data sets ranging from 100-900 frames taken from the 1.25 ⋅ Tmelt AIMD
trajectory for each metal, in increments of 200, and force MAEs are
employed to study learning dependencies on model architecture.

Au and Cu are chosen as a representative subset of the ‘easy’ metals,
whereas Ti and Os represent the more ‘difficult’ systems. From Fig. 6, we
draw three immediate conclusions. The first is that the error magnitude for
all metals is markedly affected by increasing ℓmax. Secondly, the learning
exponent m differentiates each model’s ability to learn the forces as more
training data is made available on ametal-basis: slopes are larger for the Au
and Cu models using ℓmax = 3, relative to Os and Ti, mean that Au and Cu
models learn fasterwith newdata thanOs andTi. TheCu andTimodels are
truncated at ℓmax = 3 given the results for Au and Os, where increasing the
angular resolution to higher values increases computational cost of infer-
ence but does not bring about marked increases in predictive accuracies.

Finally, a subtler and provoking conclusion from these data is that the
observed increase in learning exponent, as a function of increasing ℓmax,
revises previous understanding of the learning dynamics for equivariant
models. In the original work by11, power-law exponents were computed for
the water data set of Cheng et al.47 It was observed that the absolute value of
the learning exponent increasedwhenmoving from ℓmax = 0 to ℓmax > 0 and
the magnitude of the test error decreased, meaning that equivariant models
with ℓmax > 0 learn faster and attain lower overall error. That work also
observed ‘diminishing returns’, as the absolute value of the learning expo-
nent increases the most from ℓmax = 0 to ℓmax = 1, significant, but smaller
increases from ℓmax = 1 to ℓmax = 2, and then successive increases in ℓ pre-
senting more modest changes to the learning exponent. While we find that
increasing ℓmax tends to reduce the overallmagnitude of error in all cases, we

Fig. 2 | Full training and test set force, energy, and stress percent (%) errors for the
27 TM systems. Results are from FLARE, using the B2 invariant ACE descriptors
with ζ = 2 and NequIP. Errors for NequIP are almost uniformly lower than for
FLARE (with some exceptions in stress prediction). A version of this figure con-
taining the MAEs is provided in Fig. 3, and B1 results and MAEs for all other labels

and models are provided in the Supplementary Information. The layout for each
panel reflects the d-block of the periodic table, starting fromGroup IV (Ti, Zr, &Hf)
and extending to Group XII (Zn, Cd, & Hg). A uniform color scheme is employed
across all models and elements, where green represents the lowest % errors whereas
red represents the highest % errors.
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Fig. 3 | Full training and test set force, energy, and stress mean absolute errors
(MAEs) for the 27 TM systems. Results are from FLARE, using the B2 invariant
ACE descriptors with ζ = 2 andNequIP. Aside from the difference in error reporting,
this Figure is otherwise laid out identically to Fig. 2. Note thatMAE label values scale
with the magnitude of the forces, which in turn scale with the melting temperature

Tm of particular metals due to referencing AIMD temperatures against Tm on a per-
metal basis- in other words, higher melting point metals tend to have higher MAEs
not only due to model error but to larger variation in the force values. See Supple-
mentary Note 2, Supplementary Fig. 2, and Supplementary Figs. 30-56 for further
details.

Fig. 4 | Force percent (%) errors for the 27 TM systems across temperatures.
Training was done on 1000 frames at 0.25 ⋅ Tmelt and testing on either 1000 frames at
0.75 ⋅ Tmelt (left panels) or 1.25 ⋅ Tmelt (right panels). FLARE values are obtained

using the ACE B2 descriptor at ζ = 2. The formats again reflect the d-block of the
periodic table. A uniform color scheme is employed across all models, where green
represents the lowest % errors whereas red represents the highest % errors.
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also find that the changes in learning rate differ across all metals. However,
the higher angular-resolutionmodels do still present an overall lower error,
with evidence of possible saturation for high ℓmax values. Furthermore, the
biggest relative changes in the learning exponents do not occur between
ℓmax = 0 to ℓmax = 1 in all four cases (Au, Cu, Os, and Ti), contrasting with
the case for water in ref. 11, where the influence of equivariance was largest

from ℓmax = 0 to ℓmax = 1. Here, we see that the learning exponent steadily
increases with increasing ℓmax for Au until ℓmax = 4 and Ti until the upper
bound of ℓmax = 3 is reached. For Cu, the effect of ℓmax seemingly saturates
between 2 and 3 for Cu, which is similar to Os.We note that the number of
parameters (weights) and internal equivariant operations/tensor products
in the neural network varies significantly with ℓmax, which may also con-
found these results.

Finite size effects on learning difficulties
Wealso considered the effect of unit-cell size on the abilityof theseMLFFs to
adequately explore atomic representations up to longer cutoff radii. This
procedure is described in Section S7.B., where a 640 atom super-cell of Os
was surveyed in AIMD at 1.25 ⋅ Tmelt, and sequential frames were extracted
to yield 200 train and 50 test frames. A coarse grid test was then performed
using FLAREB2, up to an rcut of 10Å, ℓmax of 8, andnmax of 49, the results of
which are provided in Fig. 7. These results demonstrate that even if more
unique atomic environments are made available to the model radially,
within the cutoff of the representation, the ‘best’model still employs a short
cutoff of 4Å, and high angular (ℓmax = 6 or 8) and radial resolution (max = 9
and larger). This answers the question posed from the frames sampled
within the TM23 dataset, which are shorter ranged, such that most atomic
environments within the representation cutoff are periodic images. These
observations have direct implications in model design, where high angular
and radial resolutions are required for early transition metals, which to this
point, come with high computational cost to implement.

