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Two-dimensional (2D) materials combine many fascinating properties that make them more
interesting than their three-dimensional counterparts for a variety of applications. For example, 2D
materials exhibit stronger electron-phonon and electron-hole interactions, and their energy gaps and
effective carriermasses canbe easily tuned. Surprisingly, publishedbandgaps of several 2Dmaterials
obtained with the GW approach, the state-of-the-art in electronic-structure calculations, are quite
scattered. The details of these calculations, such as the underlying geometry, the starting point, the
inclusion of spin-orbit coupling, and the treatment of the Coulomb potential can critically determine
how accurate the results are. Taking monolayer MoS2 as a representative material, we employ the
linearized augmented planewave + local orbital method to systematically investigate how all these
aspects affect the quality of G0W0 calculations, and also provide a summary of literature data. We
conclude that the best overall agreement with experiments and coupled-cluster calculations is found
for G0W0 results with HSE06 as a starting point including spin-orbit coupling, a truncated Coulomb
potential, and an analytical treatment of the singularity at q = 0.

The isolationof graphene in2004 canbe regarded as amilestone inmaterials
science that initiated the research field of atomically thin 2D materials1.
Compared to their 3D counterparts, 2Dmaterials have a higher surface-to-
volume ratio,making them ideal candidates for catalysts and sensors2,3. Due
to the confinement of electrons, holes, phonons, and photons in the 2D
plane, the electronic, thermal, and optical properties of 2Dmaterials present
unusual features not found in their 3D counterparts4–6. For instance, their
electronic structure – especially band gaps – can be easily adjusted by acting
on the vertical quantum confinement through, e.g., the number of atomic
layers, or external perturbations, such as an external electric field, and
strain7,8. The sensitivity to strain, i.e., to structural details, implies that 2D
materials also exhibit strong electron-phonon coupling8. In addition, exci-
ton binding energies are significantly larger than in 3D materials, and they
can be tuned by the dielectric environment, e.g., by encapsulation or
deposition on substrates9–11. All these characteristics make them out-
standing components in novel applications for electronics and
optoelectronics12–17.

For a deep understanding of 2D materials, an accurate description of
their band-structure is a must. Many-body perturbation theory within the

GW approach has become the state-of-the-art for ab initio electronic-
structure calculations of materials. In this sense, many studies have
employed GW to investigate the electronic properties of 2D materials18–65.
Surprisingly, as illustrated in Fig. 1 for monolayer MoS2, they show a wide
dispersion in the fundamental band gap. The same has been found for a
number of 2Dmaterials that have been extensively studied in the last years.
Results for MoS2, MoSe2, MoTe2, WS2, WSe2, BN, and phosphorene are
summarized in the Supplementary Information. In the extreme cases of
MoS2, WS2, WSe2, and BN, the calculated band gaps are scattered between
2.31–2.97, 2.43–3.19, 1.70–2.89, and 6.00–7.74 eV, respectively; in theworst
case, the deviation (ratio between largest and smallest values) is as much as
61%. Moreover, for some materials, such as for MoS2, MoTe2, WS2, WSe2,
and BN, not even the gap character is uniquely obtained—being direct or
indirect, depending on the details of the calculation.

Many factors contribute to this confusing and unsatisfactory situation:
• In various works, different geometries have been adopted. In this

context, it must be said that the properties of 2D materials are highly
sensitive to structural parameters18,19,66. Small changes in the lattice
constant a already have a large impact on the energy gap, as seen in Fig.
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1 and Supplementary Tables 4–10. Moreover, often the lattice para-
meter alone is not sufficient to unambiguously determine the structure
of a 2D material. For instance, phosphorene is characterized by four
structural parameters; transition metal dichalcogenides require,
besides a, the distance between two chalcogens (for MoS2, dSS as
depicted in Fig. 2). These “other” structural parameters have a notable
effect on the electronic properties as well66,67. Unfortunately, in several
studies, only the lattice parameter is reported, which prevents not only
a fair comparison between published results but also reproducibility.

• A second reason can be attributed to the various ways of performing
G0W0 calculations. First, there is the well-known starting problem

68–76.
Then, especially for 2D materials, G0W0 energy gaps converge very
slowly with respect to the vacuum thickness and the number of k-
points. Even slabs with a vacuum layer of 60Å together with a
33 × 33 × 1 k-grid have been shown to be insufficient to obtain fully
converged results28. However, by truncating the Coulomb potential,
convergence can be achieved with a reasonable amount of vacuum49.
The number of k-points can be drastically reduced by an analytic
treatment of the q = 0 singularity of the dielectric screening or by using
nonuniform k-grids24,38.

