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Computed entropy spectra for grain
boundary segregation in polycrystals
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Grain boundary solute segregation influencesmost bulkmaterial properties, andunderstanding solute
thermodynamics at grain boundaries is critical for engineering them.However, the vast grain boundary
space in polycrystals is challenging to evaluate due to its size, especially for the intrinsically hard-to-
compute segregation excess entropy. Here data sciencemethods are used to generate a database of
site-wise grain boundary segregation entropy spectra for 155 dilute binary alloys within the harmonic
approximation. The spectral framework allows scale bridging between the calculated atomistic site-
wise energy-entropy spectra and macroscopic segregation entropy estimates. The results affirm that
macroscopic averaging is not sufficient: a spectral treatment of grain boundary segregation is needed
to accurately model bulk temperature dependence of grain boundary solute segregation. The
calculated spectral entropy database and thermodynamic framework can be applied for both
understanding segregation experiments and alloy design exercises, paving the way to a finite-
temperature grain boundary genome.

Tailoring defects is a primary pathway to structure-property engineering in
materials1–6. In particular, in polycrystalline materials the grain boundaries
(GB) constitute a network of disordered regions percolating through the
bulk and dominating many properties. Understanding how solute atoms
partition toGBs is critical to alloydesigndue to the ability tocontrolmaterial
structure and properties7–13 via both thermodynamic14–17 and kinetic18–21

stabilization of the GBs.
EquilibriumGB segregation states are oftenmodeled with the classical

McLean isotherm22:

�XGB

1� �XGB ¼ XC

1� XC exp �Δ�Fseg
eff

kBT

� �
ð1Þ

where XC is the solute concentration in the crystals that is in equilibrium
with the GB at an average solute concentration �XGB. The free energy of
segregation, Δ�Fseg

eff is a combination of the segregation energy and excess
entropy of segregation (or the vibrational, magnetic, electronic and other
degrees of freedom changes upon solute segregation), i.e.,
Δ�Fseg

eff ¼ Δ�Eseg
eff -TΔ�S

seg
eff . These quantities represent the changesof energy and

entropy when the solute segregates from a bulk site to a grain boundary site,
and a negative segregation free energy indicates a preference for solute
enrichment. The enthalpic termorPΔV is assumed tobe small for solids and
neglected in this work23.

While the simplicity of theMcLean isotherm has enabled its usage in a
wide range of situations24–28, it neglects the atomistic nature of GBs, which
involves a broad range of local atomic environments29–34. Collapsing the true
spectral nature of GB sites to single-value effective quantities in Eq. (1) can
cause artificial concentration31,35, grain size36 and temperature
dependences28; Eq. (1) turns out to be merely a fitting function, and is only
valid over the narrow range of concentrations and temperatures for which it
is fitted. A better approach to GB segregation is to acknowledge the fun-
damental physics of GB site competition that defines it, and instead treat
grain boundary site equilibrium at site type ‘i’ with a local per-site segre-
gation energy (ΔEseg

i ), entropy (ΔSsegi ), or free energy (ΔFseg
i )29:

XGB
i

1� XGB
i

¼ XC

1� XC exp �ΔEseg
i � TΔSsegi
kBT

� �
¼ XC

1� XC exp �ΔFseg
i

kBT

� �
ð2Þ

Such calculations for site-wise quantities in polycrystals were not
computationally feasible even in the recent past, but due to computational
advances, there has been progress in this vein such as the tabulation ofΔEseg

i
spectra for a great many alloys based on both interatomic potentials37 and
first principles calculations38. Critical to that effort is the use of data science
or machine learningmethods, which help traverse themanymillions of GB
sites in a polycrystal.
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The recent availability of GB segregation energy spectra now allows
alloy designers to evaluate Eq. (2) for a wide range of dilute binary alloys.
However, the site-wise excess entropy,ΔSsegi , has beenmostly neglected and
rarely discussed in the past literature due to the extensive computation
needed to evaluate it, especially for large polycrystalline structures. Entropic
effects cannot generally be neglected at finite temperatures and are con-
sidered critical for future alloy design efforts25,26,39. The existing literature for
this site-wise quantity consists of data for only a few alloy systems and from
small coincidence site lattice (CSL) boundaries which cannot fully represent
complex grain boundary networks40–50.

