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Machine Learning (ML)-based force fields are attracting ever-increasing interest due to their capacity
to span spatiotemporal scales of classical interatomic potentials at quantum-level accuracy. They can
be trained based on high-fidelity simulations or experiments, the former being the common case.
However, both approaches are impaired by scarce and erroneous data resulting in models that either
do not agreewithwell-knownexperimental observations or are under-constrained andonly reproduce
some properties. Here we leverage both Density Functional Theory (DFT) calculations and
experimentally measured mechanical properties and lattice parameters to train an ML potential of
titanium. We demonstrate that the fused data learning strategy can concurrently satisfy all target
objectives, thus resulting in amolecularmodel of higher accuracy compared to themodels trainedwith
a single data source. The inaccuracies of DFT functionals at target experimental properties were
corrected, while the investigated off-target properties were affected only mildly andmostly positively.
Our approach is applicable to any material and can serve as a general strategy to obtain highly
accurate ML potentials.

With their ability to accelerate the discovery of newmaterials and decipher
the properties of existingmaterials,Molecular Dynamics (MD) simulations
have become a cornerstone of material science1. Nevertheless, the true
capability is often hindered by the accuracy vs. efficiency trade-off of tra-
ditional approaches. Ab initio MD provides high-accuracy predictions at
low computational efficiency, while the contrary holds for the MD simu-
lations based on classical force fields. In theory, Machine Learning (ML)
approaches2,3 and, in particular, ML potentials4–8 can overcome this com-
promise due to the multi-body construction of the potential energy with
unspecified functional form. In practice, the success ofMLpotentials hinges
primarily on the training data, the source of which can be either simulations
or experiments, or both.

Typically the former source is used with ab initio calculations pro-
viding energy, forces, and potentially virial stress (target labels) for different
atomic configurations (inputs)9–16. Such a setup, also known as bottom-up
learning, has the benefit of straightforward training and should result inML
potentials that reproduce all properties of the underlying model. However,
generating ab initio training data that is sufficiently accurate, large, and
broad (without distribution shift) is challenging.

CCSD(T) (coupled cluster with single, double, and perturbative triple
excitations) method, regarded as the gold standard of electronic structure
theory, is generally computationally infeasible for large dataset generation.
Thus,mostMLpotentials are trainedon themore affordable but less accurate

Density Functional Theory (DFT) calculations. These are not always in
quantitative agreement with experimental predictions, and consequently,
neither are ML potentials trained on DFT data. For example, a recent ML-
based model of titanium17 does not quantitatively reproduce the experi-
mental temperature-dependent lattice parameters and elastic constants. For
these properties, it achieved a similar level of agreement with experiments as
the classical MEAM (modified embedded atom method) potential18.
Deviations in thephasediagrampredictions are also frequent19–22. In all cases,
these deviations were attributed to DFT inaccuracies. To approach the
CCSD(T) level accuracy, transfer learning23 or Δ-learning24 techniques,
exploiting a large DFT and a small CCSD(T) dataset, can be used.

Nevertheless, DFT training data is, albeit cheaper, still computationally
expensive, and an optimal selection of atomic configurations is needed for
diverse and non-redundant training data. Typically, training datasets are
carefully prepared and contain specialized sub-datasets based on the target
application, such as surfaces, defects, lattice distortions, thermal displace-
ments, configurations along the phase transformation pathways, etc.25–28

Alternatively, an active learning approach29–33 is used, where the dataset is
increased on the fly during training. These methods require a robust
uncertainty quantification scheme, which remains problematic for Neural
Network (NN)-based potentials34–39.

Apart from the dataset size, the system size (number of atoms per
configuration) can also play a significant role in the optimal model
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components and hyperparameters and, consequently, the resulting trained
model40. Due to the cubic scaling of DFT implementations, the average
number of atoms is typically below one hundred for dense systems under
periodic boundary conditions. It is questionable whether long-range
interactions41 can be learned from such databases, considering the recent
finding that features related to interatomicdistances as large as 15Å canplay
an essential role in describing non-local interactions42.