• Last but not least, also spin-orbit coupling (SOC) plays an
important role in many cases. Besides decreasing the size of the
fundamental gap mainly through a splitting of the valence
band77, in some 2D materials and for certain geometries and
methods, disregarding or including this effect may change its
character from indirect to direct or vice versa66.

In this manuscript, we address all these issues and provide a bench-
mark data set of density functional theory (DFT) and G0W0 calculations,
taking monolayer MoS2 as a representative 2D material. Due to its unique
properties, it can be considered the most important 2D material after gra-
phene. MoS2 exhibits high electron mobility14,78; moderate SOC that can be
exploited in spin- and valleytronics79–85; a direct fundamental band gapwith
intermediately strong exciton binding, which is suitable for (opto)electronic
devices operating at room temperature14,29,31,38,78,86. For these reasons, there
are many experimental and theoretical works in the literature that investi-
gate MoS2, allowing for a better comparison with our results.

We employ the linearized augmented planewave+ local orbital (in
short LAPW+LO)methodas implemented in theexciting code. LAPW
+LO is known to achieve ultimate precision for solving the Kohn-Sham
(KS) equations of DFT87 and high-level GW results88. Besides the local and
semilocal DFT functionals LDA89 and PBE90,91 respectively, we include
HSE0692–94 both for geometry optimization and as a starting point forG0W0.
So far, HSE06 has not often been used for such calculations of MoS2

20,22,29,33,
and to the best of our knowledge, neither a Coulomb truncation nor an
adequate treatment of the singularity at q = 0 was applied. For brevity,
hereafter, we will refer to HSE06 as HSE. In our G0W0 calculations, we
truncate the Coulomb potential28,49,95, and apply a special analytical treat-
ment for the q = 0 singularity24. Moreover, we investigate the role of SOC at
all levels.Wecarefully evaluate the impact of all these elements and conclude
what leads to the most reliable electronic structure of this important
material. Besides a detailed analysis of energy gaps, we address effective
masses and spin-orbit splittings.

Results
Ground-state geometries
The geometry of MoS2, depicted in Fig. 2, is determined by the in-plane
lattice parametera and thedistance between sulfur atoms,dSS. InTable 1,we
list these structural parameters as obtained with LDA, PBE, and HSE, and
include theMo-Sbond lengthdMoS and the angle θbetweenMoandS atoms
as well. As expected, LDA underestimates the lattice spacing, PBE slightly
overestimates it, and HSE shows the best performance with respect to
experiment. All three exchange-correlation (xc) functionals underestimate
the S-S bond length, PBE being closest to its measured counterpart. Com-
parison with computed literature data reveals good agreement.

Electronic structure
Table 2 summarizes the energy gaps obtained with different functionals for
the different geometries. We consider here the direct gap at the K point
(Eg(KK)) as well as the indirect gaps between Γ andK (Eg(ΓK)) and between
K and T (Eg(KT)). For the definition of the T point, see Fig. 2. For each

Fig. 1 | Literature results for the G0W0 energy gap of MoS2 at the K point of the
Brillouin zone as a function of the in-plane lattice parameter a.They are obtained
with and without SOC (filled and open symbols, respectively), as well as with and
without truncation of the Coulomb potential (triangles and circles, respectively),
using LDA, PBE, and HSE as starting points (green, orange and blue, respectively).
Supplementary Table 4 summarizes these data.

Fig. 2 | Top view (left) and side view (middle) of the MoS2 slab geometry,
determined by the in-plane lattice constant a and the distance between sulfur
atoms, dSS. TheMo-S bond length dMoS and the S-Mo-S angle θ are shown as well. L
is the unit-cell size along the out-of-plane direction z, including a vacuum layer.
High-symmetry points and paths used in the band-structure plots (Fig. 4) are
highlighted in the BZ (right panel).

Table 1 | Equilibrium geometry of MoS2 obtained with LDA,
PBE, and HSE, compared with literature values

This work

xc functional a [Å] dSS [Å] dMoS [Å] θ [∘]

LDA 3.121 3.106 2.379 81.51

PBE 3.186 3.125 2.414 80.70

HSE 3.160 3.101 2.394 80.73

Literature

LDA 3.1120, 3.1266, 3.122148 3.1120,66,
3.116148

2.3720,
2.383148

81.6220

PBE 3.1822,23,31,149,3.18424,
3.1921,66, 3.2020

3.1222,66,
3.12724,
3.1320,23

2.41149,
2.4220

80.6920

HSE 3.16149,150 2.40149

Experiment 3.160151 3.172151

Experimental results for bulkMoS2 are alsoprovided. For thedefinitionofdSS,dMoS and θ, seeFig. 2.
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geometry and methodology, the bold font highlights the fundamental gap.
For the calculations that include SOC, Fig. 3 displays the energy gaps given
in Table 2 with respect to the lattice parameter. In the DFT calculations,
regardless of the calculation method, Eg(KT) (squares) shows a weak
dependence on the geometry. The fundamental gap obtained with LDA,
PBE, andHSE, is always direct atK. InG0W0, the fundamental gap isEg(KT)
for the structureswith smaller lattice parameter andEg(KK) for larger lattice
constants.

