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Machine-learning interatomic potentials (MLIPs) offer a powerful avenue for simulations beyond
length and timescales of ab initio methods. Their development for investigation of mechanical
properties and fracture, however, is far from trivial since extended defects—governing plasticity and
crack nucleation in most materials—are too large to be included in the training set. Using TiB2 as a
model ceramic material, we propose a training strategy for MLIPs suitable to simulate mechanical
response of monocrystals until failure. Our MLIP accurately reproduces ab initio stresses and fracture
mechanisms during room-temperature uniaxial tensile deformation of TiB2 at the atomic scale ( ≈ 103

atoms). More realistic tensile tests (low strain rate, Poisson’s contraction) at the nanoscale ( ≈ 104–106

atoms) requireMLIP up-fitting, i.e., learning from additional ab initio configurations. Consequently, we
elucidate trends in theoretical strength, toughness, and crack initiation patterns under different
loading directions. As our MLIP is specifically trained to modelling tensile deformation, we discuss its
limitations for description of different loading conditions and lattice structures with various Ti/B
stoichiometries. Finally, we show that our MLIP training procedure is applicable to diverse ceramic
systems. This is demonstrated by developingMLIPs which are subsequently validated by simulations
of uniaxial strain and fracture in TaB2, WB2, ReB2, TiN, and Ti2AlB2.

Simulations of materials’ mechanical response—including (i) intrinsic
strength and toughness, (ii) nucleation of extended defects (e.g., disloca-
tions, stacking faults, cracks) and their implications for (iii) plasticity and
fracture mechanisms —require length and time scales beyond limits of ab
initio methods ( ≈ 103 atoms,≪ ns)1–4. The go-to approach in most cases
would be classical Molecular Dynamics (MD), allowing to access atomistic
pathways for deformation and fracture in nanoscale systems ( ≈ 106 atoms)
and “realistic” operation conditions (e.g., ultra-high temperatures, times up
to μs). However, a severe problem of MD is that the necessary interatomic
potentials do not exist for most engineering materials or are limited in
accuracy and transferability with respect to temperatures, phases, and
defective structures (see e.g., refs. 5–7).

A powerful avenue for MD simulations on multiple time and length
scales with near ab initio accuracy is the application of machine learning
interatomic potentials8,9 (MLIPs), in case of no ambiguity just “potentials”).
MLIPs learn the atomic energy (or other atomic properties like forces) from
a descriptor that characterizes local atomic environments in an ab initio

training set10. Compared to conventional ab initio calculations, MD with
MLIPs can achieve a speed up of as much as 5 orders of magnitude11,12.
Previous studies showed examples of MLIPs’ transferability with respect to
defects (e.g., grain boundaries13, dislocation structures14,15) and phases16,17

(e.g., Ni-Mo phase diagram illustrating superior performance of a MLIP
over a classical potential18). Recently, Tasnádi et al.19 have demonstrated
high accuracy of MLIP-predicted elastic constants for TiAlN ceramics,
hence, have set the stage for MLIP development beyond linear elastic
regime.

Based on the parametrization of local structural properties, MLIPs can
be fitted employing different formalisms: spectral neighbor analysis
potentials (SNAP)20, neural networks potentials (NNP)21, Gaussian
approximation potentials (GAP)22, moment tensor potentials (MTP)23,
linearized interatomic potentials24, or atom cluster expansion (ACE)
potentials10. Benchmarks for some of these parametrizations have been
published in the case of carbon25 or graphene26, but are missing for che-
mically complex materials.
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Fundamental challenges related to MLIP developments include (i)
efficient training dataset generation, (ii) training strategies for simulations
beyond length scales feasible for ab initio methods, and (iii) assessing the
MLIPs’ reliability over different length scales. Point (ii) closely relates to
successively improving the MLIP’s predictive power by up-fitting/active
learning27.Here an important concept is the extrapolation/Maxvol grade (γ28)
expressing the extent of MLIP’s extrapolation on any structure containing
given chemical elements (irrespective of the phase and stoichiometry).
Readily available in current ACE and MTP implementations29–31, γ allows
selecting sufficiently “new” environments to expand the training set. Besides
γ, other methods used for selecting configurations are stratified sampling or
random selection (for detailed discussion of pros and cons see refs. 32–35).
Besides identifying new environments, γ can serve to indicate the MLIP’s
reliability duringMD simulations. This is particularly advantageous at scales
where the direct validation by ab initio calculations is not possible.

Our work pursues the development of MLIPs suitable to simulate
atomic-to-nanoscale deformation of ceramics, providing both methodolo-
gical andmaterials science discussion. Themodel material, TiB2, is a widely
studied system, representative of ultra-high temperature ceramics
(UHTCs). Exhibiting high hardness and resistance to corrosion, abrasive
and erosive wear36,37, UHTCs are suitable to protect tools and machining
components under extreme operation conditions38–41. TiB2, which crystal-
lizes in the AlB2-type phase42–44 (α, P6/mmm), exemplifies outstanding
mechanical properties45,46 of UTHCs. It exhibits high hardness of 41–53
GPa45,47,48, has a melting point of 3500 K49 and mature synthesis
technologies50,51. Insights into mechanical behaviour of TiB2 and other
diborides have been offered by ab initio calculations52–54 and recently also by
molecular dynamics with classical empirical potentials (TiB2

55,56, ZrB2
57,

HfB2
58). To date, however, no MLIP capable of predicting mechanical

response of UTHCs until fracture has been reported.
Using the MTP formalism, we propose a general training strategy for

development of MLIPs targeted to model tensile deformation and fracture
of single-crystal ceramics at finite temperatures. The extrapolation grade, γ,
is exploited to iteratively improveourMLIPand also as ameanof validation.
Specifically, γ values calculated during MD tensile tests are discussed
alongside with statistical errors of relevant physical observables, such as
time-averaged stresses derived from equivalent ab initio molecular
dynamics (AIMD) simulations. The newly-developed MLIP allows to
describe tensile deformation in TiB2 supercells with≈ 103–106 atoms, thus

also providing a basis for analyzing size effects onmechanical properties and
fracture patterns. Furthermore, we test transferability of our MLIP to other
loading conditions andphases, aswell as applicability of our general training
strategy to other ceramics, exemplified by TaB2, WB2, ReB2, TiN, and
Ti2AlB2.

Results and discussion
We aim to developMLIPs targeted to simulations of tensile deformation in
TiB2. Although the mechanical properties of ceramics are typically assessed
by nanoindenation, microcantilever bending, or micropillar compression
experiments,MD simulations of tensile loading can be directly compared to
results of ab initio calculations. We simulate deformation along low-index
[0001], [1010], and [1210] directions that are parallel or normal to the
typical growth direction of hexagonal transition metal diborides36 and have
been considered in previous ab initio studies of surface energies and
mechanical properties54.

Training procedure and fitting initial MLIPs
Our general training procedure is described below (Procedure 1) and
schematically depicted in Fig. 1a (for further details, see the Methods).
Throughout this work, training configurations (i.e., structures labelled by ab
initio total energies, forces acting on each ion, and six stress tensor com-
ponents) are generated by finite-temperature AIMD calculations. To avoid
over-representation, a training set is initialized by a small fraction of ran-
domly selectedAIMDsnapshots and iteratively expanded using the concept
of the extrapolation grade28, γ.