With recent advances in computation of vibrational entropy using
multiscale approaches to the harmonic approximation45,51–53, and in the use
of data science sampling methods34,37,38 via local atomic environment
descriptors54,55, the tools to address GB segregation entropy more broadly
are now all in place. We have therefore developed a rapid assessment fra-
mework for the polycrystallineΔEseg

i -ΔSsegi spectra to quantify the extent of
vibrational effectsusing the isothermofEq. (2).This is the goal of thepresent
work: to exhaustively explore segregation entropy for common FCC tran-
sition metals (Ag-, Al-, Au-, Cu-, Ni-, Pd- and Pt-based alloys) that have
published interatomic potentials56–102. In addition to providing considerably
broader views on the role of entropy in GB segregation, such methods also
produce a large quantitative atlas of segregation energy and entropy, for the
interpretation of experiments and new efforts in alloy design.

Results and discussion
Accelerated model and validation
We first summarize our process in Fig. 1, which begins with site sampling
(Fig. 1a–d). Our sampling process is inspired by prior work inwhich a small
number of sites is selected to represent the full distribution of GB sites in a
polycrystal37,38. Here we begin with a pure solvent 20 × 20 × 20-nm poly-
crystalline structure from ref. 37, then further anneal it using the corre-
sponding interatomic potential, resulting in the structure in Fig. 1a. The GB
sites are characterized via local atomic environment (LAE)descriptors, with
each LAE vector containing 1015 smooth overlap of atomic positions
(SOAP)54,55 elements (Fig. 1b shows only one example SOAP component).
Next, we apply principal component analysis (PCA) for SOAP vector
dimensionality reduction as shown in Fig. 1c. The explained-variance ratios

indicate that the 1015 features can be easily collapsed to the first ten PCA
components while capturing all the essential features of the local atomic
environments.

To sample the site distribution in an efficient and representative
manner, we apply K-means clustering to select 500 GB sites for per-site
segregation energy (relaxation in Fig. 1e) and entropy calculations (Fig. 1f).
We fit segregation energy spectra directly by minimizing negative log-
likelihood functions (without, e.g., per-site linear regression with local
atomic environments as used elsewhere37,38).We show an example of such a
segregation energy spectrum in Fig. 1g fitted with a skew-normal dis-
tribution with skewness (α), position (µ), and size (σ) parameters31,103,104:

PiðΔEseg
i Þ ¼ 1ffiffiffiffiffi

2π
p

σ
exp � ΔEseg

i � μ
� �2

2σ2

" #
erfc

α ΔEseg
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� �
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2

p
σ

� �
ð3Þ

For the site entropy distribution, we employ additional methods. For
the 500 sites selected above, we perform the excess entropy calculation from
ref. 51 basedona full harmonic calculation around the solute site, coupled to
a local harmonic approximation45,53,105 at greater distances, an approach that
balances computational efficiency with accuracy (details are listed in
Method and Supplementary Material 1). We then calculate sample means
(μ) and covariance matrices (Σ) amongst the energies and entropies of the
sampled sites, casting the full distribution as a bivariate Gaussian:

Piðx ¼ ΔEseg
i ;ΔSsegi

� �Þ ¼ 1

2π
ffiffiffiffiffiffi
Σj jp exp � 1

2
x � μ
� �T

Σ�1 x � μ
� �� �

ð4Þ

In Fig. 1h, we plot an example kernel density estimate for the segre-
gation energy and entropy from 500 GB sites for Ni(Zr)102.