As to be expected and also observed in ref. 38, for a fixed geometry, the
energy gaps obtained by LDA and PBE are quite similar, with the largest
difference being 0.02 eV. The two functionals also agree on the location of
the valence-band maximum (VBM) and the conduction-band minimum
(CBm). For both, the band gap is direct if SOC is included, and indirect
otherwise for the PBE and HSE geometries. In contrast, HSE gives a direct
gap, regardless of whether SOC is considered.

Also G0W0@LDA and G0W0@PBE are very close to each other, the
largest difference being 0.04 eV. This can be attributed to the similarity
between LDA and PBE when the same geometry is adopted. However, the

similarity between G0W0@LDA and G0W0@PBE results is material
dependent, as observed in other works96–99.

For a given geometry, the locations of the VBM and the CBm are
independent of the starting point, with the only exception being the HSE
geometrywhen SOC is included.When comparing the three geometries, we
encounter three different scenarios. First, for the LDA geometry, the fun-
damental gap changes from a direct KS gap at K to an indirect QP gap
(between K and T), independent of the starting point. Second, for the PBE
andHSEgeometries,whenSOCis disregarded, the indirect gapΓKobtained
withII D LDA and PBE becomes direct and located at K upon applying
G0W0. Third, for theHSE geometry, and SOCbeing includedwe observe an
indirect band gap for G0W0@LDA while it is direct for PBE and HSE as
starting points. This can be understood in terms of the small differences
between the KK and KT gaps,ΔKT, which are 0.01 eV, 0.05 eV, and 0.15 eV
for G0W0@LDA, G0W0@PBE and G0W0@HSE, respectively. Including
SOC, splits the conduction band state at T (K) by ~0.07 eV (~3meV),
decreasing ΔKT by ~0.03 eV. This is enough to make ΔKT negative for
G0W0@LDA, but not for G0W0@PBE, and G0W0@HSE. A more detailed

Fig. 3 | Calculated energy gaps of MoS2 as a
function of the lattice parameter a. The values for
KK, ΓK, and KT are represented as circles, triangles,
and squares, respectively. Dotted (solid) lines stand
for DFT (G0W0) results; all include SOC. Note that
these values only indirectly reflect the S-S dis-
tance dSS.

Table 2 | Energy gaps (in eV) obtained for the 18 different cases considered

Geometry SOC Gap LDA PBE HSE G0W0@LDA G0W0@PBE G0W0@HSE

LDA N Eg(KK) 1.86 1.86 2.35 2.76 2.77 3.01

Eg(ΓK) 1.96 1.96 2.50 3.07 3.05 3.29

Eg(KT) 1.97 1.99 2.58 2.60 2.64 2.98

Y Eg(KK) 1.78 1.78 2.27 2.68 2.69 2.93

Eg(ΓK) 1.95 1.95 2.50 3.06 3.04 3.28

Eg(KT) 1.86 1.88 2.48 2.50 2.53 2.88

PBE N Eg(KK) 1.67 1.67 2.12 2.52 2.51 2.76

Eg(ΓK) 1.65 1.65 2.16 2.68 2.67 2.89

Eg(KT) 1.94 1.94 2.55 2.56 2.55 2.93

Y Eg(KK) 1.59 1.60 2.04 2.44 2.45 2.68

Eg(ΓK) 1.64 1.64 2.15 2.67 2.66 2.89

Eg(KT) 1.83 1.85 2.44 2.44 2.48 2.82

HSE N Eg(KK) 1.73 1.74 2.19 2.60 2.60 2.84

Eg(ΓK) 1.71 1.72 2.23 2.78 2.77 2.99

Eg(KT) 1.99 2.01 2.60 2.61 2.65 2.99

Y Eg(KK) 1.65 1.66 2.11 2.52 2.52 2.76

Eg(ΓK) 1.70 1.71 2.23 2.77 2.76 2.99

Eg(KT) 1.88 1.90 2.49 2.50 2.53 2.88

For each case, the fundamental gap is highlighted in bold. The second column indicateswhether SOC is included (Y) or not (N). The experimental gap is 2.6 eV (direct at K)86. Note that this value is corrected
for the zero-point renormalization energy of 75meV114.
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discussion about ΔKT can be found in Section “Discussion of energy gaps:
comparison with experiment”.

