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Lack of rigorous reproducibility and validation are significant hurdles for scientific development across
many fields. Materials science, in particular, encompasses a variety of experimental and theoretical
approaches that require careful benchmarking. Leaderboard efforts have been developed previously
to mitigate these issues. However, a comprehensive comparison and benchmarking on an integrated
platform with multiple data modalities with perfect and defect materials data is still lacking. This work
introduces JARVIS-Leaderboard, an open-source and community-driven platform that facilitates
benchmarking and enhances reproducibility. The platform allows users to set up benchmarks with
custom tasks and enables contributions in the form of dataset, code, andmeta-data submissions.We
cover the following materials design categories: Artificial Intelligence (AI), Electronic Structure (ES),
Force-fields (FF), Quantum Computation (QC), and Experiments (EXP). For AI, we cover several types
of input data, including atomic structures, atomistic images, spectra, and text. For ES, we consider
multiple ES approaches, software packages, pseudopotentials, materials, and properties, comparing
results to experiment. For FF, we compare multiple approaches for material property predictions. For
QC,webenchmarkHamiltonian simulations using various quantumalgorithmsandcircuits. Finally, for
experiments, we use the inter-laboratory approach to establish benchmarks. There are 1281
contributions to 274 benchmarks using 152 methods with more than 8 million data points, and the
leaderboard is continuously expanding. The JARVIS-Leaderboard is available at the website: https://
pages.nist.gov/jarvis_leaderboard/

The accelerated design and characterization of materials of technological
interest has been a rapidly evolving area of research in the last few decades1.
Materials design requires approaches spanning a variety of length and time
scales2. For atomistic design, the methods employed may include compu-
tational approaches such as density functional theory, tight-binding, and
force-fields, and highly accurate approaches such as quantumMonte Carlo
or quantumcomputations. Awide range of approaches are employed above
the purely atomistic level, such as mesoscale and finite-element methods3.

Similarly, experimental characterization approaches include X-ray diffrac-
tion, vibroscopy, manometry, scanning electron microscopy, and magnetic
susceptibility measurements.

Moreover, data produced from these techniques can be of various
types: chemical formulae, atomic/micro-structures, images, spectra, and
text-documents4–6. The data analysis and curation methods add further
complexity to benchmarking efforts, which are extremely important7–18. For
example, more than 70 % of research works were shown to be non-
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reproducible19–21, and this number could be much higher depending upon
the field of investigation. Although there have been significant advances in
individualfields, there is anurgent need to establish a large-scale benchmark
for systematic, reproducible, transparent, and unbiased scientific
development.

Developing suchmetrology is a highly challenging task, even for one of
thesemethods, let alone the entire galaxy of availablemethods. Projects and
approaches, such as the materials genome and FAIR initiatives1,22, have
resulted in several well-curated datasets and benchmarks. These, in turn,
have led to several materials informatics applications23–26. Although elec-
tronic structure approaches such as density functional theory (DFT) tend to
be more reproducible than other categories16,27, a systematic effort must be
made tovalidate thesemethods andestimate the error inpredictions.Hence,
it is highly desirable to have a large-scale benchmarking platform in the
materials science field for reproducibility and method validation.

Massive progress in fields such as image recognition/image classifica-
tion (ImageNet28), protein structure prediction (AlphaFold29), large lan-
guage modeling (Generative pretrained transformers (GPT))30) has been
possible primarily because of well-defined benchmarks in respective fields.
With regards to AI methods for structure-to-property predictions31,
benchmarking efforts have enabled drastic improvements in the accuracy of
predicted properties (i.e., moving away from descriptor-based predictions
and including graph neural networks in themodel architectures to improve
accuracy).

For deterministic electronic structure methods such as DFT, extensive
benchmarking of software and different DFT approximations (functionals,
pseudopotentials, etc.) has led to increased reproducibility and precision in
individual results and workflows27,32. Such benchmarks allow a wide com-
munity to solve problems collectively and systematically. In addition, since
there already exists highly accurate models for specific tasks (i.e., energy
prediction), more comprehensive evaluations of the models are required so
that the performance ranking is not overfitted to one biased data source.We
believe that such a universal and large-scale set of benchmarks formaterials
science will significantly benefit the scientific community.

To this date, several benchmarks of individual methods have already
been developed. For artificial intelligence (AI) methods, there have been
several benchmarks and leaderboards, such as MatBench33. MatBench
provides a leaderboard for machine-learned structure-based property pre-
dictions of inorganic materials using 13 supervised machine learning tasks
(thermodynamic, tensile, optical, thermal, elastic, and electronic properties)
from 10 datasets (including DFT and experiment)33. Similar AI bench-
marking and leaderboard platforms include MoleculeNet34,
OpenCatalystProject35, sGDML36,37, mLEARN38, MatScholar39, and
AtomAI40. For electronic structure methods, some of the notable bench-
marks include the work by Lejaeghere et al.27, Borlido et al.41, Huber et al.42,
Zhang et al.43, Tran et al.44 and several other projects45–48. Other method
benchmarks include phase-field benchmarks by Wheeler et al.49, Lindsay
et al.50, andmicroscopy benchmarks such as byWei et al.51. A few additional
benchmarking studies inmaterials science include refs. 52–64. More details
on some of these benchmarking efforts are provided in later sections.

The goal of this project is to provide amore comprehensive framework
for materials benchmarking than previous works. In particular, most
existing efforts: 1) lack the flexibility to readily incorporate new tasks or
benchmarks, which is a limitation given the continuous discovery of new
materials and quantities in science, 2) are specialized towards a single
modality, such as electronic structure, rather than providing a compre-
hensive framework that can accommodatemultiplemodalities, 3) offer only
a limited set of tasks or properties, 4) are primarily focused on computa-
tional methods, overlooking the importance of experimental benchmark-
ing, and 5)make adding contributions to existing platforms rather complex,
creating a barrier to entry. In general, there is a need to simplify the process
of user contributions to leaderboards to foster broader community
engagement.