An important feature of the distribution in Fig. 1h is that there is a
correlation between site energy and entropy; this is known as the ‘com-
pensation effect’ in literature on GB segregation106. As we have demon-
strated in ref. 51, this correlation permits substantial simplification of the
mathematics of Eq. (2), because it allows information about site energy
(which is easily computed) to be projected into information about site
entropy (which is not). Such mapping can be conducted accurately with a

Fig. 1 | Entropy estimation workflow. a The polycrystals used in this work were
obtained from the database in ref. 37 and further annealed and relaxed. b SOAP
feature vectors are constructed for grain boundary site samplings via principal

component analysis140–142 c and sampled via K-means clustering143,144 d. The sites
near K-means centers are used to calculate substitutional segregation energy e and
vibrational entropy f for spectral fitting in g and h, exemplified here for Ni(Zr)102.
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linear energy-entropy compensation40,51:

ΔSsegi ¼ χΔEseg
i þ ΔSsolute;GB0 ð5Þ

where χ and ΔSsolute;GB0 are system-specific parameters that characterize the
correlation between site energy and entropy, and which we can aspire to
tabulate for many materials. Typically, in correlated systems such as this,
sample correlations stabilize close to the true population value when
conducting randomsampling at less thanN = 500107; weuseN = 500 and the
application of K-means clustering should converge more quickly than
random sampling, so we expect high accuracy for the estimation of χ and
ΔSsolute;GB0 . To validate this expectation we report root mean squared errors
(RMSE) of this approach with respect to a randomly sampled 500-site
validation set in Supplementary Material 3.

Having established the framework in Fig. 1, we turn our attention to
validating the acceleratedmodel against full spectra computed exhaustively
on full polycrystals. We show example spectra for a 13 × 13 × 13-nm
Ni(Pt)58 system in Fig. 2a. The full lines in blue represent the 500-sample
distribution derived from the accelerated sampling model, plotted atop the
dashed lines corresponding to the full spectrumof about 50,000GB sites; the
agreement is very good. The projected spectra, on both the energy and
entropy axes, also show good agreement between the two. In a practical
sense, spectra such as these provide all the informationneeded for a rigorous
prediction of grain boundary segregation for dilute alloys, which can be
encoded in the formof thedistribution functions. In the large grain size limit
(XC ≈Xtot, the total system solute content), grain boundary concentration
can be evaluated by integrating the site density function of Eq. (4) weighted
by local concentration (XGB

i ) of Eq. (2):

�XGB ¼
Z Z

d4Eseg
i d4Ssegi PiX

GB
i ð6Þ

In Fig. 2b, we show outputs of such calculations estimated from
the spectra in Fig. 2a for 1 at.% solute loading, and demonstrate the
similarity between the accelerated and full spectrum. We have per-
formed this kind of exhaustive validation for several Ni-based systems
(Pd, Ag, Au, and Cu), and obtained reasonable accuracy of grain
boundary concentrations as shown in Supplementary Material 1
(errors are below 5% relative to the full spectra).

With this validation we proceed with confidence in the methods,
and turn our attention to the assessment of the spectra for dilute FCC
binary alloys for which there are published interatomic potentials56–102.
More details of the method are described in the method section and
Supplementary Material 1. The segregation energy spectra are listed in
SupplementaryMaterial 2, and the energy-entropy spectra are listed in

SupplementaryMaterial 3. The dataset shown in this work is published
in the repository108.

Segregation energy and entropy spectra
A major outcome of the workflow in Fig. 1 is that we can now very
quickly estimate full, polycrystalline grain boundary segregation
spectra, inclusive of both energy and entropy terms, with just a small
number of computations on true polycrystals, amplified by data science
principles. As an example, we show the full spectra for several Cu-based
systems in Fig. 3. This includes systems with a wide range of behaviors,
with different distribution centers, different widths and different
degrees of energy-entropy correlation (ρ). The spectra for all of the
systems explored in this work are presented in SupplementaryMaterial
2, 3, along with the bivariate normal fitting parameters that allow
reconstruction of the full distribution on the basis of Eq. (4). This
collection of 155 binary GB segregation spectra is one of the most
exhaustive of its kind, and should permit detailed comparison with
experimental data, new efforts in alloy design, and, as we shall see
below, further commentary on the nature of excess entropy in grain
boundary segregation problems.