The extrapolation grade γ∈R+ (see equations 9–1 in ref. 28) expresses
the degree of extrapolation when MLIP predicts atomic properties of a
certain configuration. Specifically, γ ≤ 1 means interpolation and γ > 1
extrapolation. Hence, the higher the γ, the larger is the uncertainty on
predicted energies, forces, and stresses28. In practice, one sets an extra-
polation threshold (γthr). Configurations with γ > γthr are added to the
training set to improve transferability of the potential. Procedure 1 uses
γthr = 2, motivated by our tests (In particular, during each iteration (i) in the
step (4) of Procedure 1, themaximum γ is correlatedwith errors of energies,
forces and stresses (quantified via common regression model evaluation
metrics, MAE, RMSE, R2, see e.g., ref. 59) for the TSi (fitting errors) and the
VS (validation errors). With γthr = 2, we are limited mainly by the accuracy
of the underlying ab initio training data.) as well as by previous work by the

Fig. 1 | Our MLIP training strategy. Schematic visualization of a our general
training procedure (Procedure 1, Section Training procedure and fitting initial
MLIPs), and b up-fitting (SectionMLIPs’validation against atomic scale tensile tests
and MLIPs’ up-fitting for nanoscale tensile tests), both applicable to any MLIP
formalismwith the extrapolation/Maxvol grade (γ) quantification, particularlyMTP
(used in this work) and ACE. c An overview of the here-developed MLIPs: MLIP-
[0001], MLIP-[1010], MLIP-[1210] (applicable for atomic scale tensile loading,
Sections Training procedure and fitting initial MLIPs and MLIPs’validation against

atomic scale tensile tests); MLIP-[1], MLIP-[2], MLIP-[3] (intermediate MLIPs
produced by up-fitting, Section MLIPs’ up-fitting for nanoscale tensile tests); and
MLIP-[4] (applicable for both atomic and nanoscale tensile loading, SectionMLIPs’
up-fitting for nanoscale tensile tests--Otherloading conditions and MLIP’s trans-
ferability). Details of the training datasets are given in the corresponding sections
and additionally summarized in the Methods under “Development of machine-
learning interatomic potentials”. both.
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MTPdevelopers60 andby one of us12 showing that suchvalue corresponds to
accurate extrapolation60 (near-interpolation12).

Procedure 1. MLIP training
(1) Generate a pool of AIMD configurations.
(2) Divide the pool into an initial training set (TS0), a learning set (LS),

and a validation set (VS) by randomly selecting 0.5%, 79.5%, and
20% of non-overlapping configurations.

(3) Fit an initialMLIP (MLIP0, trainedonTS0). Ifγof all configurations
in the LS and VS is below γthr = 2, exit. Else, build TS1 by adding
maximum10%of configurations from the LS toTS0, selected by the
Maxvol algorithm28 based on their extrapolation grade. Fit a new
MLIP (MLIP1, trained on TS1).

(4)While γ of all configurations in the LS andVS is above γthr = 2, build
TSibyaddingmaximum10%ofconfigurations fromtheLS toTSi−1,
selected by theMaxvol algorithmbased on their extrapolation grade.
Fit a new MLIP (MLIPi, trained on TSi).

Employing Procedure 1 and the MTP formalism, we fit three MLIPs:
MLIP-[0001],MLIP-[1010], andMLIP-[1210]. The traininguses snapshots
from room-temperature AIMD simulations for a 720-atom TiB2 supercell,
uniaxially elongated in the [0001], ½1010�, and ½1210� crystallographic
direction, respectively, with a strain step of 2% (for details of AIMD
simulations, see the Methods). The entire pool of AIMD data consists
of ≈ 120, 000 configurations, where each loading condition ([0001], ½1010�,
and ½1210�) represents ≈ 1/3.

The final training sets (the last TSi in the step (4) of Procedure 1) of
MLIP-[0001], MLIP-[1010], and MLIP-[1210] contain 181, 155, and 180
configurations, respectively. The fitting and validation errors, quantified
through the residual mean square error (RMSE59), of total energies, forces,
and stresses do not exceed 2.6 meV atom−1, 0.11 eVÅ−1, and 0.30 GPa,

respectively. As follows from Procedure 1, γ < γthr = 2 for all configurations
in the learning set.

MLIPs’ validation against atomic scale tensile tests
Following evaluation of the fitting and validation errors (Section Training
procedure andfitting initialMLIPs), further validation steps consist in using
the above developed MLIPs to run MD simulations (ML-MD) of TiB2
subject to tensile deformation.

During ML-MD, the MLIP’s reliability is assessed via:
(i) Comparison with AIMD predictions of physical, mechanical proper-

ties, and fracturemechanisms. Inparticular,wemonitor time-averaged
stresses, theoretical strength and toughness, and cleavage on different
crystallographic planes.

(ii) The extrapolation grade. At each ML-MD time step, we calculate γ of
the corresponding configuration. Values exceeding reliable extrapola-
tion signalise that the MLIP requires up-fitting (i.e., expanding the TS
by additional configurations and going back to step (4) of Procedure 1;
see Fig. 1b, c).
As suggested by MTP developers60, we consider γreliable ≤ 10 as reli-
able extrapolation. Such choice allows us to develop MLIPs with
accuracy similar to the underlying ab initio training set.

Figure 2 a depicts stress/strain curves derived from room-temperature
AIMD and ML-MD tensile tests, in which TiB2 supercell ( ≈ 103

atoms, ≈ 1. 53 nm3) is loaded in the ½0001�; ½1010�, and ½1210� direction,
respectively. Each deformation is simulated with a MLIP trained to the
respective loading condition. Excellent quantitative agreement between
AIMD and ML-MD results indicates reliability of our MLIPs. Specifically,
time-averaged stresses in ML-MD differ from AIMD values by 0.07–1.94
GPa, yielding statistical errors RMSE ≈ 1.02 GPa, R2 ≈ 0.9997. Stresses

Fig. 2 |Validation of the here-developedMLIPs (MLIP-[0001],MLIP-[1010], and
MLIP-[1210]) against atomic scale room-temperature AIMD tensile tests.
a Comparison of AIMD (dash-dotted line) and ML-MD (solid line) stress/strain
curves for TiB2 subject to ½0001�; ½1010�, and ½1210� tensile deformation at 300 K,

using a 720-atom supercell with dimensions of ≈ (1.52 × 1.58 × 2.57) nm3. Only the
stress component in the loaded direction is plotted. b, c Snapshots of the fracture
point in AIMD (b-1, b-2, b-3) and ML-MD (c-1, c-2, c-3). d Illustration of fracture
surfaces (see also ref. 100).
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normal to the loaded direction—not vanishing due to the omission of
Poisson’s effect in both AIMD andML-MD simulations—are also used for
assessing MLIPs’ reliability. After fracture, the [0001] stress component
recorded in AIMD does not drop to zero. The effect is due to long-range
electrostatic effects, which are absent in ML-MD. The extrapolation grade
during all ML-MD simulations remains low (γ ≤ 5 < γreliable), thus sug-
gesting reliable extrapolation.

The calculated stress/strain curves allow us to evaluate TiB2’s theore-
tical tensile strength and toughness along different crystal directions. We
report results of the ultimate tensile strength, which corresponds to
the global stress maximum during the tensile test61. We define the tensile
toughness as the integrated stress/strain area. The property describes the
ability of an initially defect-free material at absorbing mechanical energy
until failure.

The theoretical tensile strengths of TiB2 obtained byML-MD are 63.7,
55.0, and 52.7 GPa for the ½1210�; ½1010�, and [0001] directions, respec-
tively. These differ from AIMD values by maximum 0.8 GPa (0.99%). The
ML-MD predicted toughness along ½1210�; ½1010�, and [0001] reaches 4.3,
3.1, and 4.3 GPa, respectively, differing from AIMD values by maximum
0.029 GPa (0.67%). Note, however, that theoretical tensile strength and
toughness are affected by the supercell size. Strength and toughness values
saturate over nm lengthscales (see following sections).

AIMD andML-MD tensile-testing of TiB2 reveal very similar fracture
mechanisms (Fig. 2b–c). Specifically, the fracture surface formed during
[0001] deformation almost perfectly aligns with (0001) basal planes
(Fig. 2(b-1),(c-1),d). Tensile loading along the½1010� direction opens a void
diagonally across Ti/B2 layers (Fig. 2(b-2),(c-2)). The fracture surface is
parallel to the second order pyramidal planes of the f1122g family (Fig. 2d).
For the ½1210� loading condition, fracture planes are approximately parallel
to the f1010g prismatic planes (Fig. 2(b-3),(c-3),d). TheTiB2 fracture planes
predicted in our simulations are consistent with experimentally-
characterized slip planes in single-crystal TiB2

50,62.