Influence of model accuracy on 0 K phonons
To illustrate the influence of model error onmaterial properties, a subset of
the FLARE B2 and NequIP models trained across TM23 were used to
calculate phonondispersions. Explicit details are provided in the “Methods”
Section. Results for Cu and Os are shown in Fig. 8, and exhibit different
levels of accuracy, consistentwith the trends discussed previously on energy,
force, stress labels. Again, Cu represents an ‘easy’ metal, whereas Os is
markedly more difficult to learn as evidenced by lower MLFF accuracy on
forces, energies, and stresses, as well as lower learning exponents. Each
model, using the full training set and the same as those presented in Fig. 2, is
compared to ground-truth phonon dispersions obtained with DFT calcu-
lations. In Fig. 8, both NequIP and FLARE (using ACE B2 with ζ = 2)
models for Cu perform very well in predicting the phonon band structure
compared to DFT, whereas this task is more difficult for Os, with

Fig. 5 | Force MAEs for the 27 TM systems across temperatures. Training was done on 1000 frames at 0.25 ⋅ Tmelt and testing on either 1000 frames at 0.75 ⋅ Tmelt (left
panels) or 1.25 ⋅ Tmelt (right panels). Layout is otherwise identical to Fig. 4.

Table 2 | NequIP network weights, training speeds, and GPU
architectures employed

Train. Speed Comp.
Elem.ℓmax Nwts (hr/epoch) Arch.

Au0 76346 0.019 V100

Au1 137274 0.068 V100

Au2 142138 0.223 V100

Au3 134970 0.551 V100

Au4 122234 0.818 V100

Au5 106974 1.126 V100

Cu0 75832 0.029 A100

Cu1 136760 0.216 A100

Cu2 141624 0.911 A100

Cu3 134456 2.017 A100

Ti0 75832 0.023 A100

Ti1 136760 0.151 A100

Ti2 141624 0.559 A100

Ti3 134456 1.291 A100

Os0 76346 0.011 V100

Os1 137274 0.042 V100

Os2 142138 0.126 V100

Os3 134970 0.289 V100

Os4 122234 0.462 V100

Os5 106974 0.666 V100

For the models at various values of ℓmax used to generate the results in Fig. 6. All NequIP models
were trained using a single GPU. All training speeds were computed for training sets of 900 frames.
The numerical coefficients of the irreducible feature representations were 64, 32, 16, 8, 4, and 2 for
models with ℓmax 5, 4, 3, 2, 1, and 0, respectively.
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disagreement seen for various phonon band features. Acoustic phonon
bands are better reproduced than optical phonon bands for NequIP and
FLARE, with NequIP exhibiting better accuracy in both domains. On the
other hand, acoustic and optical bands for Os are systematically under-
estimated by FLARE, but the overall shapes of the bands are in qualitative
agreement with DFT. Systematic weakening of the phonon modes in this
way can be explained by a slight overestimation of the Os HCP ẑ-lattice
vector of the primitive unit-cell predicted by FLARE (4.51 Å versus 4.35 Å
predicted byNequIP). A notemust bemade, however, that even though the
NequIP model exhibits marginally more accurate vibrational spectra for
bothCu andOs compared to FLAREusingACEB2, it is ~ 200x slower than
FLARE. The trade-off between accuracy and efficiency can be made in the
choice of models and architectures, and we provide the ‘best’ model para-
meters for both FLARE andNequIP in Section S6 fromminimization of the
forceMAE(andmaximizationof themodel likelihood forFLARE) to aide in
this decision.

Periodic trends
The observation of systematic variation in MLFF accuracy across the
composition space in the TM23 data set points to potential underlying
physical and chemical differences in the interatomic interactions for dif-
ferent metals. By comparing the performance of atomic representations
with different many-body order and angular resolution we can extract
insights into the fundamental complexity and character of bonding in
transitionmetals. To generate human intuition, we interpret these test error
trends in terms of both chemical and structural properties of metals. Qua-
litatively, the test errors observed from Fig. 2 loosely follow a trend with
respect to d-valence, where the metals with low numbers of valence d-
electrons exhibit higher errors compared to metals with full d-shells. In
addition to d-valence, the test errors also qualitatively follow a trend with
respect to the initial crystal symmetry, as is shown in Supplementary Fig. 3.
This is interesting, as the hexagonal crystals have two lattice parameters,
which may provide a more difficult test-case with respect to the angular
description of such materials. However, this does not explain the observed
errors for the body-centered-cubic metals. We note that work from nearly
70 years ago exploring the relationship between electronic structure and
crystal structure rationalizes the ground-state crystal symmetry attained by

metals to the differences in d-orbital participation in hybridization48. In
particular, they note that the weight of d-orbitals in hybridized orbitals
attains a maximum near the middle of the d-block. Later, we will show a
similar argument that helps to rationalize our error trends.