One challenge with GB segregation spectra generally is that their
accuracy is only as great as that of the interatomic potentials from which
they derive. Taking Cu(Ag) as an example binary system, we show
ΔEseg

i -ΔSsegi spectra from three different interatomic potentials58,60,61

proposed in the literature in Fig. 4a–c. Their corresponding isotherms at
1 at.% total solute content as a function of temperature are calculated via
Eq. (4) and plotted in Fig. 4d–f, both with and without site-wise excess
entropies. These isotherms depict how site-wise spectra unfold into the
average GB concentrations often measured in experiments, and to what
extent vibrational entropic effects play a role in grain boundary segre-
gation (or i.e., the ratio between �XGB

w=ΔSsegi
and �XGB

w=oΔSsegi
). The spectra along

with the isotherm solver in the Supplementary Material can be used to
calculate a dilute isotherm of interest. However, the results in Fig. 4 also
provide a note of caution about any results based on the use of intera-
tomic potentials, as the three nominally identical alloys in Fig. 4 have
rather different predicted GB segregation spectra, and expect different
levels of GB solute enrichment as a result. The inclusion of disordered
structures in, for instance, metallic glass and grain boundary potentials,
and other more accurate methods such as machine learning
potentials109,110 may yield more accurate forces required for accurate
entropy calculations.

The Importance of excess entropy on segregation
Although it is common toneglect excess entropy inGB segregation analysis,
this is generally only appropriate at the lowest temperatures. The present
survey of many alloy systems highlights the fact that there are significant

Fig. 2 | Validating the accelerated model. Segre-
gation energy-entropy spectrum of Ni(Pt)58

obtained from the accelerated model and a full
13 × 13 × 13-nm system are plotted atop one
another for comparison in a. The spectra can be well
modeled with a bivariate Gaussian distribution and
used to calculate the GB concentrations shown in
b in the large grain size limit with Xtot = 1 at.%.
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entropic contributions due to the spectrality of GB site free energies. This is
apparent in the Cu(Ag) system shown in Fig. 4 where in Fig. 4f the GB
concentration can be much lower due to the compensation effects which
penalize the negative tail of segregation distribution51, and thus affect how
solute redistributes with increasing temperature31. To amplify this point, in
Fig. 5, we show the isotherm normalized errors, β, defined as:

β ¼ j�XGB
w=ΔSsegi

� �XGB
w=oΔSsegi

j=�XGB
w=ΔSsegi

ð7Þ

where �XGB
w=ΔSsegi

and �XGB
w=oΔSsegi

indicate equilibrium grain boundary solute
concentration predicted with and without excess entropies in Eq. (2). This
quantity, β, is essentially the relative contribution of excess entropy to the
grain boundary concentration. The figure shows that excess entropy is very

important to accurate predictions: even at moderate temperatures, most
systems differ more than ~15% (medians lie above 0.15 in Fig. 5) from the
true segregation state. At higher temperatureswhere entropy becomesmore
important, this error becomes much higher, with some cases having more
than 100% error at β>1. There are several edge cases in the uppermost
quartile such as Cu(Ag) in Fig. 4f for which GB concentrations can be
overestimated by more than a factor of two, affecting alloy design criteria
such as nanocrystalline stability111,112.

Grain boundary segregation spectra and enthalpy-entropy
relationship
In prior works40,51, per-site GB segregation energy and entropy have been
found to be strongly correlated for a few dilute Ni-based systems, as

Fig. 3 | Energy-entropy grain boundary spectra of
Cu-based alloys.Density plots of solute segregation
energy and excess vibrational entropy from the
acceleratedmodel of Fig. 1 are shown for the systems
with the largest correlation (ρ) or energy-entropy
‘compensation effect’ for a given solute. See Sup-
plementary Material 3 for the full data for all sys-
tems, and fitting parameters that can be used to
reproduce these distributions.

Fig. 4 | Cu(Ag) segregation behavior. Spectra for
three Cu(Ag) systems58,60,61 based on different pub-
lished interatomic potentials are shown in a–c with
their corresponding spectral segregation isotherm in
d–f both with and without excess entropies. The
choice of potential has a significant impact on the
output of segregation models, especially as regards
the site excess entropy and the compensation effect.
See Supplementary Material 3 for the full spectral
information.
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suggestedby the compensation effect of Eq. (5).Withmore access todata for
155 alloy systems, the present work permits evaluation of that linear rela-
tionship more broadly. Looking at the example Cu-based systems in Fig. 3,
we find that essentially all systems exhibit positive correlations of the kind

expected; all of thedistribution functions slant at least somewhat to the right.
Some of the interatomic potentials show quite high correlations (two-thirds
of the example systems in Fig. 3 have ρ > 0.7); the other systems such as
Cu(Al)65, Cu(Co)96 and Cu(Cr)80 are exceptions, with correlations as low
as 0.24.