MLIPs’ up-fitting for nanoscale tensile tests
As discussed in the previous section, MLIP-[0001], MLIP-[1010], and
MLIP-[1210] provide reliable description of TiB2’s response to uniaxial
tensile loading at the atomic scale. This is indicated by low extrapolation
grades (γ ≤ 5 < γreliable) as well as stress/strain curves and fracture
mechanisms in agreement with AIMD results.

As a next step, we carry out tensile tests at the nanoscale. Methodo-
logical differences between atomic and nanoscale simulations are lis-
ted below.
• Atomic scale tensile tests (presented in the previous section) employ

720-atom supercells with dimensions of ≈ (1.5 × 1.6 × 2.6) nm3. Strain
is incremented at steps of 2% with fixed lattice vectors normal to the
loaded direction.

• Nanoscale tensile tests employ supercells with four different sizes: S1
(12,960 at.), S2 (141,120 at.), S3 (230,400 at.), and S4 (432,000 at.),
where S1 ≈ 53 nm3 and S4 ≈ 153 nm3. These simulations impose a
continuous and homogeneous increase in strain (rate 50Å s−1) and
account for Poisson’s contraction.

Employing MLIP-[0001], MLIP-[1010], and MLIP-[1210] for room-
temperature nanoscale tensile tests results in unphysical dynamics (losing
atoms) and rapidly increasing extrapolation grades (γ≫ 103≫ γreliable)
when approaching the fracture point. This indicates that deformation is
controlled by formation of extended crystallographic defects, which are
absent in atomic scale simulations. Thus, to enable a description of TiB2’s
fracture at the nanoscale, our MLIPs require up-fitting (Fig. 1b). Generally,
this is a non-trivial task63,64, since structures causing large γ cannot be
directly treated by ab initio calculations.

Below, we describe up-fitting steps leading toMLIP-[4] (schematically
depicted in Fig. 1c).We shall see thatMLIP-[4] enables reliable simulations
of TiB2 tensile deformation at the nanoscale.

• We produce MLIP-[1] by up-fitting MLIP-[0001], where the LS is
expanded by final TSs of MLIP-[1010] and MLIP-[1210]. MLIP-[1]
accurately simulates atomic scale tensile properties, but does not well
describe nanoscale deformation and fracture in TiB2 (γ≫ γreliable).

• We up-fit MLIP-[1] using three different LSs, producing MLIP-[2],
MLIP-[3], and MLIP-[4]. MLIP-[2] and MLIP-[3] learn from AIMD
snapshots of TiB2 equilibrated at 1200 K (MLIP-[2]), and sequentially
elongated in the [0001] direction until cleavage (MLIP-[3]). MLIP-[4]
learns from AIMD snapshots of TiB2 elongated by 150% in the [0001]
direction, initializing atoms at ideal lattice sites and equilibrating at 300
and 1200 K under fixed volume and shape. Such large strain quickly
induces fracture, thus providing additional information for training
MLIP on highly deformed lattice environments and surface proper-
ties.MLIP-[2], MLIP-[3], and MLIP-[4] all provide results in
agreement with AIMD tensile tests at the atomic scale (γ ≤ 5 < γreliable,
Supplementary Fig. 2). Fracture mechanisms and elastic constants are
also correctly reproduced. At the nanoscale, MLIP-[2] and MLIP-[3]
exhibit lower γ than MLIP-[1]. However, the sought improvement
(γ ≤ γreliable) is achieved only by MLIP-[4], which will be used to carry
out nanoscale ML-MD simulations of TiB2 deformation.

The reliability of MLIP-[4] is indicated by low γ values, realistic
description of structural changes during nanoscale tensile tests (see Sup-
plementary Fig. 3, and following section), and excellent agreement with ab
initio and experimental values of TiB2 lattice parameters (Table 1).

To explain whyMLIP-[4] enables nanoscale tensile tests, one needs to
analyse the corresponding training set, TS(MLIP-[4]). In Fig. 3, we visualize
selected characteristics of TS(MLIP-[4]) in comparison to the training set of
MLIP-[1], TS(MLIP-[1]), where the latter is not applicable to simulate
TiB2’s fracture at the nanoscale. The radial distribution function (RDF,
Fig. 3a) and bond angle distribution analysis (Supplementary Fig. 4) suggest
minor geometrical differences between structures contained in TS(MLIP-
[1]) and TS(MLIP-[4]). Their total energy and stress distribution, however,
differ significantly (Fig. 3b). In particular, TS(MLIP-[4]) contains atomic
configurations with higher total energy and higher total energy in combi-
nation with higher stress in principal crystallographic axes, which are
missing inTS(MLIP-[1]). An illustration of structures from the two training
sets is given in Fig. 3c. The chosen snapshots indicate that TS(MLIP-[4])
provides a variety of atomic environments relevant for simulations of non-
stoichiometry, locally amorphous regions, and surfaces, which are likely to
be helpful also for nanoscale simulations.

Table 1 | Validation of the here-developed MLIP (MLIP-[4],
equivalent results are produced by intermediate MLIP-[1–3])
against theoretical and experimental (exp.) lattice constants

No. of atoms T a c Source

DFT 720 0 3.027 3.213 This work

ML-MD 720 0 3.027 3.213 This work

AIMD 720 300 3.035 3.218 This work

ML-MD 720 300 3.036 3.218 This work

ML-MD (13–430) ⋅ 103 300 3.036 3.217 This work

Exp. - 300 3.032 3.229 Ref. 92

Exp. - 300 3.029 3.229 Ref. 93

Exp. - 300 3.021 3.230 Ref. 94

AIMD 720 1200 3.056 3.249 This work

ML-MD 720 1200 3.056 3.249 This work

ML-MD (13–430) ⋅ 103 1200 3.047 3.239 This work

The a and c values for TiB2 (in Å) are shown at temperature T (K). Experimental values, refs. 92 and
93,94, are for TiB2 powder and thin films, respectively.
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4 Size effects in tensile response of TiB2

Equipped with the above developed MLIP-[4], in this section we
discuss TiB2’s response to room-temperature uniaxial tensile loading
from atomic to nanoscale. Recall that an important difference
between our atomic and nanoscale tensile tests is that the former
disregard Poisson’s contraction.

The stress/strain curves calculated by ML-MD at room temperature
are depicted in Fig. 4. For strains below ≈ 10%, the tensile stresses computed
for each loading direction remain unaltered by an increase in supercell sizes
from ≈ 103 to 106 atoms. Such overlap indicates consistency in elastic con-
stants derived fromatomic andnanoscalemodels. As already seen in atomic
scale simulations, the basal plane is elastically isotropic, which is shown by
the same initial slope of stress/strain curves for ½1210� and ½1010� elongation
and in line with experimental reports for hexagonal crystals65. Due to
Poisson’s contraction, however, differences in stress/strain curves emerge
beyond the linear-elastic regime. A shrinkage of the lattice parameters

normal to the applied tensile strain yields Poisson’s ratio (ν ≈ 0.127 (The

Poisson’s contraction was calculated as ν ¼ � dεcompressed

dεelongated
, where the

dεcompressed (dεelongated) is the lattice parameter shrinkage (increment)

orthogonal (parallel) to the loading direction. The presented value is an
average of Poisson’s ratios for both in-plane directions.)) consistentwith the
value obtained from elastic constants (ν ≈ 0.113, see Table 2). Approaching
the fracture point, differences between TiB2’s tensile behavior at atomic and
nanoscale become more apparent. For example, while atomic-scale simu-
lations indicate that the [0001] direction is the softest, tensile tests at the
nanoscale show that ½1010� elongation returns the lowest strength value
(Table 3). Even more pronounced size effects are expected for ceramics
which exhibit plastic behavior upon tensile loading.