Figure 4 shows the band structures obtained for the HSE geometry
including SOC. As expected, the differences betweenG0W0@HSE andHSE
bands are less pronounced than those between G0W0@LDA (G0W0@PBE)
and LDA (PBE) bands. For all three starting points, the G0W0 corrections
are not uniform over all k-points, i.e., a simple scissors approximation is,
strictly speaking, not applicable. We will explore this in a more quantitative
fashion further below. The SOC splitting in the valence band is zero at the Γ
point and increases toward the K point. The SOC effect on the conduction
bands is much less pronounced. These observations are in agreement with
other theoretical25,29,100–103 and experimental works86,104.

The impact of the self-energy correction on the energy gaps,
ΔEg ¼ Eg

G0W0 � EDFT
g , is shown inFig. 5 for the casewhenSOC is included.

Clearly,ΔEg is more significant for (semi)local DFT starting points than for
HSE. Interestingly, for a given starting point, ΔEg hardly depends on the
geometry. For LDA and PBE as the starting points, the ranges of ΔEg(KK),
ΔEg(ΓK), and ΔEg(KT) are 0.84–0.90, 1.0–1.1, and 0.61–0.65 eV, respec-
tively. The dependence is even weaker for G0W0@HSE with values of
0.64–0.66, 0.74–0.78, and 0.39–0.40 eV, respectively.Very similar results are
observed when SOC is disregarded.

Spin-orbit splittings and effective masses
In Table 3, we report for the HSE structure the spin-orbit splitting Δval

(Δcond) at the K point for the highest occupied (lowest unoccupied)

band. Effective electron (hole) masses me (mh) calculated at the K
point along different directions are shown as well. We observe that
neither the spin-orbit splittings nor the effective masses are very
sensitive to the geometry (see Supplementary Table 11 for more
details).

Δval exhibits a very narrow spread among all the methods
employed here (DFT and G0W0), i.e., a range of 143–149 meV. These
values are in excellent agreement with the experimental counterparts
of Δval = 130–160 meV86,102,104–108. The value for the conduction band,
Δcond, is 3 meV for LDA, PBE,G0W0@LDA, andG0W0@PBE; it is only
slightly higher for HSE and G0W0@HSE, namely 4 meV. Again, there
is excellent agreement with the measured value of
Δcond = 4.3 ± 0.1 meV109.

The effective hole mass, mh, exhibits minor variations, not larger
than 0.04m0, when going from KΓ to KM. This is in line with other
calculations27,110. The measured value for freestanding MoS2 is
mh = (0.43 ± 0.02)m0

111 and, apart from LDA and PBE, all theoretical
results show excellent agreement. The electron mass, me, is more
isotropic than mh. For LDA, it differs by at most 0.02m0 between KΓ
and KM. Our values are in line with other calculated
results18,21,27,34,101,110,112. The measured counterpart of (0.67 ± 0.08)m0

113

is significantly larger than the calculated value reported here and in
other theoretical works18,21,27,34,101,110,112. As discussed in ref. 34, the
difference could originate from the heavy doping of the measured
sample, which may introduce metallic screening.

Table 3 | Spin-orbit splittings in valence (Δval) and conduction (Δcond) band (in meV) and effective hole (mh) and electron (me)
masses, in units of the free electron mass m0, at the K point along different directions, obtained for the HSE geometry

LDA PBE HSE G0W0@LDA G0W0@PBE G0W0@HSE Experiment

Δval 149 148 144 149 148 143 130105, 130106, 140107, 141102

145 ± 4104, 150–160108, 16086

Δcond 3 3 4 3 3 4 4.3 ± 0.1109

me(KΓ) 0.40 0.41 0.37 0.42 0.42 0.39 0.67 ± 0.08113

me(KM) 0.42 0.42 0.38 0.42 0.42 0.39

mh(KΓ) 0.49 0.50 0.44 0.42 0.42 0.42 0.43 ± 0.02111

mh(KM) 0.53 0.53 0.47 0.44 0.44 0.44

Fig. 4 | Band structures including SOC obtained
for theHSE geometry.The parametersΔKT andΔΓK

are discussed in Section “Discussion of energy gaps:
comparison with experiment”.