The difficulties of ab initio data generation can be circumvented if ML
potentials are instead trained top-down, i.e., on experimental data43–46.While
experimental data is also scarce, potentially laborious to obtain, and contains
measurement errors, the obtained information per data sample is much
larger compared to bottom-up learning. Experimentally observable prop-
erties of a system are in simulations computed as an ensemble average, i.e.,
averaged over a very large number of atomic configurations. This fact also
complicates training since it requires running forward simulations to cal-
culate the properties and, in principle, subsequent gradient backpropagation
through the simulation. Automatic differentiation47 and recent end-to-end
differentiable software48–50 havemade such endeavors technically possible. In
practice, backpropagation through the simulation is unfeasible forproperties
that require long simulations due to issues such as memory overflow,
exploding gradients, and high computational costs43,51,52. However, for time-
independent properties, these issues can be avoided with the Differentiable
Trajectory Reweighting (DiffTRe) method43 that, rather than back-
propagating through the trajectory, employs a reweighting technique. For a
test case diamond system, the method yielded an ML potential that repro-
duced the target experimental mechanical properties at ambient conditions.
Yet, for out-of-target phonon density of states, substantially different results
were obtained for different random initializations, showcasing that the high-
capacity ML potentials are under-constrained when trained on a handful of
experimental observations43. Combining both simulation and experimental
data sources, an idea used for decades to construct classical force fields53,
should, therefore, yield the best approach also for ML potentials. This idea
was recently used also in ref. 54 where a two-body correction trained on

structural experimental data was added to a fixed ML potential trained on
DFT data. However, such Δ-learning approach is limited as two-body
potentials cannot reproduce many experimental observables simulta-
neously. On the other hand, replacing a two-body potential with another
deep ML potential would double the computational cost.

In this work, we demonstrate the benefits of training a single deepML
potential to simultaneously reproduce simulation and experimental data. In
particular, we train a Graph Neural Network (GNN) potential for titanium
on DFT calculated energies, forces, and virial stress for various atomic
configurations and experimental mechanical properties and lattice para-
meters of hcp titanium in the temperature range of 4 to 973 K.We then test
the resultingmodel that faithfully reproduces all target properties on several
out-of-target properties, i.e., phonon spectra, bcc titanium mechanical
properties, and liquid phase structural and dynamical properties. We find
that the out-of-target properties are only mildly and mostly positively
affected by the combined training approach, revealing a remarkably large
capacity of the state-of-the-art ML potentials.

Results
Fused data training approach
Aconcurrent training on theDFTand experimental data can be achievedby
iteratively employing both a DFT trainer and an EXP trainer (Fig. 1). The
former involves a standard regressionproblem.TheMLpotential takesas an
input atomic configuration S and predicts the potential energy U from
which the forces on all atoms F and virial stress tensor V are computed by
differentiating with respect to atoms’ positions. The parameters θ are
modified using batch optimization for one epoch to match the ML poten-
tial’s predictions and the target values in the DFT database. We reuse the
previously published DFT calculations for titanium17,55. The DFT database
consists of 5704 samples. It includes equilibrated, strained, and randomly
perturbed hcp, bcc, and fcc titanium structures, as well as configurations
obtained via high-temperature MD simulations and an active learning
approach. Further details are in the Supplementary Information.
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Fig. 1 | Investigated models. The DFT pre-trained model (a) is trained only with
DFT trainer (d), which optimizes the parameters of the ML potential to match the
reference DFT potential energy ~U , forces ~F, and virial ~V for different atomic
environments S. For the DFT, EXP sequential model (b), the ML potential is initi-
alized with the parameters of the DFT pre-trained model and trained with EXP
trainer (e), where theML potential is trained to reproduce experimental observables