The TiB2’s theoretical strength and toughness calculated during
nanoscale simulations at room temperature remain essentially
unchanged for supercell sizes increasing from ≈ 53 nm3 to ≈ 153 nm3

(see S1–S4 results in Table 3). Specifically, the ½1210� direction
exhibits the highest tensile strength ( ≈ 56 GPa), followed by the
[0001] direction ( ≈ 54 GPa), and the ½1010� direction ( ≈ 51 GPa).
The [0001] direction exhibits the highest toughness ( ≈ 4.80 GPa),
followed by the ½1210�direction ( ≈ 3.37 GPa), and the ½1010�direction
( ≈ 2.78 GPa).

Besides characterizing directional dependence of tensile strength and
toughness in dislocation-freemonocrystals,ML-MDnanoscale simulations
also provide insights into crack nucleation and growth mechanisms. These
are illustrated by Figs. 5–7. Results of ML-MD atomic scale simulations are
included for comparison.

During atomic-scale simulations of [0001] elongation, all atoms in
TiB2 vibrate close to their ideal lattice sites until a sudden brittle cleavage
induces the formation of two surfaces almost perfectly parallel with (0001)
basal planes (Fig. 5, row 1). At the nanoscale, fracture is initiated by opening
of voids accompanied by local necking which produces lattice re-
orientations (Fig. 5, row 2 and 3). Rapid void coalescence and fraying of
ligaments results in corrugated fractured surfaces, predominantly with
(0001) orientation. Following the stress release, inner parts of the crystal
relax back to the ideal TiB2 lattice sites.

The S1 supercell yields in only one region (Fig. 5, row 2). The larger
S2, S3, and S4 supercells do not fracture in two pieces but nucleate cracks
with size of few nm. For S4 supercells, the phenomenon is depicted in Fig. 5,
row 3. The fractured surfaces do not align onlywith the basal planes but also
with the {1011} first order pyramidal planes (see notation in Fig. 2d).
Volumetric strain analysis (Fig. 5d, e) highlights locally increased tensile
strain concentration surrounding small voids (seeTiB2 slice at ≈ 27% strain)
due to decreased interplanar spacings between Ti and B layers (pre-
dominantly due to [0001] compression) above and below the voids. The
large size of S4models allows cracks to propagate along different directions,
thus offering a detailed view of fracture patterns.

For the ½1010� tensile test, size effects in fracture mechanisms are
compared in Fig. 6. At the atomic scale, two voids opendiagonally across Ti/
B layers (Fig. 6, row 1). At the nanoscale,we observe nucleation ofV-shaped
cracks, as illustrated for the S1 and the S4 supercell (Fig. 6, row 2 and 3, and
panels c, d), where S4 additionally reveals lattice rotation near the V-shaped
defects.We infer that loading in the direction of strong covalent B–B bonds
most often induces crack deflection and fracture at f1122g family of surfaces
parallel to the second order pyramidal planes.

Changing to the ½1210� tensile deformation, atomic scale simulations
predict fracture along {1010} prismatic planes (Fig. 7, row 1). This is
underpinned also by nanoscale ML-MD (Fig. 7, row 2 and 3), suggesting
that crack growthoftenoccurs both orthogonally anddiagonally acrossTi/B
layers (see the dashed line with arrow in Fig. 7e).

A direct comparison between experimental and ML-MD results of
TiB2 mechanical properties and preferred fracture planes would require
synthesis and tensile testing of TiB2 monocrystals. Unfortunately, TiB2
ceramics are typically synthesized as thin films on substrates, which renders
measurements of tensile strength essentially unfeasible. Nevertheless, as

Fig. 3 | Qualitative differences between configurations in the training sets (TSs)
of the here-developed MLIPs suitable only for the atomic scale ML-MD tensile
tests (MLIP-[1]) or for both atomic and nanoscale ML-MD tensile tests (MLIP-
[4]). aRadial distribution function (RDF,with 5.5Å cutoff) for B–B, Ti–B, andTi–Ti
bonds (integrated over all configurations). b Stress components (in-plane and in the
loaded direction) vs. total energy of all configurations in the training set. c Snapshots
of representative structures from the two training sets.
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mentioned above, the fracture planes observed in ML-MD simulations are
consistent with slip systems known to operate in TiB2 at room
temperature50,62. It is also worth noting that the high hardness measured for
[0001]-textured TiB2 thin films, 41–53GPa45,47,48, is consistent with large
strength values predicted for TiB2 by atomistic simulations.

In general, the fracture strengthmeasured for hard ceramics is one-to-
two orders of magnitude lower than the theoretical strength. The dis-
crepancy is due topremature cracking initiated at native structural defects in
actual materials. For example, microcantilever bending experiments con-
ducted on hard polycrystalline Ti-Al-N evidence intergranular fracture,
which severely limits the material strength to values below 10 GPa66; much

smaller than corresponding theoretical strength results67. Nevertheless,
prior to crack growth, the tensile stress accumulated at structural flaws of
ceramics can locally reach several tens of GPa68. This reconciles stress states
predicted by atomistic simulations with real mechanical-testing experi-
ments. Likewise, the elongation withstood by defect-free ceramic models
during tensile testing simulations is indicativeof strain locally produced (nm
lengthscale) in specimens subject to load (see fracture strains in Fig. 4).

Other loading conditions and MLIP’s transferability
Our MLIP (MLIP-[4]) has been specifically developed and optimized
to target atomic to nanoscale simulations of TiB2 subject uniaxial

Fig. 4 | Comparison of AIMD and ML-MD stress/strain curves calculated for
TiB2 at room temperature. TheML-MD tensile stresses, obtained usingMLIP-[4],
are plotted as a function of TiB2 elongation parallel to a [0001], b ½1010�, and c ½1210�
directions. The orange diamonds correspond to atomic scale ML-MD simulations
(720 at), while the solid lines correspond to nanoscale ML-MD simulations

(12,960–430,000 at), as defined at the beginning of this section. Note that the the-
oretical strength of defect-free crystal models represents an ideal upper bound of
strength attainable in actual ceramics. Much lower stresses are expectable in
experiments due to, e.g., nanostructural defects.

Table 2 | Validationof thehere-developedMLIP (MLIP-[1]) against theoretical andexperimental (exp.) room-temperature elastic
constants, Cij

No. of atoms T C11 C33 C44 C12 C13 E B G ν Source

DFT 192 300 640 446 251 62 91 574 244 260 0.106 Ref. 95

AIMD 720 300 588 430 252 79 111 547 244 243 0.126 This work

ML-MD 720 300 588 409 261 85 98 554 236 246 0.113 This work

Exp. — 300 660 432 260 48 93 565 244 266 0.099 Ref. 96

Exp. — 300 588 503 238 72 84 575 249 255 0.114 Ref. 97

The Cij values for TiB2 (in GPa, at temperature T (K)) are shown together with the polycrystalline bulk modulus, B (in GPa), shear modulus, G (in GPa), Young’s modulus, E (in GPa), and Poisson’s ratio, ν,
compared to referenceab initio andexperimental (exp.) data. ref. 96and ref. 97 is for TiB2 single andpolycrystal, respectively.AIMDandML-MDelastic constantswereevaluated following ref. 86, basedona
second-order polynomial fit of the [0001], [1010], and [1210] stress/strain data (C11,C12,C13,C33) and of the (0001)½1210�; ð1010Þ½1210�, and ð1010Þ½0001� shear stress/strain data (C44), assuming strains up
to 4%. For details see the Methodology section. Note that values from ref. 95 were based on 0 K ab initio calculations coupled to phonon-theory assessments of thermal expansion.