Fig. 5 | G0W0 self-energy correction, ΔEg, to the
band gaps obtained for different starting points
(LDA green, PBE orange, HSE blue) and geome-
tries, including SOC effects. Left, middle, and right
panels refer toΔEg evaluated at the K point, between
Γ and K, and between K and T, respectively.
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Discussion of energy gaps: comparison with experiment
The experimental band gap for free-standing MoS2, determined by pho-
tocurrent spectroscopy, is 2.5 eV86. In order to compare with experiment, it
is important to account for the zero-point renormalization energy of
75meV114. This means that the theoretical value computed without this
correction should be 2.575≅ 2.6 eV tomatch its measured counterpart. For
our discussion here, we consider the HSE and PBE geometries, which are
closer to experiment than that obtained by LDA. For the following assess-
ment, we refer to the values in Table 2. For the structure optimized with
HSE, G0W0 performed on LDA, PBE, and HSE as starting points gives
Eg(KK) of 2.52, 2.52, and 2.76 eV, respectively, i.e., G0W0@LDA and
G0W0@PBE underestimate the measured value by about 0.08 eV, whereas
G0W0@HSE overestimates it by 0.16 eV. However, even though
G0W0@LDA agrees better with experiment than G0W0@HSE, it erro-
neously predicts an indirect band gap Eg(KT) which is 0.02 eV smaller than
Eg(KK). G0W0@PBE shows the best agreement with experiment and also
predicts the gap to be direct. Interestingly, considering the PBE geometry, as
done in several works19,21–24,28,31–33,35,40–43,112,G0W0@HSE, giving a direct band
gap of Eg(KK) = 2.68 eV, agrees best with experiment, the deviation being
0.08 eV only. With LDA and PBE as starting points, the calculated G0W0

band gap is direct, but 0.16 and 0.15 eV, respectively, below the
experimental value.

Other relevant aspects of the band-structure concern relative energy
differences, in particular ΔKT (introduced above) as well as the maximum
energy at the Γ point wrt the VBM at the K point, ΔΓK = Eg(KK)− Eg(ΓK)
(see Fig. 4). Experimentally, ΔKT is expected to be≳ 60meV101,113 and
ΔΓK ≈ 140meV101,115. Taking our calculations with SOC at the HSE geo-
metry, (see Table 4), theG0W0@HSE value of 0.12 eV reproducesΔKT best.
On the other hand, HSE satisfies ΔΓK best with a value of 0.12 eV (0.02 eV
smaller than in experiment), while the values obtained with the other
methods differ from experiment by 0.09 eV (G0W0@HSE),−0.09 eV (LDA
and PBE), 0.10 eV (G0W0@PBE), and 0.11 eV eV (G0W0@LDA), respec-
tively. At the PBE geometry, G0W0@HSE and G0W0@PBE give the same
value for ΔΓK. With an overestimation of 0.07 eV, it is closer to experiment
than the value at theHSEgeometry.Again,HSE is the only starting point for
which G0W0 predicts ΔKT in agreement with experiment.

In summary, considering the band gap aswell as the energy differences
ΔKT andΔΓK, we conclude that at the PBE geometry,G0W0@HSE including
SOC shows the best overall agreement with experimental data. Also for the
HSE structure, HSE is the best starting point, with results that are overall
only slightly worse. Overall, G0W0@HSE at the HSE geometry can be
considered more appropriate, since only one xc functional is needed for
providing decent results for both, the geometry and the electronic properties
and thus themost consistent picture.Also for othermaterials, HSEhas been
found to be a superior G0W0 starting point

76,116–118 compared to LDA and
PBE. For such materials with intermediate band gaps,71,72,119–124, this func-
tional better justifies the perturbative self-energy correction68,73,116. Figure 5
confirms this for MoS2.

Discussion of energy gaps: comparison with theoretical works
By employing coupled-cluster calculations including singles and
doubles125,126, Pulkin et al. obtained energy gaps of Eg(ΓK) = 2.93 eV and
Eg(KK) = 3.00 eV with an error bar of ± 0.05 eV112 for the PBE geometry of
ref. 103; SOC was not included. For our PBE geometry and also omitting

SOC, the G0W0@HSE results are the ones closest to these values, with
Eg(ΓK) differing by 0.04 eV and Eg(KK) by 0.24 eV.

For a fair comparisonwithother publishedG0W0 valueswithLDAand
PBE as starting points, we restrict ourselves here to results obtained by using
a Coulomb truncation in combination with either a special treatment of the
q= 0 singularity or a nonuniform k-grid sampling, since these methods
ensure well converged gaps. In ref. 24, disregarding SOC and adopting the
PBE geometry (a = 3.184Å, dSS = 3.127Å), a direct band gap of 2.54 eVwas
reported forG0W0@PBEwhich is very close to ours (Eg(KK) = 2.52 eV), i.e.,
differing by only 0.02 eV. Including SOC and the thus slightly changed PBE
geometry (a = 3.18Å, dSS = 3.13Å), a G0W0@LDA value of 2.48 eV was
obtained in ref. 23; at basically the samegeometry (differences in the orderof
10−3Å), our results of Eg(KK) = 2.44 eV is only 0.04 eV smaller.