~O. EXP trainer requires simulations since the observables are not a direct output of
the ML model but computed as a time average over the simulated trajectory. The
DFT & EXP fused model (c) is obtained by alternating between the DFT and EXP
trainers, starting from the DFT pre-trained model. In all cases, the DFT and/or EXP
trainers are repeatedly applied for one epoch until the total number of epochs is
reached.
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The EXP trainer, on the other hand, performs optimization of para-
meters θ for one epoch such that the properties of titanium (observables)
computed from theML-driven simulation’s trajectorymatch experimental
values where the gradients are computed with the DiffTRe method43. We
consider temperature-dependent, solid-state elastic constants of hcp tita-
nium as target experimental properties. Elastic constants of titanium were
measured experimentally at 22 different temperatures in the range of
4−973 K56. Nevertheless, we select only the following four temperatures:
23, 323, 623, and 923 K for the experimental training database. With this
choice, we reduce the computational cost per epoch and include our
expectation that the models will be, to some degree, temperature trans-
ferable. The elastic constants are evaluated in theNVT ensemble, where the
box size is set according to the experimentally determined lattice
constants57 (see Supplementary Information). Thus, by adding the addi-
tional target of zero pressure, we indirectly match also the experimental
lattice constants.

To investigate the impact of DFT and EXP trainers, we compare
three different approaches; (i) the DFT pre-trained model, employing
only the DFT trainer (ii) the DFT, EXP sequential model, employing
only the EXP trainer, and (iii) the DFT & EXP fused model, obtained
with the alternating use of the DFT and EXP trainers. The switching
between the trainers is performed after processing all respective
training data, i.e., after one epoch. Alternatively, a batch-wise switching
could be employed. For the last two approaches, the parameters of the
ML potential are not initialized randomly but with the values of the
DFT pre-trained model. This allows us to circumvent the use of prior
potentials, typical for top-down learning43,52. The prior potentials are
simple classical potentials added to the ML potential to avoid unphy-
sical trajectories and, therefore, slow learning in the initial learning
stage. Themodels are trained for a fixed number of epochs, and the final
model is selected with early stopping. For further information, see
Supplementary Information.

Simultaneously learning DFT and experimental target properties
We compute the energy, force, and virial errors on the DFT test dataset
(Table 1) for all three investigated models. For the DFT pre-trained model,
the obtained energy error is below 43 meV, generally accepted within the
chemistry community as the chemical accuracy58. In Supplementary Table
3, we additionally show the errors for a portion of the test dataset containing
only strained and perturbed hcp or bcc samples. The force and virial errors
are an order ofmagnitude lower when high-temperature configurations are
excluded. This difference is due to larger force magnitudes in high tem-
perature configurations. Indeed, the force relative errors are similar for all
test datasets (Supplementary Table 4). We compare favorably with the
previously publishedML-based potential model17 for the force errors, while
the energy errors are somewhathigher.However, precedencecanbegiven to
energy, force, or virial error by changing theweights of the loss function (Eq.
(1)). We give a higher emphasis on the forces as these are relevant for
carrying out MD simulations.

When training on bothDFTand experimental data (DFT&EXP fused
model), the errors are only slightly increased compared to training only on
DFT data (DFT pre-trained model). An increase is expected as the model
has to satisfy both DFT and experimental objectives, which are partially
conflicting due to the DFT inaccuracies as well as experimental errors. The
fact that the errors do not change drastically indicates that theDFT errors in
energy, force, and virial predictions are minor. Nevertheless, a small dif-
ference in force prediction can amount to large differences in MD simula-
tions and subsequent evaluation of properties, as we later show for the
mechanical properties.