In this work, we present a user-friendly, comprehensive approach to
integrate the benchmarking of both computational, experimental and data-

analytics methods. The JARVIS-Leaderboard framework (https://pages.
nist.gov/jarvis_leaderboard/) covers a variety of categories: Artificial Intel-
ligence (AI), Electronic Structure (ES), Force-field (FF), Quantum Com-
putation (QC), and Experiments (EXP). It also covers various data types,
including atomic structures, spectra, images, and text. This project can be
used to: (1) check the state-of-the-art methods in respective fields, (2) add a
contribution model on an existing benchmark, (3) add a new benchmark,
(4) compare new ideas and approaches to well-known approaches. To
enhance reproducibility, we encourage each contribution to (1) be from
peer-reviewed articles with an associated DOI for all contributions, models,
and tools, (2) include a run script to exactly reproduce the results (especially
for computational tools), (3) include ametadatafilewithdetails suchas team
name, contact information, computational timing and software (with
software version)/hardware used in order to enhance transparency.

It is important to note differences between a typical data repository and
a benchmarking platform. Some of the key distinguishing factors between a
usual large data repository (such as JARVIS-DFT) and the present leader-
board effort are: 1) the leaderboard containswell-characterized/well-known
samples/tasks (i.e., with digital object identifier/peer-reviewed article links)
with all the scripts/metadata easily available to reproduce the results rather
than just being a look-up table to find data, 2) large data repositories usually
containmore variation inmaterials chemistry/structure and less variationof
methods while the leaderboard focuses on a larger number of method
comparisons.

For example, the JARVIS-DFT contains DFT data for more than
80,000 materials and millions of material properties with a few specific ES
methods and hence there are only a few entries for, say, the electronic
bandgap of Silicon from different methods, while the leaderboard contains
electronic bandgaps for Silicon using more than 17 ES methods from var-
ious contributors. Similarly, JARVIS-ALIGNN project contains AI models
formore than 80 properties/tasks ofmaterials, i.e., just onemodel for a well-
known property such as formation energy, while there are more than 12
methods for formation energy task in the leaderboard (as discussed later).

Furthermore, the JARVIS-leaderboard attempts to bridge together
multiple categories of methods (AI, ES, FF, QC, EXP) and types of data
(single properties, structure, spectra, text, etc.) with the goal of broadening
benchmarking efforts across several fields of study. What differentiates the
JARVIS-Leaderboard from platforms such as MatBench33, is that
MatBench33 provides a handful of tasks to evaluate ML methods on larger
datasets (i.e. 104 entries, most of which are from the Materials Project65). A
potential drawback of this approach is that the resulting performance
rankings could be biased towards the data distribution of a single source. In
contrast, the JARVIS-Leaderboard covers a broader range of datasets and
properties and provides a better overview of model performance.

Recently in the field ofmachine learning inmaterials science, there has
been a fixation on performance metrics for newly developed models. This
begs the question of whether or not benchmarking can be destructive to the
development of new methods if these new methods cannot immediately
outperform the previous state-of-the-art approaches. This also begs the
question of whether or not benchmarking can lead to overfitting or poor
generalization66,67.

Therefore, we outline how the leaderboard can also be used to identify
and focus on some of the major challenges in different fields, such as: (1)
how to evaluate extrapolation capability68? (2) why is it difficult to develop a
reasonably good AI model with similar accuracy to electronic structure
methods?, (3) how canwe reduce the computational cost of higher accuracy
electronic structure predictions (such as bandgaps and bandoffsets)?, (4)
howdowe identify examples ofmaterials that require high-fidelitymethods
(beyond DFT accuracy)?, (5) how can we identify material space where
methodological improvements need to be targeted?, (6) how can we
establish figures of merits for mesoscale and device-scale models such as
phase field and technology computer-aided design (TCAD)?, (7) how can
we make atomistic image analysis quantitative rather than qualitative?, (8)
and how do we develop and benchmark multi-modal models (such as text,
image, video, atomic structures, etc.)69?
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The JARVIS-Leaderboard is seamlessly integrated into the existing and
well-established NIST-JARVIS infrastructure70,71, which hosts several
datasets, tools, applications, and tutorials for materials design, motivated by
thematerials genome initiative1. The framework is open access to the entire
materials science community for progressing the field collectively and sys-
tematically. JARVIS (Joint Automated Repository for Various Integrated
Simulations)70,71 is a repository designed to automate materials discovery
and optimization using classical force-field, density functional theory,
machine learning calculations, and experiments. Nevertheless, the leader-
board is not limited to NIST-JARVIS infrastructure and can be linked with
other external projects as well.

Since its creation in 2017, JARVIS has had over 50,000 users
worldwide, over 45 JARVIS-associated articles have been published, and

over 80,000 materials currently reside in the database. As these numbers
continue to multiply, significant effort on external outreach to the
materials science community has been an additional goal of JARVIS,
with several events (https://jarvis.nist.gov/events/) such as the Artificial
Intelligence for Materials Science (AIMS) and Quantum Matters in
Materials Science (QMMS) workshops and hands-on JARVIS-Schools,
which have had hundreds of participants throughout the last few years.
Based on the level of success and support from the community with
regard to the existing JARVIS infrastructure, we believe that the inte-
gration of the JARVIS-Leaderboard will have a similar level of engage-
ment and success, with a growing number of contributors from all over
the world (in government, academia and industry) and in different sub-
fields of materials science.