The higher relative errors of Group XII metals, disagreeing with this
trend with d-valence, are explained by the test errors for forces, energies,
and stresses of these metals being on the same order of magnitude as the
DFT noise, which are then compared to low-magnitude MAVs for these
metals with relatively low melting points. The trend with respect to
d-valence was first evaluated in the context of several previous studies
noting the appearance of directional-bonding ‘behaviors’ of early
transition-metals49–51. If substantiated, this correlation would partially
explain why early transition metals require higher order angular resolu-
tion, as evidenced in the previous sections using both FLARE andNequIP.
In refs. 49 and 51, the Cauchy pressure (defined by the relationship of
elastic tensor components as C12− C44) is used as an indicator for
directional bonding, which should be zero in pair-potentials. To deter-
mine if this trend was present, using Cauchy pressure as a potential label,
we extracted available elastic constants for each metal in TM23 from the
Materials Project repository and compared to the observed NequIP force
% error. This comparison is provided in Supplementary Note 4. Ulti-
mately, no correlation is observed, but thequality of this label to determine
directional bonding has also come under question52.

Electronic structure and density of states influence MLFF
accuracy
In this light, we additionally considered trends in another context, with
respect to electronic structure, e.g. d-valence via d-band center, which is
commonly used as a label to differentiate chemical behaviors among the
transition metals (e.g. molecular adsorption and reactivity, especially in
heterogeneous catalysis). The correlation of NequIP force % errors with the
d-band center of the metals is provided in Supplementary Fig. 4, where a
non-negligible linear trend is clearly observed between the force % test
errors on the full set of data from NequIP and d-band centers directly
computed here using a small set (3) of random frames from the melted test
set of each metal. We also provide a complete representative set of the
density of states plots of the TM23 metals in Supplementary Fig. 5. This

Fig. 6 | NequIP learning curves across ℓmax.Model force MAE as a function of the number of training frames using varying ℓmax values in NequIP for Au, Cu, Os, and Ti.
Power-law fits are made to the data in log-log space to obtain the training exponents. To determine the robustness of each fit, R2 values are also provided.
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result provides a strong indication that the discovered trends in test error
across TM23 reveal a connection between the electronic structure and the
many-body directional complexity of bonding present in these metals.

In seeking to quantitatively explain the test error trend among the
transition metals with a measurable feature of the electronic structure, we
also probed the correlation of test errors with DOS. This choice was made

because it gives us a lever to understand this relationship via the underlying
DFT parameters, specifically how the smearing parameter σe within the
VASP calculation influences the electronic occupations and resulting forces.
Efforts by Drautz et al.53,54 also established differences in angular characters
of transition metals, which required special treatment (e.g. explicit con-
sideration of valence occupancy and moments of the density of states) for

Fig. 7 | Large super-cell grid test over hyperpara-
meters for Os using FLARE. Force % Error
observed using FLARE B2, with power = 2 for a 640
atom unit cell of Os. The models are colored using a
blue-white-red scale, with dark blue denoting lowest
force % error. The best models employ rcut = 4.0 Å,
but with high values of ℓmax of 6 and 8, and nmax of 9.
Blank cells denote models that hit a memory limit
using a single, 48 CPU node for FLARE.
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the construction of bond order potentials. Methfessel and Paxton55 showed
that early transition metals have ‘more complicated’ density of states pro-
files, with attention paid to metals like Zr exhibiting steep variations in the
DOS at Efermi which, in the absence of smearing, results in ‘charge sloshing’
during SCF calculations as the Fermi level position fluctuates. We extend
this logic to the complexity of the PES as a function of atomic positions and
the resulting difficulty of learning the PES. Variations in local atomic con-
figurations directly influence the electronic states and thus the energy of a
configuration, and the occupancy changes of the bands (Kohn-Sham states
at and near Efermi are related to the potential energy surface). Given this
relationship, we then hypothesized that the labels computed using DFT for
early transition metals, which have sharper DOS at and near Efermi, would
thus be more sensitive to slight perturbations in the atomic positions than
metals with smoother states about the Fermi level.

We tested this hypothesis of the complexity of the DOS by system-
atically smoothing out the occupations for fixed configurations of Au, Cu,
Os, and Ti by recalculating the force/energy/stress labels with increasing
values of electronic smearing σe. The intuition is that increasing the σe value
smears the electron occupations, producing a smoother DOS and thus
letting us explicitly test the relationship between the complexity of the DOS
and theobserved test errors (even lettingσe vary tonon-physical high values,
e.g. 1.0 and 2.0 eV). Moreover, since we have direct access to the atomic
prediction targets, we can also determine the effect of changing this
smearing on the forcemagnitudes, and importantly, angular distributions of
force direction. These results are provided in Fig. 9, where panel (a) contains
test errors for FLARE models (with B2 and kernel power 2) trained on the
recomputed labelswith different values of artificial smearing.We can clearly
see that the test error associated with models trained on increasingly
smeared calculations decreases in Fig. 9a, with the high force% errors forOs
andTi drastically reducing, to such an extent that they resemble the errors of
AuandCu in the case ofTi (despite thedramatic differences in their electron
count) when a value of σe = 2.0 eV is employed.While we acknowledge that
these values of σe are extremely high, we find it striking that varying one
parameter can so significantly reduce model fitting error with all else equal.
This serves as a clue to what features of the elements are correlated with the
regression difficulty.