For the DFT, EXP sequential model, the force and virial errors are still
comparable to theDFTpre-trainedmodel, but the energy error is drastically
increased. The Supplementary Fig. 2 shows the energy RMSE during
training. This is not surprising considering that MD simulations and our
target experimental properties do not depend on energy but only on its
derivatives. The EXP trainer, therefore, leaves the energy undetermined up
to a constant, as confirmed by the predicted vs. DFT energy plot (Supple-
mentary Fig. 1). Consequently, any energy-related quantity will also be
predicted incorrectly. For example, the energy versus volume equation of
state curves for hcp, fcc, and bcc structures are all shifted by a constant and
equal value (Fig. 2). Nevertheless, this shift can be evaluated in post analysis.
In particular, we compute the mean energy shift in the training dataset and
apply it to the test dataset.With this correction, the energy RMSE andMAE
are 14.0 and 9.5meV atom−1, respectively. The errors are slightly higher but
comparable to the errors of the DFT & EXP fused model. The DFT, EXP
sequential model demonstrates the importance of including DFT data in
training, especially when the experimental dataset does not include prop-
erties directly related to energies.

Next, we evaluate the elastic constants of hcp titanium (Supplementary
Fig. 3), which are the target properties of the EXP trainer. Additionally, we

Table 1 | Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) of energy, force, and virial predictions computed
on the test DFT dataset

RMSE/MAE

Approach Energy
[meV atom−1]

Force [meV Å−1] Virial
[meV atom−1]

DFT pre-trained 6.0/4.4 92.5/62.1 406.6/261.2

DFT, EXP
sequential

385.1/384.9 123.6/83.8 401.5/267.1

DFT & EXP fused 7.9/6.2 111.2/76.6 405.6/263.2

Fig. 2 |AgreementwithDFTdata.Energy vs. volume for the hcp (a), fcc (b), and bcc
(c) titanium crystal structures computed for samples in the test DFT dataset. The
predictions of the DFT pre-trained, DFT, EXP sequential, and DFT & EXP fused

models are denoted with red, green, and blue points, respectively. DFT calculations
are denoted with a black dashed line.

https://doi.org/10.1038/s41524-024-01251-4 Article

npj Computational Materials |           (2024) 10:69 3



report in Fig. 3a–c the bulk modulus, shear modulus, and Poisson’s ratio,
which are all directly related to elastic constants. These properties are
computed for all 22 temperatures in the range of 4−973 K where experi-
mental data is available. Training only on DFT data (DFT pre-trained
model) fails to reproduce themechanical properties. On average, themodel
deviates from the experimental data by 6, 24, and 9% in bulkmodulus, shear
modulus, and Poisson’s ratio, respectively (Supplementary Table 5). In
terms of elastic constants, the predictions are for some components off by
more than 20 GPa. Similar deviations in mechanical properties were
reported for other ML potentials17,19,22. Per contra, for the two models that
include the EXP trainer, the elastic constants are within a few GPa of the
experimental values, while the relative errors for the bulk modulus, shear
modulus, and Poisson’s ratio are below 3%. We obtain a good agreement
with experimental observations on the entire investigated temperature
range, even though we fit the elastic constants only at four temperatures.
Naturally, the agreement is better for the DFT, EXP sequential model
because the DFT and experimental datasets are erroneous and, thus,
somewhat incompatible.

An additional target property of the EXP trainer is zero pressure
(Supplementary Fig. 4) at fixed, experimentally determined simulation box
sizes. In Fig. 3d, e, we show an equivalent result, i.e., the temperature-
dependant lattice constants evaluated in the isothermal-isobaric ensemble.
Similarly, as for the mechanical properties, the addition of the EXP trainer
improves the results for both target and non-target temperatures, with the
DFT, EXP sequential model being the closest to experimental reference
values. Note that the DFT & EXP fused model’s relative deviations from
experimental values are below 0.1%, i.e., smaller than deviations in
mechanical properties (Supplementary Table 5).