(a) Homepage snapshot

(b) AI formation energy example plot

(c) AI formation energy example table

Fig. 1 | Leaderboard snapshot with an example output for AI-based formation
energy per atom model on the JARVIS-DFT (dft_3d) dataset. a Homepage
sanpshot showing list of categories and number of available contributions at the time
of writing, b an example AI regression model benchmark for formation energy with
several contributions. The methods are sorted based on the mean absolute error
(MAE) values. Lower MAE values indicate higher accuracy, c explicit table for the

plot in panel b.Links to individual csv.zip (AI-SinglePropertyPrediction-for-
mation_energy_peratom-dft_3d-test-mae.csv.zip), json.zip (dft_3d_formation_e-
nergy_peratom.json.zip), shell script (run.sh) and detailed info (metadata.json) files
are provided to help enhance reproducibility. Such results plots and tables are
available for each benchmark in the leaderboard.

Fig. 2 | A flow-chart showing the processes
involved in uploading a new contribution to the
leaderboard. The jarvis_populate_data.py scripts
generate a benchmark dataset. A user can apply their
method, train models, or run experiments on that
dataset and prepare a csv.zip, a metadata.json file,
and other files in a new folder in the contributions
directory. The contributions can be locally checked
by the user using jarvis_server.py script. Then the
folder can be uploaded to a user’s GitHub account by
the automated jarvis_upload.py script involving
several GitHub uploading steps. The administrators
of the JARVIS-Leaderboard at NIST will verify the
contributions and then finally, it will become part of
the leaderboard website.
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Pytest, Admin-
check
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Results and discussion
Leaderboard overview
At the homepage, information regarding the number of methods, bench-
marks, contributions, and datapoints are provided. A snapshot of the
homepagewith various categories is shown in Fig. 1a. Clicking on one of the
entries (or searching in the ’Search’ box) such as “for-
mation_energy_peratom” opens a new tab with available contributions.
This new tab consists of 1) a description of the benchmark, 2) a plot of
various available contributions (as shown in Fig. 1b), 3) explicit table for the
plot (as shown in Fig. 1c). For each contribution, links are provided to the
submitteddata (in .csv.zip format), reference benchmarkdata (in JSONfile),
a shell script to reproduce the contribution (run.sh file) and metadata file
(metadata.json). Themetadatafile contains details about the teamname, the
electronic mail address of the contributor(s), DOI number, software (with
software version), hardware, instrument, computational timing and other
relevant details of a benchmark.

There are several categories for the benchmarks, including AI, ES, QC,
FF, and EXP and their combinations. Some example contributions and a
summary table are also provided on the webpage to help a user navigate
through the project. The summary table breaks down the available infor-
mation into categories and sub-categories of different methodologies.

JARVIS-Leaderboard is an evolving project, so additions to the project
are anticipated,welcome, and easy tomake.We showageneralflowchart for
adding a new benchmark to the leaderboard in Fig. 2. The user can populate
the reference dataset (with well-defined data splits) used for a specific
benchmark (e.g., for 2D exfoliation energies in JARVIS-DFT dataset using
an AI method: “AI-SinglePropertyPrediction-exfoliation_energy-dft_3d-
test”). AI benchmarks have pre-defined training/validation/test identifiers
and target data in a corresponding json.zip file, while other methods have
only reference test set for evaluation because they do not require model

training like an AI method does. For most benchmarks in the leaderboard,
experimental data is used as the reference data.

There is a helper script jarvis_populate_data.py to generate a bench-
mark dataset. A user can apply their method, train models, or run experi-
ments on that dataset and prepare a csv.zipfile, ametadata.jsonfile, and also
if possible, a conda environment.yaml/Nix/Dockerfile and a run.shfile. This
step helps to reproduce the benchmark. These files are kept in a folder with
the name of the folder as the team name and can be uploaded to a user’s
GitHub account by the automated jarvis_upload.py script. This script
automatically forks the parent usnistgov/jarvis_leaderboard repo for the
user, adds the team-name folder with its files in that forked repo, runs a few
minimal sanity checks on the new contribution, and then makes a pull
request to the parent repo. The contribution addition and automated test-
ings are carried out using GitHub actions. The administrators of the
JARVIS-Leaderboard at NIST will verify the contributions and then finally,
it will become part of the leaderboard website.

This project is available on GitHub at: https://github.com/usnistgov/
jarvis_leaderboard. The administrators of the JARVIS-Leaderboard atNIST
will fully oversee the upload of contributions and benchmarks. A tree
structure of the repo is shown in Fig. 3. There are twomain directories in the
repo: (1) benchmarks (reference) and (2) leaderboard contributions (for
various leaderboard entries), as shown by the green highlighted boxes in
Fig. 3.

The “benchmarks” directory has folders for the AI, ES, QC, FF, and
EXP categories. Within them, there are sub-folders for specific sub-
categories such as (1) SinglePropertyPrediction (where the output of a
model/experiment is one single number for an entry), (2) SingleProperty-
Class (where the output is class-ids, i.e., 0,1,.. instead of floating values), (3)
ImageClass (for multi-class image classification), (4) TextClass (for multi-
label text classification), (5) MLFF (machine learning force-field), (6)

Requires:

• Six components in the filename

• metadata.json, run.sh

Benchmarks (json.zip) Contributions (csv.zip)

benchmarks
contribu�ons

Fig. 3 | A tree diagram for directory and file structure in the leaderboard. There
are twomain directories in the repo: (1) benchmarks (reference) and (2) leaderboard
contributions (for various leaderboard entries). In the “benchmarks” directory, there
are folders for the AI, ES, QC, FF, and EXP categories. Within them, there are sub-
folders for specific sub-categories. In the “contributions” directory there is a col-
lection of folders that consists of .csv.zip, metadata.json files, and optionally a

Dockerfile and run.sh file for available contributions from each method. The csv.zip
file contains entries of identifier (id) and corresponding prediction values as
obtained by the corresponding model/method. These test identifiers (such as
JVASP-1408)must match the test set ids in the json.zip file in the benchmarks folder
for the metric measurements to work.
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Spectra (for multi-value data) and (7) EigenSolver (for Hamiltonian
simulation). In each of these sub-folders, there are .json.zip files with well-
defined reference datasets and available properties as also available in the
JARVIS-Tools package https://pages.nist.gov/jarvis/databases/. To avoid
storage of large files in the GitHub repo, the actual datasets are part of
JARVIS-Tools and are stored in the Figshare repository with specific DOIs
and version numbers.