In Fig. 9(b), we directly show the effect of increasing σe on the
smoothness of the total d-DOS at and around Efermi, with σe = 2.0 eV
smoothing out all of the steep DOS features, most especially for Ti. We
correlate this increase in smoothness, and thus decrease in complexity of the
DOS with the sharp reduction in the test errors in panel (a). Moreover, we
look at the differences of the radial and angular components of the force
labels computed at σe = 1.0 and 2.0 eV relative to the original TM23 data at
σe = 0.2 eV in panel (c). Themiddle-right column isolates any differences in
the magnitudes of the forces for each atom across the entire training set,
whereas the right-most column primarily isolates differences in the angular
components, since the difference of the force vectors is first computed, then
followed by the magnitude and mean.We note that the right-most column
could also be shifted by a difference in the force magnitude. However, to

interpret these results, we have to look at the differences between the col-
umns. If the values in the ‘angular’ (right-most) column are substantially
larger than those in the ‘radial’ (middle-right) column, then we can quan-
titatively assert that the radial distribution of the force vectors is sensitive to
the value of σe, and this change then results in the earlier transition metals
becoming ‘learn-able’ using MLFFs with the same model architectures.

Perturbation theory explains relationship between density of
states and angular sensitivity of forces
We explain the error trends further using arguments from perturbation
theory. Consider a simple model system of an atom in a solid whose non-
interacting electrons experience an external potential V(r), which is pro-
duced by both the atom and the surrounding atoms in the solid. The elec-
tronic Hamiltonian is

H ¼ p2

2m
þ VðrÞ: ð3Þ

We assume for simplicity that this Hamiltonian produces eigenvalues and
eigenvectors falling into one degenerate valence band (VB) and one
degenerate conduction band (CB):

VB : hrjii ¼ ϕðrÞYLi
ðrÞ; H∣ii ¼ 0 ð4Þ

CB : hrjji ¼ ϕðrÞYLj
ðrÞ; H ∣j

� ¼ Δ ∣j
�
; ð5Þ

where YL(r) are spherical harmonics, L = ℓ,m is a combined index for
the principal and azimuthal quantum numbers, ϕ(r) is the radial
component of the orbitals (with 〈ϕ(r)∣ϕ(r)〉 = 1), and Δ is the energy
gap between the valence and conduction states. ϕ(r) is assumed to be
the same for each orbital for simplicity. To match the state manifold of
a typical transitionmetal, the combination of the VB and CBmanifolds
contains one s shell, one p shell, and one d shell, analogous to transition
metal valence and conduction states. While these ‘bands’ do not
account for bonding or the fact that the metal has no gap, they can be
used as analogies to the manifold of states slightly above and below the
Fermi level in ametal, with the key preserved feature being the different
angular momentum character of each orbital. We assume the basic
physical trends apply similarly well infinitesimally close to the Fermi
level and a small but finite energy difference Δ/2 away from the
Fermi level.

The density of this system is

nðrÞ ¼
X
i2VB

hrjiihijri ð6Þ

nðrÞ ¼
X
i2VB

jϕðrÞj2jYLi
ðrÞj2 ð7Þ

Fig. 8 | Phonon dispersion curves for Cu and Os
from DFT and MLFFs. DFT is a dashed, black
curve, NequIP is blue, and FLARE B2 is red. Each
model curve is from the full training set, and
employs optimal model parameters determined
from grid test.
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and the energy of the system is 0 (because the valence bands all have zero
energy). Now consider a perturbing potential

V ð1ÞðrÞ ¼ �
X
L

VLYLðrÞ: ð8Þ

This potential serves as a model for the effect of moving an ion in the
solid, which changes the potential experienced by the electrons. By first
order perturbation theory, the perturbation to the energy and valence
orbitals is

∣ið1Þ
� ¼ X

j2CB
� 1
Δ

j
�
∣VðrÞ∣ii ∣j� ð9Þ

∣ið1Þ
� ¼X

L

X
j2CB

CLiLjL
VL

Δ
∣j
�
; ð10Þ

where CLiLjL
¼ R dΩYLi

ðΩÞY�
Lj
ðΩÞYLðΩÞ (same as the Gaunt coefficients

except for the complex conjugation). The resulting perturbation to the
density is

nð1ÞðrÞ ¼ jϕðrÞj2
Δ

X
LL0

YLðrÞVL0PLL0 þ C.C. ð11Þ

PLL0 ¼
X
i2VB

X
j2CB

C�
LiLjL

CLiLjL
0 ; ð12Þ

where C.C. stands for the complex conjugate of the expression. With non-
integer occupation numbers fi, the density response PLL0 becomes

PLL0 ¼
X
i2VB

X
j2CB

ðf i � f jÞC�
LiLjL

CLiLjL
0 : ð13Þ

Similarly, the energy perturbation to first order is

Eð1Þ ¼ �
X
L

VL

X
i2VB

f iCLiLiL
þ
X
j2CB

f jCLjLjL

 !
: ð14Þ

Because the forces on the nuclei are determined by the electronic charge
distribution, we can interpret the trends in the MLFF force errors by ana-
lyzing the density response to a potential given by Eq. (11), and in particular
the angular dependence of the response givenby Eq. (13). In general, we can
expect that higher-order spherical harmonics in the density response will
result in the forces being more difficult to predict, since the forces are
determined by the interaction between the ions and electron density
distribution. Because CL1L2L3

¼ 0 if ℓ1+ ℓ2 < ℓ3, d to d transitions both
respond to higher-order VL terms (up to ℓ = 4) and produce higher-order
density fluctuations in n(1)(r) via Equation (11). Therefore, we focus on the