Generalization to off-target properties and
thermodynamic states
As a first test of the generalization capabilities to off-target properties, we
compute the phonon spectra of hcp titanium (Fig. 4). All models agree well
with experimental prediction, with the DFT pre-trained model in closest
agreement based on the phonon density of states (Supplementary Fig. 5).
Good agreement is expected for theDFTpre-trained andDFT&EXP fused

Fig. 3 | Agreement with EXP data. Bulk modulus (a), shear modulus (b), Poisson’s
ratio (c), and lattice constants a (d) and c (e) as a function of temperature for hcp
titanium. The DFT pre-trained, DFT, EXP sequential, andDFT&EXP fusedmodels

are denoted with red, green, and blue line points, respectively. The experimental
results are denotedwith a black dashed line. Error bars denote the standard deviation
computed via block-averaging with ten blocks.

Fig. 4 | Off-target solid state property. Phonon dispersion curves of hcp titanium for DFT pre-trained (a), DFT, EXP sequential (b), and DFT& EXP fused (c) models. The
ML potential models’ predictions match well the black dashed lines denoting the experimental prediction measured at 295 K79.
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models since ML potentials trained on DFT data typically reproduce the
phonon dispersion curves well and much better than the classical
potentials17,20,27,59. Interestingly, we obtain a good agreement also for the
DFT, EXP sequential model. Our previous study43 showed that training
randomly initialized ML potentials on mechanical properties leads to
models with drastically different phonon densities of states, i.e., high-
capacity models are underconstrained when trained on a small set of target
properties. Additional properties could be included to converge toward a
unique potential energy solution. However, the required experimental
database size is unknown a priori. Our results in Fig. 4b indicate an alter-
native route. Pretraining on DFT data seems to constrain the solution to a
particular region in parameter space which is only locally modified by the
subsequent training on the experimental data. This hypothesis is in accor-
dance with the observed similar force errors for DFT pre-trained and DFT,
EXP sequential models (Table 1).

To further validate our rationale, we examine the liquid-state tita-
nium’s structural anddynamical properties. Two-body and three-body local
structural order is measured with radial distribution function (RDF) and
angular distribution function (ADF). For all investigatedmodels, the results
are indistinguishable within the line thickness (Fig. 5a, b). Moreover, the
obtained RDFs are very close to the experimental measurement. For ADFs,
the position of the minima and maxima agrees very well with the experi-
ments, while the absolute values slightly differ. The largest deviation for the
three models is observed in Fig. 5c, which presents the self-diffusion coef-
ficients calculated via the velocity autocorrelation function (Supplementary
Fig. 6). Both models trained on experimental data yield better results on

average than the DFT-pretrained model. The DFT, EXP sequential model
performs best.

Next, we consider generalization to different pressures. To this end, we
compute the lattice constants of hcp titanium at the temperature 300 K and
elevated pressures (Fig. 6). Similarly, as in the case of diffusion, we find the
closest agreement with experimental values for the DFT, EXP sequential
model. However, such an outcome is not always guaranteed, as we
show next.

We evaluate all three models on the bcc elastic constants at 1273 K
(Table 2). Concrete conclusions are difficult given significant deviations
between the three experimental references at equal or similar temperature.
Nevertheless, assuming that the latest experimental results by Ledbetter et
al.60 are the most accurate, the DFT & EXP fused model is best overall. In

Fig. 5 | Off-target liquid state properties. Radial distribution function (RDF, a),
angular distribution function (ADF, b), and self-diffusion coefficients (D, c) for the
DFT pre-trained (red), DFT, EXP sequential (green), and DFT & EXP fused (blue)
models. The RDFs and ADFs are computed at 1965 K and compared with

experimentally determined RDF80 at 1965 K and ADF81 at 1973 K (black, dashed).
The self-diffusion is evaluated at 1953, 2000, 2060, and 2110 K for comparison to
experiments82–84. The experimental error bars are estimated based on the experi-
mental error bar at 2000 K84.

Fig. 6 | Off-target thermodynamic states. Lattice constants a (a) and c (b) of hcp titanium for varying pressures at temperature 300 K. TheDFT pre-trained (red), DFT, EXP
sequential (green), and DFT & EXP fused (blue) models are compared to experimental values EXP-1 (SPring-8 data) and EXP-2 (NSLS data)85.