Table 3 | Size and temperature effects on mechanical properties of TiB2

No. of atoms T (K) Dimensions (nm) Strength (GPa) Toughness (GPa) Fracture strain (%)

a b c [0001] ½1010� ½1210� [0001] ½1010� ½1210� [0001] ½1010� ½1210�
720 300 1.51 1.58 2.57 52.72 55.01 63.69 4.33 3.11 4.32 22.0 16.0 18.0

12,960 (S1) 300 4.55 4.73 5.15 53.71 51.36 56.40 4.83 2.77 3.38 26.4 14.3 16.8

141,120 (S2) 300 10.63 11.05 10.30 53.69 51.44 56.41 4.81 2.78 3.37 26.4 14.3 16.8

230,400 (S3) 300 12.14 12.63 12.87 53.71 51.43 56.38 4.82 2.78 3.37 26.3 14.3 16.8

432,000 (S4) 300 15.18 15.79 15.45 53.67 51.47 56.42 4.80 2.78 3.37 26.2 14.2 16.8

720 1200 1.53 1.59 2.60 43.87 45.21 51.34 3.27 2.29 3.07 20.0 16.0 16.0

432,000 (S4) 1200 15.26 15.86 15.52 43.27 41.30 44.67 3.45 1.96 2.32 21.6 12.8 14.1

The directional response to strain is assessed for supercells with sizes ranging from the atomic to the nanoscale. The mechanical properties of TiB2 are extracted fromML-MD stress/strain data in Fig. 4.
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tensile loading until fracture. Examination of the underlying training
set (Fig. 3c) indicated a variety of atomic environments including, e.g.,
different Ti/B stoichiometries, locally amorphous regions, or surface
structures. In this section, we discuss the MLIP’s transferability to the
description of loading conditions, phases, and chemical environments
for which it has not been explicitly trained on. In most cases, we
conclude that up-fitting is necessary to guarantee quantitative agree-
ment with ab initio results.

Accuracy of the predicted observables (e.g., shear strengths or surface
energies) is presented in the context of extrapolations grades, allowing to
identify types of configurations beneficial for further up-fitting, thus,
broadening the MLIP’s applicability.
• High-temperature tensile deformation of TiB2. Since TiB2 is an

UHTC (see the Introduction), modelling its mechanical behaviour at
elevated temperature is of high practical relevance. Here we choose
1200 K which is close to the highest anti-oxidation temperature of TiB
and TiC reported experimentally69.

Atomic scale [0001], ½1010�, and [1210] tensile tests at 1200 K show
excellent quantitative agreement with AIMD simulations at the same
temperature (see Supplementary Fig. 5). Specifically, differences from
AIMD-calculated stresses are 0.01–3.54 GPa, resulting in statistical
errors RMSE ≈ 1.85 GPa, R2 ≈ 0.9997. Extrapolations grades indicate
reliable extrapolation (γ≤7 < γreliable).
TiB2’s theoretical tensile strength at 1200 K decreases by about
17–19% compared to 300 K. For tensile toughness, our simulations
predict≈ 25% decrease. Fracture mechanisms remain qualitatively
unchanged with respect to 300 K.

• Room-temperature shear deformation of TiB2. Simulations of shear
deformation provide useful insights for understanding of how dis-
locations nucleate and move in generally brittle UHTCs70,71. Further-
more, as diborides typically crystallize in layered structures (α, γ,ω),
which correspond todifferent stacking of transitionmetal planes, shear
deformation may induce plastic deformation via faulting, twinning,
and phase transformation72. Based on experimental characterization of

Fig. 5 | Representative ML-MD snapshots of TiB2 strained along [0001] at 300K.
Upper (x-1), middle (x-2), and lower (x-3) panels show results of simulations over
different lengthscales. Key deformation stages: a bond elongation in the loaded
direction, b onset of crack nucleation, and c fracture. Thin slices of the nanoscaled S1

and e S4 supercells color-coded based on volumetric strain (using the corresponding
equilibrium structure as reference). Red (blue) regions denote high tensile (com-
pressive) strain.
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room-temperature slip in single-crystal TiB2
50,62, we simulate shear

deformation along (0001)½1210�; ð1010Þ½1210�, and ð1010Þ½0001� slip
systems.
Stress evolution during atomic scale ML-MD shear deformation
(Fig. 8a) agrees well with equivalent AIMD simulations. This is
particularly the case for strains below ≈ 20%, where stresses differ
from AIMD values by 0.01–5.08 GPa (yielding statistical errors
RMSE ≈ 3.72 GPa,R2 ≈ 0.9993) andγ is close to reliable extrapolation
(γ < 14). This is a good result, if one considers that the training set did
not contain sheared configurations. Shear strains above ≈ 20%
induce notably larger discrepancies in stresses (differing fromAIMD
by 5.4–8.5 GPa) and increased γ (γ ≤ 26). The main reason is that
lattice slip—responsible for a partial stress release during shearing—
does not occur at the same strain step.
The shear strengths predicted by ML-MD for
(0001)½1210�; ð1010Þ½1210�, and ð1010Þ½0001� deformation, (49, 57,
and 51 GPa), are ≈ 8% lower thanAIMDvalues (58, 72, and 68 GPa).
Nevertheless, shear-induced structural changes observed duringML-
MD correctly reproduce AIMD results (Fig. 8b–d).

When subject to (0001)[1210] shearing, TiB2 undergoes slip on the
basal plane. Themechanism—activated for (0001)[1210] shear strain
of ≈ 24% – restores atoms to their ideal lattice sites (Fig. 8b).
ð1010Þ½1210� shearing induces plastic flowon both ð1210Þ½1010� and
ð1010Þ½1210� slip systems. The mechanisms are activated at strains
near 30% and 50% (Fig. 8c). Both are accompanied by displacements
of Ti and B atoms from ideal TiB2 lattice sites. Similar to the results in
(Fig. 8c), shearing along ð1010Þ½0001� activates different slip systems
(Fig. 8d). TiB2(0001) lattice layers glide along ½1010� at ≈ 30% strain.
A further increase in strain to ≈ 50% induces glide of ð1010Þ planes
along the [0001] direction. The latter process results in significant
displacements of B atoms and formation of stacking faults, as indi-
cated by horizontal green lines in Fig. 8d (panels on the right).
The excellent agreement between ML-MD and AIMD stress/strain
curves within the elastic shear response, accompanied by reasonably
good agreement near TiB2 yielding, suggests that up-fitting our
MLIP[4] to accurately model shear deformation would benefit from
adding configurations near TiB2’s shear instabilities to the train-
ing set.

Fig. 6 | Representative ML-MD snapshots of TiB2 strained along ½1010� at 300K.
Upper (x-1), middle (x-2), and lower (x-3) panels show results of simulations over
different lengthscales. Key deformation stages: a bond elongation in the loaded
direction, b onset of crack nucleation, and c) fracture. Thin slices of the nanoscale

d S1 and e S4 supercells color-coded based on volumetric strain (using the corre-
sponding equilibrium structure as reference). Red (blue) regions denote high tensile
(compressive) strain.
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• Room-temperature volumetric compression ofTiB2. Training on
snapshots of compressed structures may be important not only for
simulations of e.g., uniaxial compression or nanoindentation, but also
in order to correctly account for Poisson’s contraction during tensile
deformation. For TiB2, the relatively low Poisson’s ratio (Table 2) is
manifested by a rather small lateral shrinkage of the supercell during
nanoscale tensile testing simulations. Here we simulate severe volu-
metric compression of TiB2 at room temperature.All lattice vectors are
compressed by up to 12% to show rapidly growing γ values and suggest
how to improve MLIP reliability by up-fitting.
As shown in Fig. 8e, f, compression-induced stresses along main
crystallographic directions are indeed extremely large. InAIMD, they
exceed 50 GPa for a 5% compression and reach≈ 150 GPa for a 10%
compression. Our MLIP yields satisfactory agreement with AIMD
for volumetric compression of 1–2%, with stress tensor components
differing from ab initio values by less than 1.83 GPa (9.57%) and γ
indicating reliable extrapolation (γ≤10 = γreliable). A further increase
in compression to 10%, however, causes increasing deviations from
AIMD stresses and γ ≈ 102–103.