Fig. 9 | Force predictive accuracy is influenced with electronic structure of
training data. a FLARE (B2 with kernel power = 2) force percent test errors on
TM23 data recomputed using higher values of the electronic smearing σe for Au, Cu,
Os, and Ti. b Total d density of states for the four metals with different values of σe.
cMean absolute differences between forcemagnitudes (left column) andmean of the
magnitude of the difference between the force vectors. d Total density of states for

random frames from the `melt' test-set for Au and Os with and without modified
total numbers of electrons. The values provided in the legend represent the total
change in the number of electrons per atom. e FLARE (B2 with kernel power = 2)
force percent test errors for Au and Os with unmodified, and swapped electronic
configurations to illustrate the effect of artificially moving the Fermi level relative to
the d-DOS on the resulting model errors.
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role of these d to d transitions for different metals to explain the complexity
of the PES.

In the limiting case where the d shell is mostly occupied (i.e. the late
transition metals in Groups X-XII), there are few or no conduction d
electrons, so the sum over j in Equation (13) vanishes, resulting in a less
complex density response and therefore a simpler PES. However, when
there are d orbitals in both the conduction and valence bands, the sumover j
has finite contributions, and ℓ = 4 responses to the potential arise, making
the PESmore complicated. In this simplified perturbation theorymodel, the
magnitude of the ℓ = 4 density response should be roughly proportional to
(10−Nd)Nd, whereNd is the number of d electrons per atom in the system.
This intuition is confirmed for the metals with full d shells (Groups X-XII)
and the roughly half-filled shells (Groups VI-IX), as the latter have much
higher force errors than the former (Fig. 2). We also show this to be true
empirically, by artificially changing the number of electrons in the Au and
Os systems, effectively swapping their electronic configurations, which
changes the relative position of the Fermi level to theDOS, shown in Fig. 9d,
and recomputing the FLARE force percent errors on the test set in Fig. 9e.
We see that by changing the number of electrons, and thus shifting the
location of the Fermi energy, we can directly influence the difficulty of
learning the force labels.

In spite of having fewer d electrons than the metals with half-filled
shells, the metals in Groups IV and V with mostly empty (but importantly,
not completely empty) shells also have high force errors.We attribute this to
the fact that these metals still have a large d-character DOS both above and
below the Fermi level, similarly to the middle-group transition metals,
whereas the later-group transitionmetals have very little unoccupiedd-DOS
near the Fermi level. This trend is illustrated in Supplementary Fig. 5, which
shows that transition metals in Groups IV-IX have a large d-DOS both
above and below the Fermi level, whereas the d-DOS for Groups X-XII is
mostly or entirely below the Fermi level. Therefore, we expect the early
transition metals to each have a complex PES like the middle transition
metals, which is confirmed by Fig. 2.

The effects of smearing can also be consideredwithin the perturbation
theory model. Empirically, large, non-physical values of smearing sig-
nificantly decrease the force errors for early and middle transition metals
(Fig. 9a). The case of the earlier transition metals is complicated, but there
are a few reasons to expect the smearing to decrease the force errors. First,
smearing out the occupations causes all the m channels of the d shell to
becomepartly occupied (i.e. fi ≈ fj), which damps the density response in Eq.
(13). Second, as shown in Fig. 9b, smearing evens out the DOS of the
individual d orbitals, which results in similar occupation numbers fi for
different m values, which also causes Eq. (13) to vanish. Finally, larger
smearing smooths out the total d DOS near the Fermi level, especially in
difficult transitionmetals like Ti and Os (Fig. 9b), whichmight also smooth
the PES.

Ultimately, early transition metals are found to possess more struc-
turally sensitive many-body interactions, which we find to be correlated
with their more complicated electronic structures, and thus require higher
angular resolution of the MLFF tasked with learning forces, energies, and
stresses. Confirming this is also the overall reduction in test errormagnitude
as the angular resolution of NequIP is increased, as was demonstrated in
Section “TM23 Data Set Description”. This finding motivates further
equivariant MLFF development to access higher values of ℓmax with
increased computational efficiency, andwill be the followup investigation to
this work as these novelMLFFmethods have recently become available (e.g.
Allegro42 and MACE37).

Discussion
This work presents TM23, a benchmark data set for transition metals
comprised of high-fidelity first-principles calculations, and provides a sys-
tematic comparisonof two leadingMLFFarchitectures. FLAREandNequIP
models were tasked with learning force, energy and stress labels from the
same reference data, andmarked differences in performancewere observed.
These findings uncover persistent trends in MLFF accuracy across TM23,