Table 2 | Elastic constants in GPa of bcc titanium at 1273 K

Approach C11 C12 C44

DFT pre-trained 98.4 79.4 27.4

DFT, EXP sequential 119.9 87.4 34.9

DFT & EXP fused 112.0 85.3 32.5

EXP Ledbetter et al.60 97.7 82.7 37.5

EXP Petry et al.77 134.0 110.0 36.0

EXP Fischer et al.78 99.0 85.0 33.6

The experimental refs. 60,78 are at 1273 K, while ref. 77 is at 1293 K.
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particular, it performs best onC12 and second best onC11 andC44.Note that
when training on the EXP database, the bcc lattice is never seen, while the
DFT dataset also contains the equilibrated, strained, and perturbed bcc
structures.

Experimental data ablation
Lastly, we consider a data ablation study. An additionalmodel, labeledDFT
& EXP (323K) fused, is trained with the same approach as the DFT & EXP
fused model, but with experimental training data containing elastic con-
stants andpressureonly at a single temperature of 323 K.Theaim is to reveal
the effect of experimental data size as well as the model’s temperature
transferability. As shown in Fig. 7, the DFT & EXP (323 K) fused model
yields improved mechanical properties and lattice parameters on the entire
temperature range compared to training only on DFT data, i.e., DFT pre-
trainedmodel. The predicted elastic constants are shown in Supplementary
Fig. 7.However, as expected, themechanical propertiesarenot as accurate as
training on experimental data at four different temperatures (DFT & EXP
fused model trained at 23, 323, 623, 923 K). In general, due to the tem-
perature transferability of themodels, it seemsmore beneficial to enlarge the
experimental dataset with diverse properties rather than with a single
property at densely sampled temperatures.

Discussion
Using titanium as a test case system, we have demonstrated the advantages
of using both experimental and simulation data to train ML potentials. We
tested two strategies of employing the DFT and experimental data, i.e.,
sequential and fused, and referenced them against using only DFT data.
Note that training only on experimental data is difficult without a prior
potential and was therefore not attempted.

The addition of experimental data resulted in ML potentials that
reproduced target experimental properties, thus correcting for the inac-
curacies of the DFT calculations and limited DFT training dataset. More-
over, some of the off-target properties (e.g., diffusion) improved even
though the relevant (e.g., liquid) configurations were never seen by the EXP
trainer.

On the other hand, pretraining on the DFT data has the effect of
regularizing the solution, evidenced by very similar or only mildly different
out-of-target properties. This is especially importantwhen the experimental
dataset is scarce.Aswehave shownpreviously43,MLpotentialsfittedonlyon
a handful of observations can substantially differ on out-of-target properties
due to the large capacity of thesemodels. In general, top-down training lacks
theoretical guarantees of bottom-up approaches and can result in deterio-
rated out-of-target properties. For this reason, we advocate for the DFT &
EXP fused approach rather than the DFT, EXP sequential approach, even
though the latter performed better on some out-of-target properties. With
minimal computational overhead, the fused training ensures that the
solution remains close to the DFT solution, which might deviate from
experiments somewhat but not drastically. Furthermore, experimental
measurements also contain errors, and conflicting resultsmight be reported
in the literature, e.g.,mechanical properties of bcc titanium [67]. TheDFT&
EXP fused approach can, therefore, to some extent overcome the defi-
ciencies of pure bottom-up or top-down training.

In this paper, the experimental properties were elastic and lattice
constants. However, the DiffTRe approach is general, and, in principle, any
other static structural or thermodynamic property could be used43. In
practice, training on properties requires running simulations, the spatio-
temporal scales of which should be sufficiently large to reasonably estimate
the target properties and, consequently, obtain informative gradients. Thus,
observables involving rare events might be out of reach for conventional
computational resources.