Next, in the “contributions” directory, there is a collection of folders
that consist of .csv.zip, metadata.json files, and optionally a Dockerfile and
run.sh file. The csv.zip file contains identifier (id) entries and corresponding
prediction values obtained by the correspondingmodel/method. These test
identifiers (such as JVASP-1408 in Fig. (3)) must match the test set IDs in
the json.zip file in the benchmarks folder for the metric measurements to
work. Each of the csv.zip files must contain six components in the filename
to place the contribution in the appropriate webpage. The components are
the categories (such as AI), sub-categories (such as ImageClass), property
(such as bravais_lattice), dataset-name (such as stem_2d_image as available
in the JARVIS-Tools database page), and data-split. For entries in the AI
category, the data is in train-validation-test splits (using a fixed random
number generator). For the current leaderboard format, we report the
performance accuracy in the test set only. These files can be easily edited
with common text editors. Each contribution folder (e.g. alignn-model)
consists of one or several csv.zip files corresponding to each benchmark
(such as for formation energies, bandgap, etc.).

Model-specific details are kept in the metadata.json file with required
keys such as model_name, project_url, team_name and an email address.
Users can keep other data such as the uncertainty, time taken, and instru-
ment/software/hardware used in the metadata file as well. For computa-
tional models, the run.sh script can be used to reproduce the contributions
completely as a single command line script or job submission script. If a
method requires additional steps or details beyond a simple command line
script, a user can upload a README file containing the additional details.
For enhanced reproducibility, we also optionally allow users to include a

Dockerfile and an ipython/Google-colab notebook for each benchmark.
These notebooks can be used to run the contributions in the Google-cloud
without downloading anything locally.

In addition, there is a “docs” directory in the JARVIS-leaderboard. The
docs folder consists of a directory structure that is similar to the benchmarks
folder with categories names (AI, ES, etc.), and sub-categories (such as
SinglePropertyPrediction, ImageClass etc.) with markdown (.md) files that
will be converted automatically into corresponding html pages for the
website. For each benchmark (i.e., json.zip file), a corresponding docs entry
(i.e.,mdfile) should be present. Anewbenchmarkmust be associatedwith a
peer-reviewed article and a DOI, in order to have trust in the reference
benchmark data. A new benchmark must also be verified by the JARVIS-
Leaderboard administrators.

As mentioned above, there already exist several other materials
science-specific benchmarks. We compare some of these benchmarks in
Table 1 based on the categories that are included. We find that there is no
single, large-scale benchmark encompassing the various fields as in the
JARVIS-Leaderboard.Also, thedata format,metadata, andwebsite for these
different leaderboards vary significantly. Hence, having a uniform way to
compare different methods would greatly help the materials community.

Benchmarks
The benchmarks consist of experimental data, density functional theory, or
numerical solutions that arewell-knownandhave already beenpublished in
peer-reviewed articles or books. A benchmark should be considered the
“ground truth” for a particular task. Therefore, it is mandatory to have a
digital object identifier (DOI) for each benchmark from a peer-reviewed
article. There can be multiple contributions from different models or
experiments for a benchmark, e.g., contributions from various DFT func-
tionals in predicting the electronic bandgap of silicon with respect to
experimental data. Typically, for electronic structure (ES) method-based
contributions, the benchmarks are experimental data; for artificial intelli-
gence (AI)methods, they are the test split; for force-field (FF)methods, they
are electronic structure data; for quantum computation (QC), they are
analytical results; and for experiments (EXP), they are other experiments.
Currently, we have more than 270 benchmarks in the leaderboard. The
JARVIS-Leaderboard flexible and dynamic nature allows the addition of
new benchmarks as well.

Each entry in the benchmark dataset consists of a unique identifier.
Most of these datasets are integrated into JARVIS-Tools databases page
already (but not limited by it), with an associated JARVIS ID number (JID)
and are backed up in Figshare, Google Drive and NIST-internal storage
systems. The number of entries can vary from a few (which is especially
applicable for experimental and high-accuracy computational methods,
where generating a very large dataset is not feasible in terms of time and
resources) to hundreds of thousands of entries in a dataset.

An overview of the dataset can be found in Fig. 4. Considering all
possible entries in the dataset, we have close to 7 million datapoints. For
example, an atomic structure can have multiple properties calculated, such
as bandgaps and formation energies, among other properties. We find the
JARVIS-DFT-3Ddataset to have the largest number of entries. Considering
unique systems, we can find the distribution in Fig. 4b). In this case, qe-tb
(fitting dataset for ThreeBodyTB.jl72) is one of the largest datasets available
in the leaderboard. Note that these datasets contain all varieties of data
modalities, such as atomic structure, images, spectra, and text. In Fig. 5, we
show the fractional distribution of periodic table elements in the entire
dataset. We find that the most common elements are C, N, O, Cu, which is
similar to the natural abundance of these elements.