We illustrate the effect of up-fitting by producing a new MLIP
(MLIP-[4]Plus) which learns from AIMD snapshots of 10%
volumetrically-compressed TiB2 (added to the LS ofMLIP-[4]). This
not only greatly improves accuracy for the 10% compression (stress
differences aremaximum0.79 GPa (0.48%) andγ ≤ 2) but alsowithin
the entire tested compression range (see red data points in Fig. 8e, f).

• Surface energies of TiB2.
Although our training set did not contain ideal surfaces, environ-
ments describingTiB2’s fracturemay facilitate reasonable predictions
for energies of low-index surfaces. To test this hypothesis, we evaluate
the energies of formation,Esurf, of (0001), ð1210Þ, and (1010) surfaces,
i.e., orthogonal to simulated tensile loading directions (Section
MLIPs’validation against atomic scale tensile tests–Size effects in
tensile response of TiB2).
The MLIP-predicted Esurf are consistent with equivalently produced
ab initio values (Table 4). The differences are relatively small:
0.03 Jm−2 (1.40%) for Esurf(0001), 0.04 Jm−2 (1.68%) for
Esurf ð1210Þ), and 0.13 Jm−2 (5.75%) for Esurf ð1010Þ, as underlined
also by low extrapolation grades (γ < γreliable). ML-MS and DFT

Fig. 7 | Representative ML-MD snapshots of TiB2 strained along ½1210� at 300K.
Upper (x-1),middle (x-2), and lower (x-3) panels show results of simulations over
different lengthscales. Key deformation stages: a bond elongation in the loaded
direction, b onset of crack nucleation, and c fracture. Thin slices of the nanoscaled S1

and e S4 supercells color-coded based on volumetric strain (using the corresponding
equilibrium structure as reference). Red (blue) regions denote high tensile (com-
pressive) strain.
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calculations of the present work indicate that the TiB2ð1210Þ surface
is energetically more stable than the basal plane. This is surprising,
given that formation of (1210) surfaces requires breaking strong,
covalent B-B bonds. That the basal plane of TiB2 is not the one with
lowest energy has also been indicated by previous DFT tudies73,74.

Nevertheless, MLIP up-fitting on higher-accuracy DFT data would
be needed to verify the relationship among TiB2 surface energies.

• Off-stoichiometricTiB2structures and other phases. Our MLIP was
trained to snapshots ofTiB2 (AlB2-typephase,P6/mmm)with aperfect
stoichiometry (speaking of the entire supercell). Visualization of the
training set (Fig. 3c), however, indicates the presence of atomic
environments with various Ti-to-B ratios as well as bond lengths and
angles different from those in TiB2. This may be useful for simulations
of e.g., vacancy-containing TiB2 structures commonly reported by
synthesis36 or other phases in the Ti–B phase diagram75.
To investigate transferability to other phases, we useMS calculations
to find the ground-state of known phases from the Ti–B phase
diagram75,76: Ti2B (tetragonal, I4/mcm), Ti3B4 (orthorhombic,
Immm), and TiB (orthorhombic Pnma) (The supercell sizes are
always ≈ 700 atoms, i.e., comparable to that used for TiB2.).
Additionally, we equilibrate the TiB2 phase with Ti, B, or combined
Ti and B vacancies: Ti36B71, Ti35B72, and Ti35B70. For all calculations,
extrapolation grades (γ ≈ 102–104) are far beyond reliable extrapola-
tion. In terms of total energies (Etot), and lattice parameters (a, b, c),
the largest deviation from ab initio values is exhibited by Ti3B4 (10%
and 2.5% differences on Etot and c, respectively).
Simulations of other stoichiometries andphases therefore require up-
fitting (not necessarily due to poor accuracy but especially due tohigh
uncertainty, γ≫ γreliable). To illustrate the up-fitting effect, MLIP-[4]
learns fromadditional ab initio snapshots: from0K equilibration of a
780-atom Ti3B4 supercell. Prior to up-fitting, equilibration of Ti3B4
yields γ≥104. Afterwards, γ ≤ 5 < γreliable andEtot, a and c deviate from
ab initio values by 4.18%, 0.07%, and 0.73%.

Viability of our training strategy formodelling tensile deformation
in other ceramics
To illustrate general applicability of the proposed training strategy, we
developMLIPs for 5 other ceramic systems. Once more, we emphasize that
thedevelopedMLIPs areprimarily targeted to simulations ofuniaxial tensile
loading at room temperature. The chosen materials are
• hexagonal α-TaB2

72, which serves as an example of changing the
transition metal while keeping the same crystal structure,

• hexagonal ω-WB2
72 and γ-ReB2

72, i.e., examples of changing the
transition metal as well as the phase,

• cubicNaCl-typeTiN67,which serves as example of ceramic systemwith
different non-metal species, different lattice symmetry, and bonding

Fig. 8 | Illustration of simulations towhich the here-developedMLIP (MLIP-4)
is transferable (a–d) or for which it requires up-fitting (e–f). a Comparison of
AIMD (dash-dotted line) and ML-MD (solid line) stress/strain curves for TiB2
subject to (0001)½1210�; ð1010Þ½1210�, and ð1010Þ½0001� room-temperature
atomic-scale shear deformation. b–d Representative snapshots at strain steps
marked by shaded rectangles in a. The dashed lines in b–d guide the eye for slip
directions described in the text. e Differences in ML-MD and AIMD stresses
(σ(ML-MD)− σ(AIMD)), resolved in the basal plane and [0001] direction (σx,y and σz)
of TiB2 subject to room-temperature volumetric compression, plotted as a
function of the compression percentage. f Blue and red data points indicate
maximum extrapolation grades returned by MLIP-[4] and its up-fitted version,
MLIP-[4]Plus, during TiB2 compression.

Table 4 | Transferability of the here-developedMLIP (MLIP-[4])
in molecular statics (MS) calculations of surface energies,
Esurf (J m−2), for low-index surfaces of TiB2

Surface Esurf Source

ML-MS (0001) 3.80 This work

DFT (0001) 3.80 This work

DFT (0001) 4.50–4.72 Ref. 98

DFT (0001) 4.22–4.24 Ref. 73

DFT (0001) 4.14 Ref. 99

DFT (0001) ≈ 4.20 Ref. 74

ML-MS (1010) 3.98 This work

DFT (1010) 4.12 This work

DFT (1010) ≈ 4.10 Ref. 74

ML-MS (1210) 3.42 This work

DFT (1210) 3.57 This work

DFT (1210) 4.20–4.83 Ref. 73

DFT (1210) ≈ 4.02 Ref. 74

Our calculations consider stoichiometric TiB2 surfaces, i.e., with 1:2 Ti-to-B ratio.
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character that is less covalent butmore ionic andmetallic thanTiB2 and
diborides in general,

• orthorhombic, nanolaminated Ti2AlB2 (a MAB phase77), which is
example of ternary systemwith different crystal structure andmixture
of ceramic-like and metallic-like bonding.

Trainingdata generation, up-fitting, and validation follow steps carried
out for TiB2 in Sections Training procedure and fitting initial
MLIPs–MLIPs’ up-fitting for nanoscale tensile tests. Again, the validation
consists in (i) evaluating fitting and validation errors with respect to the
training set and a meaningful validation set, (ii) comparing the predicted
physical properties with equivalently calculated ab initio values, and (iii)
monitoring the extrapolation grade during ML-MD simulations.