The number of required simulation runs can be reduced with
reweighting techniques. DiffTre method employs the simplest Zwanzig
approach61 that reweights observables from a single reference state. In this
work, simulations were initialized at every parameter update to avoid an
additional layer of complexity. Nevertheless, the reweighting ansatz is still
used to provide a relation between the observables and the parameters of the
ML potential, enabling a direct route to the gradient computation. Other
reweighting approaches could also be employed. For example, themultistate
Bennett acceptance ratio (MBAR)62–64, where information from multiple
states is used to probe the configuration space of the unsampled state65.Note

Fig. 7 | Data ablation study. Bulk modulus (a), shear modulus (b), Poisson’s ratio
(c), and lattice constants a (d) and c (e) as a function of temperature for hcp titanium.
The DFT pre-trained, DFT & EXP fused, and DFT & EXP (323 K) fused models are
denoted with red, blue, and dark blue line points, respectively. The last two models

differ only in experimental training data, i.e., the DFT & EXP (323 K) fused model is
trained on data at a single temperature of 323 K. The experimental reference values
are marked with a black dashed line. Error bars denote the standard deviation
computed via block-averaging with ten blocks.

https://doi.org/10.1038/s41524-024-01251-4 Article

npj Computational Materials |           (2024) 10:69 6



that the computational overhead of evaluating the potential energy for
multiple states is minor compared to forward simulations. Multistate
reweighting techniques are typically more accurate in estimating ensemble
averages and could provide more accurate gradients. On the other hand,
deep ML methods sometimes benefit from noisy gradients66. Additionally,
all reweighting methods require sufficient configuration overlap, and
choosing appropriate reference states is a non-trivial task. Therefore, the
best reweighting technique is anopenquestion thatwe leave for futurework.

Methods
ML potential architecture
We employ a message passing GNN DimeNet++11 using our imple-
mentation in JaxMD43, which takes advantage of neighbor lists for efficient
computation of the sparse atomic graph.We select the same neural network
hyperparameters (Supplementary Table 1) as in the original publication11

except for the embedding sizes, which we reduced by factor 4 for compu-
tational speed-up. The cut-off is set to 0.5 nm.

DFT trainer
We use a weighted mean squared error loss function

LDFT ¼ 1
Ndata

PNdata

i¼1
ωU ðUi � ~UiÞ
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3Natoms
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where Ui is the energy of the i-th atomic environment in a batch, Fijk is the
force in the k-direction of the j-th atom, and Vikl is the virial in the k,l-
direction. The referenceDFT values are denoted with ~. The weights for the
energy and force are set to ωU = 1e−6 and ωF = 1e−2, while for the virial
contribution, only the uniformly deformed supercells contribute with
ωV = 4e−6. The numerical optimization hyperparameters are reported in
Supplementary Table 2.

EXP trainer
We define the loss function as

LEXP ¼ 1
Ntemp

PNtemp
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whereOm,n is am-th observable at n-th temperature in a batch and ~ denotes
the experimental value. The observables are scalar pressure Pn and elastic
constants in Voigt notation C**. The weights are ωP = 1e−9 and ωC = 1e−10.
The gradient of the losswith respect to the parameters of theMLpotential is
obtained with the DiffTRe method43, where the ensemble average of an
observable Om,n is computed with the reweighting ansatz for the canonical
ensemble61,67,68

hOm;nðUθÞi ’
XNtraj

i¼1

wiOm;nðSi;UθÞ with wi ¼
e�βðUθðSiÞ�U θ̂ðSiÞÞ

PN
j¼1 e

�βðUθðSjÞ�U θ̂ðSjÞÞ
:

ð3Þ

The summation runs over the trajectory states/atomic environments S,
β = 1/(kBT), kB is the Boltzmann constant, andT is the temperature.U θ̂ and
Uθ denote the reference and perturbed ML potentials. We initialize the

forward trajectory generation for every parameter update. Thus, U θ̂ ¼ Uθ

and w = 1 for every sample. Nevertheless, ∇θLEXP is generally non-zero.
Further details can be found in Ref. 43. The numerical optimization
hyperparameters are reported in Supplementary Table 2.