Experimental results are uploaded as benchmarks (i.e. what is regarded
as the reference). In the absence of experimental data, high-fidelity com-
putational methods can be used as a reference. If there are multiple
experimental measurements available in the literature, each can be indivi-
dually added as separate benchmarks (i.e., different json.zip files to distin-
guish one benchmark from another) and users can submit contributions for
each of them. As time and the materials science field progresses, certain

Table 1 | Comparison of benchmark infrastructure available
for materials design methods for several categories

Projects AI ES FF QC EXP

MoleculeNet34 ✓ - - - -

MatBench33 ✓ - - - -

OpenCatalystProject35 ✓ - - - -

SciML169 ✓ - - - -

SGDML37 ✓ - - - -

GuacaMol170 ✓ - - - -

Alchemy171 ✓ - - - -

ML4Chem172 ✓ - - - -

DGL-LifeSci173 ✓ - - - -

CCCBDB174 - ✓ - - ✓

Delta-DFT27 - ✓ - - -

SSSP175 - ✓ - - -

OpenKIM176 - - ✓ - -

IPR177 - - ✓ - -

JARVIS-FF178 - - ✓ - -

Mlearn38 - - ✓ - -

QuantumVolume179 - - - ✓ -

SupermarQ180 - - - ✓ -

Olympus181 - - - - ✓

Golem182 - - - - ✓

HTE-MC183 - - - - ✓

JARVIS-LB ✓ ✓ ✓ ✓ ✓
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experimental data may need to be revisited (i.e. more accurate measure-
ments in the future or results are reported that contradict previous
experimental data). As a response to this, separate reference (experimental)
benchmarks can be added, and users will be able to plot and compare the
evolution of these benchmarks over time.

In addition, Leaderboard users can raise an issue on GitHub pertaining
to reference benchmarks. The administrators will also upload a README
file,which contains additional informationabout the experiments conducted,
including associated DOI, the experimental conditions and provide details if
additional experiments conducted on the samematerial/property exist in the
literature. The experimental conditions described in the README file can be
important when comparing the reference benchmark to calculated results,
whichmaybe indifferent conditions than the experiment (i.e., thebandgapof
a material is never measured at 0 K, as DFT predicts).

Contributions to the leaderboard in the form of user-submitted
experimental data can be compared with previous experiments, electronic
structure methods or other numerical results. ES-based contributions are
benchmarked against experimental results and can be compared with other
ES methods. QC data can be compared with classical computation data or
exact analytical results. For FF, contributions can be compared to DFT (or
other ES data) or high-level interatomic potential benchmark suites

(specifically for MLFFs)38. For AI, a test dataset is used. Unlike other
methods, AImethods can have both “train” and “test” datasets, while others
have only “test” sets in the corresponding dataset. For AI methods, if the
“train”dataset is not provided andonly “test” is given, the benchmark canbe
used for checking extrapolation behavior such as vacancy formation energy
benchmarks.

Analysis of benchmarks
Presently, the leaderboard has 5 categories, 10 sub-categories, 152methods,
274 benchmarks, 1281 contributions and 8714228 datapoints. In this sec-
tion, we show a few of the hundreds of example analyses that can be carried
out using the available benchmarks and contributions. In Fig. 6,we show the
MAE of the AI-computed formation energy and ES-computed bandgap for
Si for a variety of contributions in the leaderboard. In Fig. 6(a) we see the
comparison of 12 AI models (each AI model had a well-defined
80:10:10 split for training, validation and testing respectively from the
JARVIS-3Ddatabase) andfind the kgcnn_coGN73 has the highest accuracy/
lowest error, followed by Potnet74, Matformer75 and ALIGNN76,77 models.
This can be attributed to the fact that as we include more structural infor-
mation and use deep-learningmethods rather than descriptor methods, we
get improvement in accuracy.

Fig. 4 | Distribution of data in each dataset. a all
entries in leaderboard, b entries with unique iden-
tifiers. Note that one identifier (such as JVASP-1002
for silicon) can have multiple properties (such as
bandgap, bulk modulus etc.). A script to generate
this figure is also provided on the leaderboard
website as the leaderboard is continuously evolving.

Fig. 5 | Periodic table element distribution for entries in all the datasets.This is calculated by taking into account all the element specific entries normalized by total entries
i.e. these are percentage probabilities.
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Similarly, in Fig. 6(b) we compare the bandgap of Si using several
methods and find GLLB-sc78 calculated with GPAW79 to yield the lowest
error,whileG0W0

80 (VASP81,82),GW0
80 (VASP81,82), TBmBJ83,84 (VASP), and

DMC85 (QMCPACK86) methods follow. This can be attributed to the
inclusion of the discontinuity potential (GLLB-sc78) or kinetic energy den-
sity (TBmBJ83,84) in the density functional or incorporating many-body
physics (G0W0

80, GW0
80, DMC85) into the methodology, which can lead to

improved accuracy for bandgap prediction. Also, similar methods such as
PBE87 data from Open Quantum Materials Database (OQMD)88,89,
AFLOW90 and Materials Project65 compare well with each other.

In Fig. 6(c) we compare how several classical FFs compute the Voigt
bulk modulus of Si. In Fig 6(d) we compare several MLFF models for the
forces of Si. We compare various pretrained MLFFs and other MLFFs we
specifically trained on the MLEARN38 dataset (PBE-based DFT data). We
see that ALIGNN-FF91 andMatGL92 perform similarly for the prediction of
forces. Fig. 6(d) provides a comprehensive comparison of MLFFs that are
trained and tested on the same dataset and pretrained models that were
trained elsewhere. The comparisons are presented in tabular form for all the
benchmarks on the leaderboard website. We have provided tools and
notebooks in the leaderboard GitHub repository that can be used for
making such plots for all the available benchmarks and contributions. A
collection of such figures for method comparison is available in the sup-
plementary information (Supplementary Figures 1-298). We have also
added interactive plots for such comparisons on thewebsite. These tools can
aid in identifying examples of materials that require high-fidelity methods
beyond the accuracy of DFT in order to understand their underlying

properties. In addition, these tools can be used to validate electronic
structure methods and provide insight for error estimation.