Fitting and validation errors of energies, forces, and stresses (RMSE < 3
meV atom −1, < 0.15 eVÅ−1, and < 0.25 GPa, respectively) are similar to
those evaluated for TiB2 in Section Training procedure and fitting initial
MLIPs and close to the accuracy of the AIMD training set. Extrapolation
grades for all configurations in the validation set are below the accurate
extrapolation threshold (γ < 2).

Figure 9 exemplifies validation of ML-MD tensile-stress/elongation
curves against corresponding atomic-scaleAIMDresults. The intention is to
demonstrate applicability of our training approach to different ceramic
systems. Hence, we omit discussion of deformation and fracture mechan-
isms which, however, are consistent with AIMD results. The time-averaged
stresses recordedduringML-MD tensile tests differ from the corresponding
AIMD values by 0–3.3 GPa, yielding statistical errors RMSE ≈ 2.0 GPa,
R2 ≈ 0.99. The discrepancy is partly due to stochastic stress fluctuations,
which may also onset fracture at slightly different strains in independent
MD runs (compare ML-MD and AIMD results for TaB2, ReB2, and TiN in
Fig. 9). Previous molecular dynamics tensile-testing investigations
demonstrated that the statistical uncertainties on TiN elongation at fracture
are comparable to the strain increment68.

The theoretical tensile strengths of TaB2, WB2, ReB2, TiN, and
Ti2AlB2 predicted by ML-MD are 40.3, 50.8, 76.2, 36.7, and 16.5 GPa,
respectively. These values differ from those obtained via AIMD by
maximum 8%. The corresponding ML-MD and AIMD tensile
toughness values deviate by maximum 5%. Extrapolation grades
during all ML-MD simulations indicate reliable extrapolation
(γ ≤ 5 < γreliable ≈ 10) and remain of similar magnitude also during
ML-MD tensile tests on supercells with S1-size (see second bullet
point in Section MLIPs’ up-fitting for nanoscale tensile tests).

The results in Fig. 9 suggest general applicability of our approach for
development of MLIPs able to describe tensile deformation and fracture in
hard ceramics. Specifically, ourMLIPs correctly reproduce AIMD results of

stress/strain curves and fracture mechanisms in different ceramic systems
subject to tensile deformation. Extrapolation grades during all ML-MD
tensile tests (both atomic and nanoscale) are of similar magnitude as for
TiB2, hence indicating reliable extrapolation and realistic deformation and
fracture processes.

Summary and outlook
Weproposed a strategy for the development ofMLIPs specifically trained to
description of deformation and fracture in tensile-loaded ceramic mono-
crystals. TiB2 served as a model ceramic system. Training data generation,
fitting, and validation procedurewere performedwithin themoment tensor
potential (MTP) formalism. MLIP-based molecular dynamics tensile-
testing investigations have been carried out from the atomic scale (≈ 103

atoms) to the nanoscale ( ≈ 104–106 atoms). Furthermore, we discussed the
MLIP’s transferability to, e.g., description ofTiB2 subject todifferent loading
conditions or different Ti-B phases, as well as the viability of the here-
proposed training strategy for developing MLIPs of other ceramics.

Key findings are summarized below.
MLIP development:

1. MLIPs for simulations of tensile deformation until fracture can be
trained following the scheme in Fig. 1, based on snapshots from finite-
temperature AIMD simulations of sequentially elongated single-
crystal models with sizes of ≈ 103 atoms. An analogous training
approachmay be applicable to other loading conditions (e.g., shearing)
and ceramics in different stoichiometries and crystalline phases (e.g.,
diborides, nitrides, MAB phases).

2. The applicability of MLIPs to description of tensile deformation and
Poisson’s contraction at the nanoscale requires up-fitting. This is due
to, e.g., nucleation of extended defects being hindered by the small size
of AIMD supercells used for generation of training sets.We propose to
generate additional ab initio data by room-temperature and elevated-
temperature (1200 K) AIMD: imposing a large strain along one lattice
vector, initializing atoms at ideal lattice sites, and equilibrating the
supercell under fixed volume and shape.

3. MLIPs fitted to room-temperature tensile dataset may be transferable
to simulate other loading conditions; here we show examples of high-
temperature tensile deformation and room-temperature shear defor-
mation at the atomic scale. Contrarily, up-fitting is certainly required
for simulations of volumetric compression, other phases and
stoichiometries.

Predictions forTiB2:
1. Our calculations indicate elastic isotropy of TiB2’s basal plane at 300

and 1200 K.

Fig. 9 | Generality of ourMLIP training strategy for ceramicmaterials. a α-TaB2,
b ω-WB2, c γ-ReB2, dNaCl-type TiN, and e the orthorhombic Ti2AlB2MAB phase,
as illustrated by stress/strain curves for room-temperature uniaxial tensile defor-
mation. Specifically, the [0001] and the [001] loading directions are chosen as
representative examples for hexagonal systems (TaB2,WB2, ReB2) and for the cubic
and the orthorhombic systems (TiN, Ti2AlB2), respectively. The supercell sizes and

computational setup are equivalent to the atomic scale tensile tests for TiB2, defined
by the first bullet point in Section MLIPs’ up-fitting for nanoscale tensile tests. Note
that the stress values should not be over-interpreted, as they were obtained for
atomic scale supercells (to make a fair comparison with ab initio data) and---in case
of negligible size effects---are the ideal upper bounds attainable by a perfect single
crystal.
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2. The directional dependence of mechanical properties in (initially)
dislocation-free supercells qualitatively changes from the atomic to the
nanoscale. However, all predicted properties rapidly saturate for
supercell sizes increasing from ≈ 104 to ≈ 106 atoms. At 300 K,
theoretical tensile strengths during [0001], ½1010�, and ½1210�
deformation reach 51–56 GPa.

3. Nanoscale MD simulations provide insights into crack nucleation and
growth mechanisms. Subject to [0001] tensile loading, Ti/B2 layer
delamination induces opening of nm-sized voids which rapidly
coalesce, inducing formation of few-nm-size cracks inside thematerial.
Fracture surfaces align predominantly with basal planes, {0001}, and
first order pyramidal planes, {1011}.

4. Consideringdeformationwithin the basal plane, ½1010� tensile test (i.e.,
loading in thedirectionof strongB–Bbonds),most often induces crack
deflection, formation of V-shaped defects, and fracture at f1122g
family of surfaces. Contrarily, the ½1210� tensile deformation induces
fracture at {1010} prismatic planes.

The example of TiB2 together with additional ML-MD tensile tests
done on other ceramics (TaB2, WB2, ReB2, TiN, Ti2AlB2) indicate the via-
bility of the here-proposed MLIP training strategy. Our approach may be
extendable also to other MLIP formalisms. The predictions of nanoscale
deformation and fracture in TiB2 presented in this work may aid inter-
pretation of futuremechanical-testing experiments. Several previous studies
have already demonstrated the importance of MD simulations for eluci-
datingmicroscopy observations refs. 78–80. Follow-upwork could focus on
MLIP up-fitting for modelling more complex problems as, e.g., Mode-I
loading of native flaws and nanosized cracks.

Methods
Ab initio calculations
Zero Kelvin ab initio calculations as well as finite-temperature Born-
Oppenheimer ab initio molecular dynamics (AIMD) were carried out
using VASP81 together with the projector augmented wave (PAW)82

method and the Perdew-Burke-Ernzerhof exchange-correlation func-
tional revised for solids (PBEsol)83. All AIMD calculations employed
plane-wave cut-off energies of 300 eV and Γ-point sampling of the
reciprocal space.