For a lattice parameter of 3.15Å, Rasmussen et al. calculated a
G0W0@PBE band gap of 2.64 eV without SOC24. For the same lattice con-
stant, but including SOC,Qiu et al. reported aG0W0@LDA band gap of38 of
Eg(KK) = 2.59 eV with the plasmon-pole model and Eg(KK) = 2.45 eV with
the contour deformation method. In our case, the structure optimized with
HSE (a = 3.160Å) is closest to a = 3.15Å. For this structure, without
including SOC, we compute a G0W0@PBE band gap of Eg(KK) = 2.60 eV,
which agrees quitewell with the one by ref. 24, differing by less than 0.04 eV.
When we include SOC, we obtain Eg(KK) = 2.52 eV with G0W0@LDA,
although at this geometry, we obtain an indirect gap that is 18meV smaller
than Eg(KK). This is in good agreement with ref. 38, with a difference of
0.07meV only.

For the experimental geometry and neglecting SOC, ref. 28 reported
values of Eg(KT) = 2.58 eV and Eg(KK) = 2.77 eV for G0W0@LDA. In our
case, at the HSE geometry, we obtain Eg(KT) = 2.61 eV and
Eg(KK) = 2.60 eV. As the HSE geometry is close to experiment, we may
attribute the discrepancies mainly to the different underlying KS states.
Indeed, at the LDA level, the energy gaps in ref. 28 areEg(KK) = 1.77 eV and
Eg(ΓK) = 1.83 eV28, while ours are Eg(KK) = 1.73 eV and Eg(ΓK) = 1.71 eV.
The values for ΔEg, however, compare fairly well (ΔEg(KK) = 1.00 eV,
ΔEg(KT) = 0.6–0.7 eV in ref. 28, compared to ΔEg(KK) = 0.87 eV,
ΔEg(KT) = 0.63 eV in the present work).

When it comes toG0W0@HSE, there are only a few results forMoS2 in
the literature, neither obtained with Coulomb truncation nor by any special
treatment of the q = 0 singularity. For MoS2, these two aspects lead to
opposite effects, competing with each other when converging band gaps
with respect to the vacuum size and the number of k-points24: Neglecting
them, band gaps increase when the vacuum layer is enlarged, whereas
denser k-grids make them decrease. Hence, due to fortunate error cancel-
lation, an insufficient vacuum length combined with a coarse k-grid may
lead to G0W0 band gaps that agree well with those obtained in a highly
converged situation24,29. In ref. 33, using the PBE geometry and taking SOC
into account, a KK gap of 2.66 eV was reported. With 15Å of vacuum, a
6 × 6 × 1k-grid, andadopting thePBEgeometry, in ref. 22, bandgapsof 2.05
and 2.82 eV at the HSE and G0W0 levels, respectively, have been obtained.
The HSE band gap agrees quite well with ours (2.04 eV), whereas our
G0W0@HSE06 gap is 0.14 eV smaller. The band gap of 2.72 eV reported in
ref. 29 is based on the experimental lattice parameter of 3.16Å, a 12 × 12 × 1
k-points grid, and a vacuum layer of 17Å, and includes SOC effects. The
authors state to have chosen these settings to take advantage of error can-
cellation in the band gap29, and, surprisingly, our band gap of 2.76 eV

Table 4 | ΔKT and ΔΓK from G0W0 calculations including SOC, compared to measured values

Geometry LDA PBE HSE G0W0@LDA G0W0@PBE G0W0@HSE Experiment

PBE ΔKT 0.24 0.25 0.40 0.00 0.03 0.14 ≳ 0.06101,113

ΔΓK 0.05 0.04 0.09 0.23 0.21 0.21 0.14101,115

HSE ΔKT 0.23 0.24 0.38 −0.02 0.01 0.12 ≳ 0.06101,113

ΔΓK 0.05 0.05 0.12 0.25 0.24 0.23 0.14101,115

All values are given in eV.
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obtained with G0W0@HSE at the HSE geometry (a = 3.160Å) agrees
quite well.

Closing remarks
We have employed the LAPW+LOmethod to provide a set of benchmark
G0W0 calculations of the electronic structure of two-dimensionalMoS2.We
have addressed the impact of geometry, SOC, andDFT starting point on the
energy gaps, spin-orbit splittings, and effectivemasses.Wefind that the self-
energy corrections to the band gaps hardly depend on the adopted geo-
metry. As could be expected, employing LDA and PBE as starting points
does not make a significant difference when the same structure is used. The
best agreement with experimental results is achieved by G0W0@HSE at
either the HSE or PBE geometry, considering SOC. The spin-splittings
obtained with all methods agree well with experimental results. This also
holds true for the effective hole mass, using either HSE or G0W0 on top of
any of the considered starting points (LDA, PBE, and HSE). In line with
other theoretical works, we highlight the importance of a Coulomb trun-
cation and an adequate treatment of the Coulomb singularity around q = 0
as being fundamental for high-quality calculations. Our findings are
expected to be valid for other two-dimensional materials as well.