Looking at all of the systems represented in SupplementaryMaterial 3,
wefind that positive energy-entropy correlations are indeed typical; the only
exceptions of Ni(Co)91 and Ni(Cu)82 are essentially uncorrelated and by
happenstance can be fitted with a slightly negative slope with a low mag-
nitude of order χ ~ 10−5 1/K, suggesting negligible excess entropies in both
systems. The generally positive correlations are in agreement with the
previously reported data for both atomistic simulations40,113,114 and
experimentally-realized macroscopic compensation effects26,115.

The energy-entropy compensation effect has been discussed in an
experimental context by using the classical McLean isotherm of Eq. (1) and
fitting it to experimental measurements of GB segregation for many
materials26,115. The result is indeed a linear correlation of the form of Eq. (5),
not in a site-wise fashion, but as a broad average trend across the literature;
see for example the review in ref. 25. The availability of site-wise data for 155
alloys permits a first comparison of the aggregated trends across all alloys,
which we perform in Fig. 6. Here we plot all 155 χ and ΔSsolute;GB0 (i.e., the
compensation slope and intercept, respectively) from all the present com-
puted alloy systems, along with those from the aggregated experimental
literature data from ref. 26. There are two slopes representing experimental
data, as there are two clusters of results in the literature, which have been
suggested to correspond to substitutional (blue▲) and interstitial (red ×)
GB segregation, respectively, in Fe-based alloys. Note that the present
computations are strictly based on substitutional segregation, although it is
instructive to see both substitutional and interstitial experimental trends in
Fig. 6.

The comparison in Fig. 6 suggests a rather remarkable disagreement: the
site-wise compensation slope for agivensystemisoftenanorderofmagnitude
lower than the experimental McLean effective energy-entropy compensation
(~10−4 1/K for per-site spectra vis-à-vis ~10−3 1/K for bulk substitutional
compensation in refs. 25,116). In other words, the experimental data predict
substantially higher entropic effects and associated temperature dependences
ofGBsegregation (if applied to any single site). This disagreement is causedby
a mathematical artifact in the use of Eq. (1) with experimental data: the
collapsing of spectral GB quantities to a single effective McLean segregation
energy is known to result in artificial temperature dependences of the fitted
segregation quantities28,117. When Eq. (1) is fitted to experimental data, the
effective segregation enthalpies and entropies, in turn, produce artificially
large compensation effects; the neglect of spectralitymisses the true physics of
temperature-dependent site selection, and in turn requires artificially high
‘average’ entropies in order to fit the data.

Thus, at the atomic site-level, the true ‘compensation effect’ in GB
segregation is remarkably small compared to expectations based on prior
experimental literature. By extension, it is also somewhat surprising how
important that very small compensation effect is: we still observe many

Fig. 5 | Excess entropic effects in GB segregation prediction. A boxplot showing
the distribution of all 155 alloy systems and the importance of excess site entropy on
GB segregation; the y-axis shows the isotherm prediction errors when excess
entropies are excluded, normalized by the GB concentration predicted with excess
entropies. For this computation the bulk concentration is taken as 1 at.% in the large
grain limit (i.e., XC ≈Xtot). The box lower and upper bounds denote the first and
third quartiles respectively, with the centerlines representing the medians. The
whiskers extend by 1.5 times the interquartile range beyond the box bounds.

Fig. 6 | Atomistic vis-à-vis macroscopic compensation effects. Atomistic com-
pensations (χ and4Ssolute;GB0 ) are plotted along with the macroscopic compensation
slopes and intercepts from ref. 25 estimated from multiple substitutional and
interstitial solute segregation in α-iron summarized in refs. 162,163. Error bars for
155 atomistic χ and 4Ssolute;GB0 are calculated from 80% sample bootstrapping.