Supercells. The model of TiB2 was based on the AlB2-type structure
(P6/mmm).The 720-atom(240Ti+ 480B) supercell—used togenerate the
training/learning/validation dataset—had size of ≈ (1.5 × 1.6 × 2.6) nm3,
with x, y, z axes chosen to satisfy the following crystallographic relation-
ships: x k ½1010�; y k ½1210�; z k ½0001�. Similar supercells—with 720
atoms (240 M+ 480 B)—were used in Section Viability of our training
strategy formodelling tensile deformation in other ceramics for TaB2,WB2,
andReB2, where the latter two are in theω and γ phase72, respectively. Cubic
(fcc, Fm3m) TiN67 was modelled in a 360-atom (180 Ti+ 180 N) supercell,
with x, y, and z axes aligned with the [100], [010], and [001] directions. The
orthorhombic (Cmcm) Ti2AlB2

77 was modelled in a 720-atom supercell
(288 Ti+ 144 Al+ 288 B), oriented in the same way as the TiN supercell.

Equilibration of TiB2 at 300 and 1200 K was performed in 2 steps: (i)
10 ps AIMD isobaric-isothermal (NPT) simulation with Parrinello-
Rahman barostat84 and Langevin thermostat, and (ii) a 2 ps for 300 K, 4
ps for 1200 K AIMD run within the canonical (NVT) ensemble based on
Nosé-Hoover thermostat, using time-averaged lattice parameters from the
NPT simulation (see the Supplementary Fig. 1). TaB2,WB2, ReB2, TiN, and
Ti2AlB2 were equilibrated at 300 K using the same approach.

Computational setup for simulations of TiB2’s [0001], ½1010�,
and ½1210� tensile deformation and (0001)½1210�; ð1010Þ½1210�, and
ð1010Þ½0001� shear deformation (all with Γ point sampling) followed
refs. 61,67,85. Specifically, the equilibrated supercell was elongated or
sheared in the desired direction using strain increments of 2%.
Poisson’s contraction effects were not considered in AIMD simula-
tions. The supercells are equilibrated for 3 ps at each deformation
step. Stress tensor components were calculated as averages of the

final 0.5 ps. The same approach was used to simulate tensile defor-
mation in TaB2, WB2, ReB2, TiN, and Ti2AlB2.

Room-temperature elastic constants, Cij, of TiB2 were evaluated
following ref. 86, based on a second-order polynomial fit of the [0001],
[1010], and [1210] stress/strain data (C11,C12,C13,C33) and of the
(0001)½1210�; ð1010Þ½1210�, and ð1010Þ½0001� shear stress/strain data (C44),
considering strains between 0 and 4%.

Simulations of TiB2’s room-temperature volumetric compressionwere
carried out for a 720-atom TiB2 supercell maintained at 300 K (for 2 ps)
within the NVT ensemble. The surface energies were calculated at zero
Kelvin using a 60-atom TiB2 supercell (with a 3 × 3 × 1 k-mesh and cut-off
energy of 300 eV) together with a 10Å vacuum layer. The supercells were
fully relaxed until forces on atoms were below 10−2 eVÅ−1 and the total
energywas convergedwith accuracy of 10−5 eVper supercell.Other ground-
state and higher-energy structures from the Ti–B phase diagram (Ti2B,
Ti3B4, TiB, TiB12, etc.) were fully relaxed at 0 K starting from lattice para-
meters and atomic positions from the Materials Project76.

Developmentofmachine-learning interatomicpotentials (MLIPs)
Weused themoment tensor potential (MTP) formalism, as implemented in
the mlip-2 package87. Training data generation and general workflow are
detailed in the Section Training procedure and fitting initial MLIPs and
Fig. 1. Training/learning/validation sets included only equilibrated config-
urations: the initial part (5%) of NVT rus was discarded.

MLIPs were fitted based on the 16g MTPs (referring to the highest
degree of polynomial-like basis functions in the analytic description of the
MTP23), using the Broyden-Fletcher-Goldfarb-Shannomethod88 with 1500
iterations and 1.0, 0.01 and 0.01 weights for total energy, stresses and forces
in the loss functional. A cutoff radius of 5.5Åwas employed, similar to other
recent MLIP studies19,89. Tests using larger cutoffs, 7.4 and 10.0 Å did not
shownotable changes in accuracy. Expansion of a training set by selection of
configurations from a learning set (LS), was done using the select add
command of the mlip-2 package. Specifically, all configurations in the LS
were ordered by their extrapolation grade (γ28) and maximum 15 from the
upper 20% was selected to expand the training set.

Details of MLIPs developed in this work (summarized in Fig. 1c) are
given below.
• MLIP-[0001], (MLIP-½1010�, and MLIP-½1210�): trained on AIMD

snapshots of TiB2 subject to room-temperature tensile loading in the
[0001] (½1010�; ½1210�) direction. See Section Training procedure and
fitting initial MLIPs and MLIPs’validation against atomic scale
tensile tests.

• MLIP-[1]: up-fitting MLIP-[0001], learning from the final TSs of
MLIP-[1010] and MLIP-[1210]. See Section MLIPs’ up-fitting for
nanoscale tensile tests.

• MLIP-[2] and MLIP-[3]: up-fitting MLIP-[1], learning from AIMD
snapshots of TiB2 equilibrated at 1200 K (MLIP-[2]), and sequentially
elongated in the [0001] directionuntil cleavage (MLIP-[3]). See Section
MLIPs’ up-fitting for nanoscale tensile tests.

• MLIP-[4]: up-fittingMLIP-[1], learning fromAIMDsnapshots ofTiB2
elongated by 150% in the [0001] direction, initializing atoms at ideal
lattice sites and equilibrating at 300 and1200Kunderfixed volumeand
shape. See Section MLIPs’ up-fitting for nanoscale tensile
tests–Otherloading conditions and MLIP’s transferability.

Molecular dynamics with MLIPs (ML-MD)
ML-MD calculations were performed with the LAMMPS code90 interfaced
withmlip-2 package87, which allows usingMTP-typeMLIPs (specified in
the pair_style command). Additionally, the active learning state file
(state.als, for details see the mlip-2 documentation (https://gitlab.
com/ashapeev/mlip-2-paper-supp-info)) was used to output the extra-
polation grade, γ, values during the simulations.

Computational setupof atomic scaleML-MDtensile and shear tests (at
300 or 1200 K) was equivalent to AIMD. Stress tensor components and
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elastic constants were calculated in the same way as described above in case
of AIMD.

Nanoscale ML-MD tensile tests at 300 or 1200 K used supercells with
12,960 atoms (S1); 141,120 atoms (S2); 230,400 atoms (S3); and 432,000
atoms (S4); with dimensions of about (1.5 × 1.6 × 2.6) nm3, (4.6 × 4.7 × 5.1)
nm3, (10.6 × 11.0 × 10.3) nm3, (12.1 × 12.6 × 12.9) nm3, and (15.2 × 15.8 ×
15.4) nm3, respectively. Prior to simulating mechanical deformation, the
supercells were equilibrated for 5 ps at the target temperature using the
isobaric-isothermal (NPT) ensemble coupled to the Nosé-Hoover ther-
mostatwith a 1 fs time step. Tensile loadingwas simulated by deforming the
supercell with a constant strain rate (50Å s−1), accounting for lateral con-
traction (Poisson’s effect) in the NPT ensemble.

Atomic scale volumetric compression simulations used supercell sizes
and deformation approach equivalent to what was described above for
AIMD. Surface structures and other Ti–B phases were fully relaxed at 0 K
using conjugate gradient energy minimization in molecular statics (MS).

Visualization and structural analysis
The OVITO package91 allowed us to visualize and analyze selected AIMD
and ML-MD trajectories. In particular, we looked at (i) Radial pair dis-
tribution functions (with a cut-off radius of 5.5Å), (ii) Elastic strain maps
and (iii) Atomic strain maps (with cut-off radius of ± 0.1Å). For details see
the OVITO documentation.

Data availability
The related files are compressed as “Available_Data.zip ” and submitted as
part of SupplementaryMaterials, the details description can be found at the
end of “ Supplementary_Materials.pdf ”, as well as “ READ_ME.txt ” in the
compressed folder. The more specific explanation and help will be made
available upon request.
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