Methods
Linearized augmented planewave + local orbital methods
The full-potential all-electron code exciting127 implements the
family of LAPW+LO methods. In this framework, the unit cell is
divided into non-overlapping muffin-tin (MT) spheres, centered at
the atomic positions, and the interstitial region in between the
spheres. exciting treats all electrons in a calculation by distin-
guishing between core and valence/semi-core states. For core elec-
trons, assumed to be confined inside the respective MT sphere, the
KS potential is employed to solve the Dirac equation which captures
relativistic effects including SOC. The KS wavefunctions ∣Ψnk

�
for

valence and semicore states, characterized by band index n and
wavevector k, are expanded in terms of augmented planewaves,
∣ϕGþk

�
, and local orbitals, ∣ϕγi, as

∣Ψnk

� ¼
X

G

CGn;k∣ϕGþk

�þ
X

γ

Cγn;k ∣ϕγi: ð1Þ

∣ϕGþk

�
are constructed by augmenting each planewave with reciprocal

lattice vector G, living in the interstitial region, by a linear combination of
atomic-like functions inside the MT spheres. In contrast, the LOs ∣ϕγi are
non-zero only inside a specific MT sphere. They are used for reducing the
linearization error127,128, for the description of semicore states, as well as for
improving the basis set for unoccupied states87,88. The quality of the basis set
can be systematically improved by increasing the number of augmented
planewaves (controlled in exciting by the dimensionless parameter
rgkmax) and by introducing more LOs87,127. With all these features,
exciting can be regarded as a reference code not only for solving the KS
equation129, where it is capable of reaching micro-Hartree precision87, but
also for G0W0 calculations

88.

G0W0 approximation
In the G0W0 approximation, one takes a set of KS eigenvalues {εnk} and
eigenfunctions {Ψnk} as a reference, and evaluates first-order quasi-particle
(QP) corrections to the KS eigenvalues in first-order perturbation theory as

εQPnk ¼ εnk þ ZnkhΨnkjΣðεnkÞ � VxcjΨnki; ð2Þ

where Znk is the renormalization factor, Vxc is the xc potential, and Σ is the
self-energy. The latter is given as the convolution

Σðr; r0;ωÞ ¼ i
2π

Z
Gðr; r0;ωþ ω0ÞWðr; r0;ω0Þ dω0; ð3Þ

with G being the single-particle Green function and W the screened
Coulomb potential.

In this non-selfconsistent method, the quality of the QP eigenvalues
may depend critically on the starting point. In many cases, LDA and PBE
have been proven to be good starting points for G0W0, leading to QP
energies that agreewell with experiments73,130,131. However, e.g., formaterials
containing d electrons, such as Mo, hybrid functionals, like HSE, usually
provide an improved reference for QP corrections compared to semilocal
functionals71,72,119–124. Here, we evaluate the quality of each of these three as a
starting point.

Coulomb truncation
In calculationswithperiodic boundary conditions, for treating2Dsystems, a
sufficient amount of vacuum is required to avoid spurious interaction
between the replica along the out-of-plane direction. Local and semilocal
density functionals have a (nonphysical) asymptotic decaymuch faster than
1/r, facilitating convergence of unoccupied states –and thus KS gaps– with
respect to the vacuum size. In G0W0, the 1/r decay of the self-energy
complicates this task. Specifically for MoS2, even a vacuum layer with 60Å
thickness turned out not being sufficient to obtain a fully converged band
gap28,49. Truncating the Coulomb potential along the out-of-plane direction
z, however, leads to well-converged G0W0 band gaps with a considerably
smaller vacuum size28,49.

Here, we truncate the Coulomb potential with a step function along z.
Setting the cutoff length toL/2, whereL is the size of the supercell along z (Fig.
2), the truncated Coulomb potential can be written in a planewave basis as95:

vGG0 ðqÞ ¼ δGG0
4π

Q2 1� e�QxyL=2 cosðGzL=2Þ
h i

; ð4Þ

where Q = q+G, and q is a vector in the first Brillouin zone (BZ).

Treatment of the q = 0 singularity
On the down-side, truncating the Coulomb interaction slows down the
convergence in termsofk-points because of thenon-smoothbehavior of the
dielectric function around the singularity at q = 023,24,41. To bypass this
problem, we follow an analytical treatment ofWc, the correlation part ofW,
close to the singularity as proposed in ref. 24. Without this treatment, the
correlation part of the self-energy Σc(ω) can be written as132

hΨnkjΣcðωÞjΨnki ¼ i
2π

P

mij

R1
�1 dω0 1

Nq

P

q

1
ωþω0�~ϵmk�q

Mi
nmðk; qÞ

� ��
Mj

nmðk; qÞWc
ijðq;ω0Þ;