Fig. 7 | Solute occupancy of segregation spectra.
The density of segregation sites is shown (on the
basis of full free energies) as a function of tempera-
ture (dashed lines), as well as the solute occupancy of
those sites (site density times local concentration
XGB
i ) for 1% solute content in a–c. Spectra are shown

for a Al(Mg)70, b Ni(Pt)58 and c Ni(P)99, which have
three quite different values of the energy-entropy
compensation parameter χ, whose effects penalize
the negative tail of the distributions.
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systemswith drastic entropic effects in Fig. 5. This occurs because the role of
entropy is more complex in a spectral system, affecting which sites are
occupied in subtle ways, and preferentially compensating the negative tail of
the segregation energy distribution. For demonstration we show how solute
atoms occupy Al(Mg)70, Ni(Pt)58 and Ni(P)99 grain boundaries in Fig. 7a–c
respectively. These three systems represent three differentmagnitudes of the
compensation slope χ. Al(Mg) in 7a has a small χ and a low melting point,
resulting in near-constant free energy distributions with temperature. As a
result, the negative tail is populated at all temperatures, and hence there are
negligible entropic effects. Conversely, there is very strong compensation of
the negative tails in 7b and 7c as temperature rises for the systems with
moderate (Ni(Pt)58) to large χ (Ni(P)99). Themost energetic segregation sites
simply disappear due to the strong effects of site entropy, leading to very
strong temperature dependence of segregation, and thus very high apparent
segregation entropy of the system on average. This effect of the shifting free
energy spectrum lies at the heart of the discrepancy between theory and
experiment in Fig. 6: the lack of a spectrum in the experimental data analysis
requires the use of a multifold inflation on the role of excess entropy.

The results in Figs. 6 and 7 provide a note of caution in the use of
averaged quantities forGB segregation problems; neglecting the full spectral
nature of the problem can give energy and entropy quantities that are off
significantly from the true, physical values they are expected to have. This
calls for innovation in the approach to interpreting GB segregation
experiments. Such experiments are not trivial, and fitting just a single seg-
regation spectrum requires tremendous experimental data118. With recent
advances in nanoscale resolution characterization tools119–124 and the spec-
tral framework now better established29,31,51, we hope that both future
experimental effort andmore accurate free energy estimations will allow us
to accurately determine spectra of GB segregation. A similar note of caution
should be applied to the theoretical viewpoint as well; although spectral
forms like the ones used here have a soundphysicalmotivation, they too can
miss important details relevant to the interpretation of experiments. For
example, the framework and results presentedhere are limited to dilute limit
segregation within the harmonic approximation. Anharmonicity may
become large, and grain boundary structural transformations and com-
plexion energies may play major roles at high temperatures124–130. Solute-
solute interactions are not discussed here, but should in principle also be
included via the frameworks described elsewhere35,131,132. Thus, the sig-
nificant gap between experiment and theory in Fig. 6 needsmore concerted
attention from both the experimental and theoretical points of view, but
clearly should be resolved with a spectral view of segregation.

In summary, dilute polycrystalline grain boundary segregation vibra-
tional entropy spectrahave beenestimated and tabulated for 16Ag, 22Al, 10
Au, 35Cu, 51Ni, 11 Pdand10Pt-basedbinary alloys. These entropy spectra
are verydependent on thefitting of the corresponding interatomicpotential,
but in aggregate they speak to a positive correlation between segregation
energy and excess entropy as expected physically. These energy-entropy
compensation slopes are mostly positive in agreement with the past theo-
retical literature. However, the spectra here show large discrepancies com-
pared to experimental compensation effects; the experiments unfortunately
have strong artificial entropic effects from neglecting the spectrality of
segregation energy andentropy, instead forcing afitwith average or effective
thermodynamic quantities. This work thus significantly encourages the
usage of spectral isotherm models for more accurate descriptions of GB
segregation.