with interatomic interactions in early transition metals (Group VIII and
below) being demonstrablymore difficult to capture accurately than Group
IX,X,XI, andXIImetals. These trendswere observednot only infinalmodel
accuracy but also in learning exponents, as a function of training set sizes
using NequIP. Importantly, these trends were then explained using a
detailed understanding of the electronic structures of these metals coupled
with an explanation rooted in perturbation theory. This work highlights the
utility of using systematically controllable geometric representations, such
as the atomic cluster expansion and equivariant neural networks, to uncover
subtle and complexphysical featuresofmetallic interactions in adata-driven
way from high-fidelity first-principles reference data. The accuracy trends
for FLARE and NequIP across the space of transition metals point to the
varying degree of importance of directionality and many-body character of
interactions, the complexities of which can be artificially reduced via
modification of the electronic structure in the underlying quantum
mechanical calculation. Ultimately, the TM23 data set provides some of the
most challenging reference benchmarks for currently leading MLFF
approaches, even if just for single-element bulk systems. Substantial
improvements are therefore still needed and motivated by these results for
future MLFF architectures, focusing on more efficient many-body repre-
sentations that can expand to higher radial and angular resolutions without
sacrificing computational efficiency. We prove this empirically, by estab-
lishing the sensitivity of the radial distribution of the forces to the electronic
bonding interactions within the metal. Systematic work is needed on using
this challenging data set to benchmark different MLFFmodel architectures
and regression methods. Another extension of this work can target the
augmentation of this data set, from which purpose-built models can be
trained for property prediction (e.g. melting point estimation, dislocation
dynamics, etc). We anticipate that our findings and reference data will help
both to anticipate appropriate model parameters for practitioners studying
transition metals and to advance model development for atomistic
description of heterogeneous metal catalysts, multi-element alloys and
many other applications where these elements are present.

Methods
Training data acquisition: density-functional theory and ab initio
molecular dynamics
The complete computational workflow is detailed in Fig. 1. Bulk config-
urations of all metals were extracted from the Materials Project (MP)
repository16, where the lowest-energy crystalline phase was selected for each
system. This workflow was employed for all systems, including those
exhibiting dynamic instabilities56 in bcc phases at lower temperature (e.g. Ti,
Zr, and Hf). Each phase was selected based on the convex hull energy, the
lowest being chosen. The selected phase was also confirmed to be experi-
mentally observed, as is provided on the MP ‘Materials-Explorer’ dash-
board. Reference MP identification numbers (MP-IDs) corresponding to
each metal structure employed are provided in Supplementary Table 1.
Super-cells of each metal were then created, sized such that at least 7 Å of
spacing existed between an atom and its periodic images. This lattice
requirement was chosen as a lower bound since previous FLARE force field
training displayed sufficient accuracy in modeling 2-body behavior at this
distance10,43. Computational efficiency in creating the TM23 data set was
also considered, as super-cells of this size contained 32 to 71 atoms. The
pymatgen library was employed to simplify super-cell creation and calcu-
lation setup57. To increase the diversity of atomic environments within each
super-cell, a single vacancy defect was introduced by randomly deleting an
atom. Intuitively, introduction of a vacancy should increase the number of
nontrivial atomic environments from the onset of each trajectory, and may
facilitate more complicated dynamics (e.g., vacancy diffusion) throughout
the course of the simulation.

Following creation of each super-cell and incorporation of a single
vacancy, ab initio molecular dynamics (AIMD) simulations were then
performed in three thermal regimes: ‘cold’metals surveyed at 25% of their
experimental melting temperatures Tmelt, ‘warm’metals at 0.75 ⋅ Tmelt, and
‘melt’molten configurations from dynamics surveyed at 1.25 ⋅ Tmelt. These
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relative temperatureswere chosen such that diverse atomic orderingswould
be captured within the training set, ranging from fully crystalline to
amorphous atomic environments. The experimental melting temperatures
associated with all elements are listed in Supplementary Table 2.

AIMD trajectories and density functional theory (DFT) calculations
were completed using the Vienna Ab initio Simulation Package (VASP,
version 5.4.1)58–61. The pseudopotentials employed for each metal are listed
in SupplementaryTable 2.AIMDtrajectorieswere surveryed for a total of 55
picoseconds using a timestep of 5 femtoseconds for all metals. The NVT
ensemble with the Nosé-Hoover thermostat62,63 and a Nosé–mass of 40
timesteps were employed. To reduce the computational cost incurred by
each AIMD trajectory, since sequential configurations of successive frames
are strongly correlated, eigenvalues for the wavefunctionwere only sampled
using the Γ k-point. While the density of the k-point mesh could influence
the dynamics that are observed throughout the course of a trajectory, one
can rely on this effect being less pronounced at longer timescales. This
assumption is valid given the stochastic nature ofMD trajectories, especially
using a canonical ensemble like NVT with the Nose-Hoover thermostat.

An important discussion is provided here with respect to the exclusion
of spin-polarization fromboth theAIMD trajectories and high-fidelityDFT
calculations. Spin-polarization can have a pronounced effect on the elec-
tronic structure for magnetic systems, and has been shown to influence the
vacancy diffusion energy64 up to 300 K. Moreover, we note that property
predictions couldbe affected bymagnetic effects, anduse of these forcefields
would require caution under such conditions. However, all metals in both
AIMDtrajectories at the ‘warm’ and ‘melt’ temperatures arewell above their
Curie temperatures, so in ‘real-world’ dynamics at these elevated tem-
peratures, spin ordering in the electronic degrees of freedom would not be
present. Thus, there is an inherent issue with combining high-temperature
AIMD for dynamics and static DFT for energy, force, and stress label cal-
culation: even if the configuration itself has a high potential energy (i.e. it is
far from an equilibrium 0 K ordered structure) and was sampled from an
AIMD trajectory above the Curie temperature, the configurations are ulti-
mately endowed with labels calculated for a wavefunction solved at
approximately 0 K electron temperature. Finite temperature electronic
smearing is supplied to each staticDFTcalculationvia σe inVASP, serving as
a crude approximation to elevated electron temperature. The σe value in
VASP was initially not changed to approximate the electronic temperature
of the systems as the temperature of the AIMD simulations was varied.
However, this valuewas varied to evennon-physically high values of 1.0 and
2.0 eV for a subset of the metals to provide the results in Fig. 9 of the main
text.Mixing the ‘warm’ and ‘melt’ training labelswith ‘cold’metals below the
Curie temperature, without anMLFF designed to account for the inclusion
of spin would likely cause the model to try to learn two different potential
energy surfaces– one with spin ordering and one without. Therefore, we
compromisedbyneglecting spin entirely for bothAIMDtrajectories and the
subsequent high-fidelity DFT calculations. While this means that the
sampled configurations and computed training labels for metals with sig-
nificant spin interactions (e.g. Fe, Co,Ni) are cruder approximations to their
‘real’ dynamics and potential energy surfaces, we leave these questions to be
answered in a future investigation.