The leaderboard has a large number of benchmarks and can enable a
more comprehensive comparison of different methods for better revealing
their respective advantages and limitations. For instance, neural networks
outperform descriptor-based models by a large degree in all of the 10
regression tasks in the latestMatbench33 leaderboard. To check if this is also
the case for 44 regression benchmarks in the current JARVIS leaderboard,
we compare the performance of the best descriptor-based model to that of
the best neural network. As shown in Fig. 7, the best neural network out-
perform the best descriptor-based model in 34 tasks, but only 14 out of 44
(32%) tasks see a performance difference bymore than 20%. This indicates
that descriptor-based models are still competitive with respect to neural
networks, especially considering their better interpretability and orders of
magnitude lower training cost66,67. Notably, the best descriptor-basedmodel
is found to outperform the best neural network in 10 tasks including those
with 104-105 training data, opening up interesting questions and potential
direction to further model improvement. For instance, the inferior perfor-
mance of neural networks in the regression tasks for the heat capacity and
hMOF data may be related to the recently revealed incapability of graph
neural networks in capturing periodicity93.

Analysis of error metrics
Although ametric such as theMAE can be useful to comparemethods for a
specific benchmark, it is difficult to compare across differentmethods, since
MAE values can differ substantially. Hence, we use the mean absolute

Fig. 6 | Examples of benchmark categories avail-
able on the JARVIS-Leaderboard. a Artificial
intelligence (AI) formationenergy for test set with
5572 materials in JARVIS-DFT 3D dataset,
b electronic structure (ES) Si (JARVIS-DFT ID:
JVASP-1002) bandgap, c classical force-field (FF)
based Voigt bulk modulus of Si and d machine
learning force-field (MLFF) based forces for Si. We
provide Jupyter/Google colab notebooks to easily
plot such comparisons for all available benchmarks.
Also, similar analysis figures for all the available
benchmarks are available in the Supplementary
Information (Supplementary Figs. 1–298). As a
note, these plots are a current snapshot of the lea-
derboard, and it is possible that new and more
accurate models will be developed and added here in
the future.
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Fig. 7 | Relative performance computed as the ratio of the MAE difference
between the best descriptor-based model and the best neural networks to the
MAE of the best neural networks in the AI regression benchmarks. The bench-
mark name and the corresponding best performing neural network are indicated in

the left and right y axis, respectively. For all the considered AI benchmarks, the best
descriptor-based model is the tree-based model using Magpie185 and Voronoi-
tessellation201 features. As a disclaimer, these plots are a current snapshot of the
leaderboard, and it is possible that new and more accurate models will be developed

in the future.

Fig. 8 | Performance comparisons in terms of
mean absolute deviation (MAD) tomean absolute
error (MAE) ratios as uniform criteria. a AI and
b electronic structure methods. MAD:MAE serves
as uniform criteria for comparing performances of
models.
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deviation (MAD, computedwith respect to the average value of the training
data as a baseline/random-guess model) to MAE ratio for both AI and ES
single-property-prediction categories.Mean absolute deviation values act as
a baseline/random-guessing model for the benchmark and contributed
models should have MAE performance better than MAD values. We show
theMAD/MAE ratios for AI and ES benchmarks in Fig. 8.We find that the
MAD/MAE values range from 2 to 50.MAD/MAE values close to 1 suggest
low predictive power. We observe that quantum properties such as the
bandgaphave lowerMAD/MAE than classical quantities (quantities that do
not require quantum mechanical simulations) such as total energy or bulk
modulus. Interestingly, such trends for classical vs. quantum quantities are
observed for both the AI and ES approaches.

Interactive view of benchmarks and contributions
In addition to making bar plots as shown in Figs. 6 and 8, the raw data
available in benchmarks and contributions can be presented in various
other forms such as scatter plots, bandstructures, adsorption spectra, and
diffraction spectra. In Fig. 9, we show example comparisons of different
methods for AI, ES, QC and EXP categories, including (a) formation-
energy-per atom model using AI, (b) bulk modulus predictions using ES,
(c) electronic bandstructure of Al using QE with different quantum
circuits94, (d) CO2 capture for zeolite at several labs in round-robin
fashion95. In Fig. 9a), we find that formation energy is one of the easiest
quantities to train AI models and even simple chemistry-only-based
models can perform reasonably well (i.e., cfid_chem). Including more
structural features (such as bond angles and dihedral angles) and using
deep learning models (such as graph neural network vs descriptor-based
models) further help improve accuracy. Similarly, for ES example for
predicting bulkmodulus, we find irrespective of DFT basedmethod used,
they are in relatively close agreement with experimental bulk modulus
data as shown inFig. 9b). In Fig 9c), wefind that the selectionof a quantum
circuit is critically important for predicting electronic band structures

well. Here, we used 6 different quantum94 circuits and found the SU(2)96

circuit to compare well with classical computer-based electronic band-
structures. This canbe attributed to various entanglements captured in the
SU(2)96 circuits that may be missing in other circuits. Finally, for
experimental inter-laboratory/round-robin type measurements of the
zeolite CO2 isotherm, we find excellent agreement across different labs95.

Methods
The JARVIS-Leaderboard aims to provide a comprehensive framework
covering a variety of length and time-scale approaches2 to enable realistic
materials design. In this section, we provide a brief overview of themethods
that are currently available in the leaderboard. In this workwe use the terms
categories, sub-categories, methods, benchmarks, and contributions often,
so we define them as follows.