ML potential-driven MD simulations
All MD simulations are performed in JaxMD48 using a velocity Verlet
integrator with a time step of 0.5 fs. The simulated system contains 256
atoms unless otherwise stated. The mass of titanium atoms is set to
47.867 a.u. For NVT simulations during training and to compute the
elastic constants and pressure in postprocessing, we use the Langevin
thermostat with a friction constant of 4 ps−1. For the remaining post-
processing, we run NVT simulations using a Nose-Hoover thermostat
andNPT simulations with a Nose-Hoover thermostat and barostat. For
the Nose-Hoover chains, we use a chain length of 5, 2 chain steps, and 3
Suzuki-Yoshida steps, and set the thermostat damping parameter to
τ = 50 fs and the barostat damping parameter to τ = 500 fs. The pressure
is set to 0.

In the EXP trainer, the elastic constants and pressure are computed
from 80 ps NVT simulation, where the first 10 ps are disregarded as equi-
libration, and the state is saved every 0.1 ps. The isothermal elasticity tensor
is computed with the stress-fluctuation method43,69.

To analyze the properties of trained models, we perform the following
simulations. For hcp elastic constants and pressure, we perform a 100 ps
NVT equilibration run followed by a 1 ns NVT production run. As in
training, the box size is set according to the experimental lattice parameters
at a given temperature.The elastic constants are saved every 0.1 ps. The bulk
modulus and shear modulus are computed from elastic constants (in Voigt
notation)56,70,71 as K = 2/9(C11+C12+ 2C13+ 1/2C33) and G = 1/
30(12C44+ 7C11− 5C12+ 2C33− 4C13). The Poisson ratio is computed
with σ = (3K− 2G)/(2G+ 6K). For hcp lattice constants, we perform a
100 psNPTequilibration followedby a100 psNPTproduction run,where a
state is saved every 0.25 ps. For phonon frequency analysis, we generate a
5 × 5 × 3 hcp super cell in Avogadro72 and employ Phonopy73,74 to compute
the phonon densities via finite displacements of 0.01Å. To compute the
RDFand theADF,we performa 100 psNPTequilibration at 2400K, 100 ps
NPT equilibration at 1965 K, and 80 ps NVT production run at 1965 K,
which we sample every 0.1 ps. For these simulations, we double the box size
in each dimension, yielding a total of 2048 atoms. TheADF is computed for
all triplets within 0.4 nm, corresponding to the first minimum of the
experimental RDF. For VACF, we perform 100 ps NPT equilibration at
2400 K, 100 ps NPT equilibration at 2000 K, 100 ps NVT equilibration at
2000 K, and 80 ps NVT production run from which we sample every
0.01 ps. The VACF is computed by averaging over 160 different starting
points that are 0.5 ps apart. We use the Green-Kurbo relation to compute
the self-diffusion75,76. The errors are estimatedwithblock-averagingusing 10
blocks. The bcc elastic constants were obtained by creating a bcc titanium
structurewith 128 atoms as input for a 100 psNPT followed by 100 psNVT
equilibration at 1273 K, and a 1 ns NVT production run at 1273 K. We
confirmed the adequateness of equilibration protocols by repeating the
analysis for RDF, ADF, VACF, and high temperature hcp lattice constants
with doubled NPT equilibration lengths (i.e., using 200 ps) for the DFT &
EXP fused model (Supplementary Fig. 8).

Data availability
The dataset is publicly available at https://github.com/tummfm/Fused-
EXP-DFT-MLP/tree/main/Dataset.

Code availability
The code is publicly available at https://github.com/tummfm/Fused-EXP-
DFT-MLP.git .
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