Individual frames were then extracted from each AIMD trajectory at
intervals of 50 fs, excluding the first 5 ps of the trajectory. Frames from the
first 5 ps were excluded so that the extracted frames were given sufficient
time to equilibrate with the applied thermostat. This selection procedure
resulted in 1000 frames from each trajectory, yielding a total of 3000 frames
for eachmetal. In order to visualize the extent of the thermal disorder in our
trajectories, radial distribution functions averaged across all trajectories
were computed using the ASE package. The methods and RDF plots are
provided in the Supplementary Information.

Higher-fidelity single point energy, force, and stress labels were then
calculated using increased k-mesh densities converged on a per-element
basis. The k-point spacing was chosen such that the energy noise per atom
was below 1 meV per atom and the force noise was below 5 meV Å−1.
Element specific k-point grids were employed to respect inherent

symmetries of each system, as recommended by VASP. To further facilitate
convergence,Methfessel-Paxton smearing at the Fermi-level was employed,
with all metals using a value of 0.2 eV, but was eventually varied given to
generate the labels corresponding to themodels trained in Fig. 9.Moreover,
Fig. 9(d) employed the VASP ‘NELECT’ parameter, which allowed us to
artificially change the total number of electrons for the Au and Os labels,
effectively testing the effect of swapping their electronic configurations. All
calculations employed a cutoff energy of 520 eV, whichwas sufficient for all
ENMAX values provided by the pseudopotentials for all metals.

Element specific semi-core corrections and k-point densities
In the interest of reproducibility, we also provide a complete description of
the employed semi-core corrections used in each pseudopotential across the
metals, as well as the minimum k-point densities applied for each system,
provided in Supplementary Table 1. Moreover, to address the pertinent
question of DFT accuracy of this data set, we evaluate the correlation
betweenNequIPpredicted force, energy, and stress percent errors (using the
full training set) against the minimum k-point density observed along the
lattice vectors of each cell in Supplementary Fig. 1. The pseudopotential
naming convention maintains consistency with those presented in the
VASP documentation.

Gaussian processes in the fast learning of atomistic rare events
(FLARE) architecture
The Gaussian process machine-learning architecture implemented in
FLARE incorporates the atomic cluster expansion (ACE) descriptors and
the normalized dot-product kernel, described in detail elsewhere8. Unlike
the 2+3 body atomic environment representations used in previous
implementations of FLARE10, the representations for each individual atomic
environment in the current iteration are computed using the atomic cluster
expansion (ACE)ofDrautz36. Briefly,ACE represents the local environment
around each atom using a ‘fingerprint’ which projects the distribution of
neighboring atoms into a set of radial and angular basis functions. The GP
then compares the full set of atomic environments in the test frame to other
descriptor vectors in the training set to perform inference, which provides
the predictive energy, forces and stress, as well as quantitative uncertainties.
Here,wemaintain consistencywith the notation of refs. 8 and 36.WeuseB1
and B2 descriptors from the equation (28) and (29) of the original ACE
paper36, corresponding to rotation-invariant 2-body and 3-body repre-
sentations.Wenote that usingdescriptors of higher body order can improve
the accuracy, but is computation and memory intensive, especially con-
sidering the constructionof SGP requires storage of thedescriptors and their
gradients of the entire training data set. To develop amore scalable method
for higher body order descriptors and benchmark their performance with
the SGP will be the focus of our future work. For the kernel of SGP, we
choose the normalized dot product raised to the power (ζ) of 1 and 2, which
lifted the body order of our model. Specifically, the 2-body B1 descriptors
with ζ = 2 becomes effectively 3-body, and the 3-body B2 descriptors with
ζ = 2 becomes effectively 5-body. We provide ‘best’ model parameters for
both kernel powers, but only results for ζ = 2, since these are shown to be
systematically more accurate across all labels and metals.

Our GPmodel is trained by optimizing hyperparameters to maximize
the log likelihood function which describes the overall agreement of the
model with training data and the complexity of the model. For eachmodel,
the likelihood is optimized via gradient descent with respect to four
hyperparameters: the signal variance (σ), and the three noise variances for
eachof energy, force, and stress (σE, σF, andσS, respectively). The initial value
of signal variance is set to 2.0. Each noise parameter is initialized to the
expected error for the corresponding quantity, specifically: 0.001 eV per
atom, 0.05 eVÅ−1, and 0.005 evÅ−3, respectively. Additionally, depending
upon the temperature of the AIMD data fed into the model, the initial σF is
varied accordingly, since the force MAE scales with the temperature of the
AIMD trajectory (higher temperature configurations tend to have larger
forces acting on the atoms). For all FLARE training, hyperparameter opti-
mization was completed periodically throughout training until the final

https://doi.org/10.1038/s41524-024-01264-z Article

npj Computational Materials |           (2024) 10:92 13



frame addition, which varied depending on the size of the training set (from
a total of 100 to 2700 frames), as hyperparameter optimization requires re-
computing and inverting the covariance matrix at each step. Furthermore,
the gradient tolerance for the convergence criteria of L-BFGS-B optimiza-
tion method was set to 1E-4 for the marginal log likelihood, and the max-
imum number of iterations was set to an appreciably large value (200) to
ensure convergence, if necessary.