Currently, there are five main “categories” in the leaderboard:
Artificial Intelligence (AI), Electronic Structure (ES), Force-field (FF),
Quantum Computation (QC), and Experiments (EXP). Each category is
divided into “sub-categories”, a list of which is provided on the website.
These sub-categories include single-property-prediction, single-prop-
erty-classification, atomic force prediction, text classification, text-token
classification, text generation, image classification, image segmentation,
image generation, spectra-prediction, and eigensolver. These sub-
categories are highly flexible and new categories can be easily added.
“Benchmarks” are the reference data (in the form of json.zip file, dis-
cussed later) used to calculate performance metrics for each specific
contribution. “Methods” are a set of precise specifications for evaluation
against a benchmark. For example, within the ES category, density
functional theory (DFT) performedwith the specifications of the Vienna
Ab initio Simulation Package (VASP)81,82, Perdew-Burke-Ernzerhof
(PBE)87 functional and PAW81,82 pseudopotentials (VASP-PBE-PAW) is
a method. Similarly, within the AI category, descriptor/feature-based
models with specifications of MatMiner97 chemical features and the

Fig. 9 | Example results for AI, ES, QC and EXP
results. a formation-energy-per atom model using
AI for JARVIS-DFT 3D dataset with 5572 materials
in the test set, (b) bulkmodulus predictions using ES
methods for 21materials, c electronic bandstructure
of Aluminum using QC methods with different
quantum circuits on a coarse k-point mesh, d CO2

capture for zeolite (ZSM-5) at several labs in inter-
laboratory/round-robin fashion.
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LightGBM98software is a method. “Contributions” are individual data
(in the formof csv.zip files) for each benchmark computedwith a specific
method. Each contribution files consist of six components: category (e.g.
AI), sub-category (e.g. SinglePropertyPrediction), property (e.g. for-
mation energy), dataset (e.g. dft_3d), data-split (e.g. test), metric
(e.g. mae).

Electronic structure
Electronic structure approaches cover short-length scales and short-time
scales with high-fidelity. There are a variety of ES methodologies such as
such as tight-binding72,99,100, density functional theory (DFT)101, quantum
MonteCarlo85, dynamicalmeanfield theory102 andmany-bodyperturbation
theory (Green’s functionwith screenedCoulombpotential,GWmethods)80.
For each of the methodologies, there are a number of specifications to
completely describe a method including the exact software, exchange-
correlation functional, pseudopotential, and other relevant parameters.
Example methods used in this work are given in Table 2.

Eachmethod in theES category canhave a variety of contributions. For
example, using a specific method, one can calculate various properties such
as bandgaps, formation energies, bulk moduli, solar cell efficiencies, and
superconducting transition temperatures as well as spectral quantities such
as dielectric functions. While there are more than 400 approximate
exchange-correlation functionals proposed in DFT literature103, currently,
we have OptB88vdW104, Opt86BvdW105, LDA106, PBE87, PBEsol107, GLLB-
sc78, TBmBJ83,84, SCAN108, r2SCAN109, HSE06110, in the leaderboard.We use
convergedk-points and cut-offs as available in the JARVIS-DFTdatabase111.
We have used the Vienna Ab initio Simulation Package (VASP)81,82,
ABINIT112–114, GPAW79 and Quantum Espresso (QE)115 as DFT software
packages, but other packages can be easily added as well. In addition, we use
VASP81,82 to perform GW calculations including “single-shot” G0W0 and
self-consistent GW0methods80. Other ES approaches include tight-binding
(TB)99 and quantum Monte Carlo (QMC)85. For TB, we use the recently
developed ThreeBodyTB.jl code72 along with the Wannier90116 code, while
the QMCPACK86 code is used for diffusion Monte Carlo (DMC)85

calculations.

Force-field
Force fields can be used in molecular dynamics and Monte Carlo simula-
tions for studying larger time and length scales compared to electronic
structure methods. Traditional force fields are developed for specific che-
mical systems and applications andmay not be transferable to other uses. It
is important to check the validity of an FF before using it in a particular
application. Moreover, the development of FFs is a cumbersome task.
Examples of typical FFs include embedded-atom method (EAM)
potentials117 (i.e. Al099.eam.alloy for aluminum system118), Lennard Jones
(LJ)119 for 2D liquids, reactive empirical bond order (REBO)120 for Si, and
classical, atomistic force fields for biomolecular systems121,122. Recently,
machine learning forcefields (MLFF)123–128 have become popular because of
their higher accuracy and ease of development (such as SNAP129 FFs).
Nevertheless, early generations of MLFFs were also developed for specific
types of chemistry and applications.Very recently, severalMLFFs have been
developed that can be used to simulate any combination of periodic table
elements. Some of these FFs include M3GNET92, ALIGNN-FF91, and
CHGNet130. In the leaderboard, we include benchmarks for energies, forces,
and stress tensors for both specific systems and universal datasets.

Traditional FFs are available in LAMMPS131, while MLFFs are inte-
grated into the Atomic Simulation Environment (ASE)132 package. Some of
these MLFFs are now available in LAMMPS and other large-scale MD
codes. In addition to static quantities, FFs can be used for Monte Carlo
simulations, such as CO2 adsorption in metal-organic frameworks
(MOFs)133 using the RASPA134 code. In addition to energy, force, and stress,
we also have FF benchmarks for classical properties such as the bulk
modulus. For biomolecular systems, GROMACS135 is commonly used, and
we present here free energy differences and conformational state population
benchmarks for three model peptides136–138.