Methods
Polycrystalline structures
To quantify segregation energy and vibrational entropy of intergranular site
solute segregation, we use the polycrystals published in refs. 38,133. We
anneal at 0.4 of the melting temperature for 100 ps then quench to 0 K at
2 K/ps via Nose-Hoover thermostat/barostat at zero pressure followed by
relaxation with the FIRE134,135 algorithm, using as termination criterion that
the force norm of all atoms lies below 10−6 eV/Å. Both annealing and

relaxation are conductedusing the Large-scaleAtomic/MolecularMassively
Parallel Simulator (LAMMPS) software package136–139.

Statistical and data science framework
After obtaining the base elemental polycrystals, we follow a statistical pro-
cedure in the spirit of refs. 37,38. We first characterize atoms using the
smoothoverlap of atomic positions (SOAP) descriptor viaQUIPPY54,55with
rcutSOAP ¼ 6 Å,nmax ¼ lmax ¼ 12 andGaussianwidthσSOAP ¼ 1 Å, resulting
in 1015 SOAP features. Dimensionality reduction is carried out with
principal component analysis140–142. K-means clustering143,144 is then applied
to sample 500 sites for calculating segregation energy and vibrational
entropy. Ten bulk sites are chosen randomly from amongst those sitesmore
than 3 nm from any grain boundary site identified by Adaptive Common
Neighbor Analysis145,146 implemented in the OVITO software package147.

Vibrational entropy estimation
We employ the multiscale algorithm developed in our previous work of
ref. 51. The free energy is calculated via43,45,53:

F ¼ U0 þ kBT
X3N
i

ln 2 sinh
hvi
2kBT

	 
� �
ð8Þ

with U0 the potential energy from the interatomic potential and the sum-
mation conducted over the eigenvalues obtained from dynamical matrices
calculatedwith LAMMPS148,149 andT ¼ 0:6Tmelt. Vibrational free energy of
segregation is defined via the double difference:

ΔFseg
vib;i ¼ Fsolute

GB;i � Fpure
GB;i

� �
� Fsolute

bulk � Fpure
bulk

� �� ΔEseg
i ð9Þ

where superscripts ‘solute’ and ‘pure’ denote whether the site is occupied by
a solute or a solvent atom. The subscript indicates the site (GB, ‘i’ for a GB
site type i and ‘bulk’ from the average of 10 bulk sites).We include details of
such calculations in SupplementaryMaterial 1. Note that while the entropy
changes of harmonic oscillators converge at high temperatures, there could
be anharmonicity, volumetric effects and grain boundary transitions not
incorporated in this study43,51,126,129.

Spectral segregation isotherm
A Jupyter notebook is implementedwith the Python libraries103,150–159 and is
provided for readers to calculate segregation isotherms equivalent to Figs.
4 and 5 for the tabulated alloys. At finite grain sizes, the following solute
balance equation is solved160:

Xtot ¼ 1� f GB
� �

XC þ f GB�XGB ð10Þ

where �XGB can be calculated via the isotherm of Eq. (2) with the rearranged
form of XGB

i :

�XGB ¼ R R
dΔEseg

i dΔSsegi PiðΔEseg
i ;ΔSsegi Þ

1þ 1�XC

XC exp
ΔEsegi �TΔSsegi

kBT

� �h i�1 ð11Þ

and f GB is the grain boundary atomic fraction which scales with grain sizes
(d)36,161. The commonly used form of f GB is:

f GB ¼ 1� d � t
d

	 
3

ð12Þ

with t as the grain boundary thickness. We note that with increasing tem-
perature,ΔSsegi =kB becomes significant vis-à-visΔEseg

i =kBT andhence alters
solute equilibrium at finite temperatures. The isotherms used here also
neglect solute-solute interactions and short-range ordering at grain
boundaries.
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Details on numerical implementations can be found in Supplementary
Material 4. The large grain limit of Eq. (11) is used throughout the paper
without the finite size correction of Eqs. (10) and (12). The finiteGB form is
included in the supplemental Jupyter notebook for use with nanocrystalline
alloys.

Data availability
Calculated segregation energies and entropies along with their corre-
sponding polycrystalline structure are available on the repository108.

Code availability
A notebook for integrating the isotherm of Eqs. (10–12) is included in the
Supplementary Material. A notebook for processing the dataset is included
in the repository108.
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