Lastly, an exhaustive grid-search through reasonable values of the
descriptor parameters was also completed for each metal and B1 and B2
respectively. These descriptor parameters are not optimized against the
likelihood at training time like conventional hyperparameters, and can
strongly influencemodel behavior. The radial cutoff rcut, radial basis length
(nmax), and angular basis length (ℓmax) were all tested over a broad range of
reasonable values. Interested readers may find the full results in Tables S13-
S16, whereas themain text only presents results for models that employ the
bestmodel parameters for eachACEdescriptor, whichwere selected using a
combination ofmaximum likelihood andminimum forceMAE. If a system
presented the scenario where force MAE was minimized with different
parameters when compared to maximum likelihood, the parameters were
taken from the minimum force MAE calculation. This scenario is plausible
since FLARE training was done on forces, energies, and stresses.

Equivariant message-passing graph neural network (NequIP)
architecture
We also employ the equivariant message-passing interatomic potential
NequIP11. NequIP has recently been shown to be highly sample-efficient,
and to be remarkably robust when compared to other existingMLmethods
in the MLFF literature on main-group benchmarks. The NequIP archi-
tecture is described in detail elsewhere11, but the key idea lies in learning
featurizations of the atomistic structure which are explicitly constructed to
be equivariant under symmetryoperationsof theEuclideangroupE(3). E(3)
is comprised of of translations, rotations, and mirror operations, covering
the physical symmetries present in atomistic systems. Equivariance is dis-
tinct from invariance by the fact that invariant quantities do not vary under
E(3) operations, whereas equivariant quantities transform appropriately
with E(3) operations. In other words, an invariant scalar does not change
under symmetry transformations, whereas e.g. an equivariant vector
transforms in a way that is commensurate with the group (see equation 3 of
ref. 42). An example of an invariant MLFF is the SchNet potential40, which
only operates on invariant descriptions of the geometry (distances rij),
whereas the equivariant NequIP potential additionally uses higher order
tensor representations to encode more complex geometric information
about atomic environments. NequIP uses these features in a message-
passing framework that represents the atomistic structure as a graph, and
makes predictions by iteratively propagating information along that graph
through a series of Nlayer update layers.

The training procedure for NequIP is similar to that of FLARE, where
the train-test splits are equivalent, but NequIP additionally withholds a
further percentage of the training data, 10% in this work, that is used to
monitor the progress of the ongoing training procedure. As was done for
FLARE, an exhaustive grid search over the hyperparameters of the model
was completed for each metal. The hyperparameters scanned for NequIP
were the: radial cutoff (rcut), number of layers (Nlayers), angular resolution of
the network (lmax), number of features (firreducible), learning rate, and force/
energy weights. The best model parameters for each metal are provided in
Supplementary Note 6. The best model for each metal was chosen via
minimizationof the force error on the validation set. To limit computational
inefficiency in observing convergence for each NequIP model, a learning
rate scheduler was employed, where the learning rate was reduced by 80% if
the forceMAEon the validation set did not improvewithin 100 epochs, and
training is concluded if the learning rate reduced to be less than 1E-05. In the
loss function, energies were weighted using the per-atom-MSE, and the loss
coefficientswere set to 1 for both the forces and stresses, shown inEqn. 30 of
ref. 42. To limit the amount of computational resources required for this
component, we set a hard-limit of 3 weeks of wall-time for training on a

singleA100GPU. Severalmodels convergedbefore this limit, butmost were
halted at this upper bound.

Phonon dispersion
Phonondispersion curveswere calculated forCuandOsusing thePhonopy65

and Phoebe packages66. First, the (1 × 1 × 1) primitive unit-cell of each
material was relaxed using LAMMPS, isotropically along each lattice vector
usingconjugategradientdescentuntil energyand force thresholdsof1 × 10−12

were met. To perform phonon calculations, Phonopy was used to generate
displaced super-cell structures from which forces for each super-cell were
calculated using FLARE and NequIP potentials. Then, Phonopy was used to
collect the force constants from each super-cell calculation and Phoebe was
applied to construct the dynamical matrix and plot the phonon dispersions.

DFT phonon calculations were then completed for eachmaterial using
the same workflow in order to provide ‘ground-truth’ labels with which to
compare the MLFF predictions. These DFT calculations were performed
using the same VASP pseudopotentials, k-point densities, and INCAR
parameters as the TM23 frames for Cu and Os.

Data availability
The data and related code in this paper are published in Materials Cloud
Archive68 with https://doi.org/10.24435/materialscloud:6c-b369.

Code availability
The details about VASP, a proprietary code, can be found at https://www.
vasp.at/. The details about FLARE, and NequIP, which are open-source
codes can be found at https://github.com/mir-group/flare and https://
github.com/mir-group/nequip, respectively.
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