ð5Þ

where ~ϵnk ¼ ϵnk þ i η signðEF � ϵnkÞ and EF the Fermi energy.Mi
nmðk; qÞ

are the expansion coefficients of the mixed-product basis, an auxiliary basis
to represent products of KSwavefunctions. Like LAPWs and LOs, they have
distinct characteristics in theMTspheres and interstitial region132,133. To treat
the q = 0 case separately, the corresponding term in Eq. (5) is replaced by

1
ωþ ω0 � ~ϵmk

Mi
nmðk; 0Þ

� ��
Mj

nmðk; 0Þ
1
Ω0

Z

Ω0

dqWc
ijðq;ω0Þ; ð6Þ

where Ω0 is a small region around q = 0. Analytical expressions for
Wc

ijðq;ω0Þ in the limit q→ 024 are then employed to calculate the integral in
Eq. (6).

Spin-orbit coupling
In this study, SOC is treated via the second-variational (SV) scheme134. In
LDA and PBE calculations, the conventional SV approach is
utilized127,135–137: First, the scalar-relativistic problem, i.e., omitting SOC, is
solved. A subset of the resulting eigenvectors is then used as basis set for
addressing the full problem. The number of eigenvectors is a convergence
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parameter. In this work, the SOC term is evaluated with the zero-order
regular approximation (ZORA)138,139.

A ground-state calculation with HSE is performed via a nested
loop140: In the outer loop, the nonlocal exchange is computed for a
subset of KS wavefunctions, using a mixed-product basis. The inner
loop solves the generalized KS equations self-consistently, where only
the local part of the effective potential is updated in each step. Within
this inner loop, the SV scheme is applied self-consistently to incor-
porate SOC. The corresponding term, evaluated within the ZORA, is
based on PBE, which is justified by the minimal contribution due to
the gradient of the nonlocal potential141–143.

G0W0 calculations with SOC are performed in two steps on top
of ground-state calculations that include SOC. First, the QP energies
are computed as explained in Section “G0W0 approximation”, using
the scalar-relativistic KS eigenvalues and eigenvectors. In the second
step, the obtained QP energies are used, together with the SV KS
eigenvectors, to evaluate SOC through the diagonalization of the SV
Hamiltonian. This approach is sufficient in the case of MoS2 since
SOC does not cause band inversion133,143.

Computational details
In our calculations, we employ the all-electron full-potential code
exciting127. The only exception is for obtaining the HSE equilibrium
geometry, where FHI-aims144,145 is used, since so far exciting lacks
geometry relaxation with hybrid functionals. Even though exciting and
FHI-aims implement very different basis sets to expand the KS wavefunc-
tions, the two codes have been shown to be among those with the best
mutual agreement129.Moreover, a comparison of energy gaps and geometry
relaxations forMoS2 confirms this finding (see Supplementary Information
- Section I).

In all calculations, the unit-cell size L along the out-of-plane direction
(Fig. 2) is set to 30 bohr. Different flavors of xc functionals are applied,
namely LDA, PBE, and HSE. In the latter, we use the typical parameters94,
i.e., a mixing factor of α = 0.25 and a screening range ofω = 0.11 bohr−1. To
determine the respective equilibrium geometries, we relax the atomic
positions until the total force on each ion is smaller than 10 μHa bohr−1. For
these geometries, the electronic structure is calculated with all three func-
tionals, with and without SOC, giving rise to a set of 18 calculations. These
calculations are followed by G0W0 calculations, taking the respective DFT
solutions as starting points.

The dimensionless parameter rgkmax that controls the exciting
basis-set size is set to 8. In the LDA and PBE calculations, we use a
30 × 30 × 1 k-grid. In HSE and G0W0 calculations, we employ 400 empty
states and an 18 × 18 × 1 k-grid. In G0W0, the correlation part of the self-
energy is evaluated with 32 frequency points along the imaginary axis, and
then analytic continuation to the real axis is carried out by means of Pade’s
approximant. For the bare Coulomb potential, we use a 2D cutoff95 com-
binedwith a special treatmentof theq=0 singularity as described inSection
“Treatment of the q = 0 singularity”. Furthermore, we carefully determine
the minimal set of LOs, sufficient to converge at least the lowest 400 KS
states. This is achievedwith 2 and6LOs for sulfur s and p states, respectively,
as well as 3, 6, and 10 LOs for molybdenum s, p, and d states, respectively.
Overall, we estimate a numerical precision of 50–100meV in the energy
gaps obtained with our G0W0 calculations. To determine effective masses,
we use parabolic fits within a range of 0.05Å−1 around the VBM and the
CBm at the K point of the BZ.Depending on the respective case, K can host
either global or local extrema.

Data availability
All input and output files are available at NOMAD146,147 under https://doi.
org/10.17172/NOMAD/2023.09.16-1.
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