Artificial intelligence
Recently artificial intelligence methods have become popular for materials
prediction across all lengths and time scales.We currently have benchmarks
for four types of data used as input for the AI models: (1) atomic structure,
(2) spectra, (3) images, and 4) text. AI techniques can be used for both
forward prediction and inverse design. For atomic structure datasets, we use
DFT datasets such as JARVIS-DFT70,71, Materials Project (MP)65, Tight
binding three-body dataset (TB3)72, Quantum-Machine 9 (QM9)139,140. For
spectral data, we use either DFT-based spectra of, for example, electron or
phonon density of states (DOS), Eliashberg functions, or numerical XRD
spectra. For images, we have simulated and experimental scanning trans-
mission electron microscope (STEM) and scanning tunneling microscopy
(STM) images for 2D materials. For text data, we have used the publicly
available arXiv dataset.

Currently, we have models for feature-based/tabular models (such as
RandomForest141, Gradient boosting141, Linear regression141), graph-based
models (such as ALIGNN76,77, SchNet142, CGCNN143, M3GNET92,
AtomVision144, ChemNLP145) as well as transformers (such as OPT146,
GPT30, and T5147). These models use popular AI code bases, including
PyTorch148, scikit-learn141, TensorFlow149, LightGBM98, JAX150, and
HuggingFace151. These models are used for a variety of properties such as
formation energies, electron bandgaps, phonon spectra, forces, text data etc.

Quantum computation
Quantum chemistry is one of the most promising applications of quantum
computations152. Quantum computers with relatively few logical qubits can
potentially exceed the performance of much larger classical computers
because the size of Hilbert space increases exponentially with the number of
electrons in the system. Predicting the energy levels of a Hamiltonian is a
typical and fundamentally important problem in quantum chemistry. We
useHamiltonian simulationswith quantumalgorithms and compare itwith
classical solvers.Determination of appropriate quantumcircuit for a specific
QC problem is a challenging task. For example, we use the tight-binding
Hamiltonians for electrons and phonons in JARVIS-DFT and evaluate the
electron bandstructures using quantum algorithms (such as variational
quantum eigen solver (VQE)153 and variational quantum deflation
(VQD)154) and with different quantum circuits (such as PauliTwo design96

and SU(2)96 circuits). We primarily use the Qiskit96 software in this work
through the JARVIS-Tools/AtomQC94 interface, but other packages such as
Tequila155, Circq156, and Pennylane157,158 can also be easily integrated. In
addition to studying algorithm and circuit architecture dependence, the
leaderboard can be used for studying the noise-levels in quantum circuits
across different quantum computers, which is a key issue hindering quan-
tum computer commercialization. Currently, we are only using statevector
simulators for the quantum algorithms available in the Qiskit96 library.

Experiments
Although experimental results for material properties and spectra are
referenced in comparison to computational methods (within the JARVIS-
Leaderboard and other leaderboards such as MatBench33), we dedicated a
portion of the JARVIS-Leaderboard to experimental benchmarking.
Benchmarking experiments essentially boils down to the comparison of
different experiments for the same desired result/s. A systematic way to
perform this benchmarking is through round-robin testing159. This is an
inter-laboratory test performed independently several times, which can
involve multiple scientists and a variety of methods and equipment. This
approach has been applied successfully for a range of materials science
applications95,160–163, but many more of such experiments are still needed.
Specifically in the JARVIS-Leaderboard, we include experimental round-
robin results for manometric measurements of CO2 adsorption95. It is
important to note that the experimental results included in the leaderboard
are for well-characterized materials with well-defined properties and phe-
nomena that can be easily reproduced (in contrast to replication attempts of
variable experiments, such as the recent attempt to synthesize room tem-
perature superconductors164–167). Some of the experiments we used for
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benchmarkingpurposesareXRD,magnetometry, vibroscopy, and scanning
electronmicroscopy (SEM) and transition electronmicroscopy (TEM).We
purchase the samples from industrial vendorswith available identifiers such
as CAS-number. We also carried out XRD for MgB2 (a superconducting
material) to verify its crystal structure before carrying out magnetometry
measurements to determine the transition temperature. This measurement
was comparedwith numerical XRDdata.Magnetometrymeasurements for
superconductors were also conducted to compare their superconducting
transition temperatures with respect to predicted or experimentally avail-
able values168. Strain-stress measurements were done for Kevlar for failure
analysis168. We have several instruments, such as Bruker D8, Titan, Quan-
tum design PPMS and FAVIMAT in the leaderboard currently.

Metrics used
We use several metrics in the leaderboard depending on the “sub-cate-
gories” mentioned above. We use mean absolute error (MAE), accuracy
(acc), multi-mae (L1 norm of multi-dimensional data), recall-oriented
understudy for gisting evaluation (ROUGE) for the single property pre-
diction, single property classification, spectra/eigensolver/atomic forces and
textGen/text summary subcategories respectively. As the user contributes

their data to compare against the reference data (benchmarks), other
complementary metrics (such as those available in the sklearn.metrics
library) can be easily calculated as the raw contribution data is also made
available through the website. For the sake of readability and ease of use, we
primarily employ the metrics mentioned above. For single property pre-
diction, there is only scalar values per column in the csv.zip file with id and
prediction separate by comma., For spectra, force-prediction and other
multi-value quantities (i.e. with multiple prediction values per id) we con-
catenate the array and separate by semicolon (to avoid comma convention
in csv files). The benchmark data is also stored in a similar format. We
provide tools to convert these csv.zip files into json or other file formats if
needed. We also provided notebooks to visualize the data through Jupyter/
Colab notebooks. In addition, we plan to eventually addmetrics for timing,
uncertainty, development cost and other details.

Data availability
Multiple datasets used in this work are available at the Figshare repository:
https://figshare.com/authors/Kamal_Choudhary/4445539. Index and
usage guidelines are provided at https://pages.nist.gov/jarvis/databases/.

Code availability
JARVIS-Leaderboard package mentioned in the article can be found at
https://github.com/usnistgov/jarvis_leaderboard.
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