
npj | computational materials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-024-01248-z

The rule of four: anomalous distributions
in the stoichiometries of inorganic
compounds

Check for updates

Elena Gazzarrini 1 , Rose K. Cersonsky 2, Marnik Bercx1, Carl S. Adorf 1 & Nicola Marzari 1

Why are materials with specific characteristics more abundant than others? This is a fundamental
question in materials science and one that is traditionally difficult to tackle, given the vastness of
compositional and configurational space. We highlight here the anomalous abundance of inorganic
compounds whose primitive unit cell contains a number of atoms that is a multiple of four. This
occurrence—named here the rule of four—has to our knowledge not previously been reported or
studied. Here, we first highlight the rule’s existence, especially notable when restricting oneself to
experimentally known compounds, and explore its possible relationship with established descriptors
of crystal structures, from symmetries to energies. We then investigate this relative abundance by
looking at structural descriptors, both of global (packing configurations) and local (the smooth overlap
of atomic positions) nature. Contrary to intuition, the overabundance does not correlate with low-
energy or high-symmetry structures; in fact, structureswhich obey the rule of four are characterizedby
low symmetries and loosely packed arrangements maximizing the free volume. We are able to
correlate this abundance with local structural symmetries, and visualize the results using a hybrid
supervised-unsupervised machine learning method.

Computational materials discovery is a fast-growing discipline leading to
innovation in many fields. Within a specific technological sector (i.e.,
communications, renewable energies, medical), the choice of material is
critical for the long-lasting success of the given product. Therefore, it is
important—and of fundamental interest—to efficiently identify materials’
structural and energetic characteristics through materials’ data analysis to
select structures for innovative applications. The emerging field ofmaterials
informatics has demonstrated its potential as a springboard for materials
development, alongside first-principles techniques such as density-
functional theory (DFT)1,2. The increase in computational power, together
with large-scale experimental3 andcomputational high-throughput studies4,
is paving the way for data-intensive, systematic approaches to classify
materials’ features and to screen for optimal experimental candidates. In
addition, the collection of statistical methods offered by machine learning
(ML) has accelerated these efforts, both within fundamental and applied
research5–10.

However, the success of these endeavours is ultimately limited by the
quality and diversity of the data serving as the underlying data source.

Understanding the space of materials spanned by a dataset is integral to
data-drivenmaterials searches ormachine-learningworkflows. Thus, when
anomalous correlations arise in datasets, it is useful to understand and
investigate the origins, and potential implications, of such peculiarities. We
use here the name rule of four (RoF) to describe the unusually high relative
abundance of structures with primitive unit cells containing a multiple of 4
atoms. This occurrence is explored within two different databases of inor-
ganic crystal structures: the Materials Project (MP)11 database, which con-
tains crystal structures that have been relaxed with first-principles
calculations starting from experimental databases or from structure-
prediction methods, and the Materials Cloud 3-dimensional crystal struc-
tures ‘source’ database (MC3D-source); this latter combines experimental
structures from the crystallographic open database (COD)12–15, the inor-
ganic crystal structures database (ICSD)16 and the materials platform for
data science (MPDS). Note that for the ICSD and COD, occasionally some
theoretically predicted structures can also be present, see section I in the
supplementary information for more details. Figure 1 is a visual repre-
sentation of this striking abundance,while Table 1 demonstrates the RoF by
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comparing the relative abundance of structures with primitive unit cells
made up of multiple of 3, 4, 5, 6 and 7 atoms.

Within the context of this study,wewill label a structure that belongs to
the subset of structures with a unit cell size multiple of four as a RoF
structure, and one that does not belong to the subset as a non-RoF structure.
In Fig. 1 the x axis is capped at 100 atoms to best represent the RoF, as
respectively 97.51% and 91.00% of structures in the MP and in the MC3D-
source databases contain 100 atoms or less (the largest cell in the MP
database contains 296 atoms, while the MC3D-source one contains
4986 atoms).

Before delving into an extensive analysis, we rule out that the RoF is
simply an artefact of how structures are mathemat- ically described, or of
how this description is curated and processed for storage in the afore-
mentioned databases (III A).We then decide to probe the RoFmore deeply
and attempt to understand its origins and impact. First, we examine the RoF
with respect to traditional materials science metrics, including energies and
symmetries, and uncover that the RoF is largely correlated with loosely-

packed polyatomic systems (III B, III C). We then use symmetry-adapted
machine learning techniques to relate the RoF to local atomic environments
and determine that it has only little implications for formation energy
(IIID).Wefinallymanage tocorrectly classify theRoFbyonly providing the
algorithm with information on local

structural symmetry rather than a global one (III D). Although we
explored many meaningful avenues to rationalize the rule’s existence and
emergence, a full explanation of the anomalous distribution is still missing.
Since themost plausibile causes have been explored, the presentwork serves
also as a reference for future research on the topic.

Results
Within this study, we make sure that the data is sufficiently diverse for the
training set to cover the whole design space17 by procuring the structural
data from open and FAIR repositories18–20; the same analytical workflow is
applied to two different databases of bulk, crystalline, stoichiometric com-
pounds. One database is theMaterials Project, which contained 83 989 data
entries obtained via high-throughput DFT calculations as of 10/18/2018,
corresponding to the mp all 20181018 dataset retrieved with the matmi-
ner.datasetsmodule21. Theotherdata source, theMC3D-source, contains 79
854 unique structures extracted from the MPDS, ICSD and COD, which
have been curated via an AiiDA22 workflow, as explained in Section I
of the SI.

Primitive unit cell
Whenmaterials structure datasets are prepared, it is standard procedure to
‘primitivise’ unit cells, i.e., to reduce the unit cell to itsminimumvolume. As
many conventional unit cells contain exactly four times the number of
atoms that would be found in their respective primitive unit cell, it could be
expected that misclassifying conventional unit cells as primitive ones could
lead to an artificial emergence of the RoF. Both the MP and MC3D-source
databases obtain the primitive unit cell using the spglib software23. When
primitivizing the structure, one needs to set the symprec tolerance para-
meter, which allows for slight deviations in the atomic positions stemming
from thermal motion or experimental noise. To rule out that the primiti-
vization is the source of the emergence of the RoF, we show in Fig. 2 that
changing the symprec (1E-8 to 1E-1Å) parameter has little effect on the RoF
distribution, converting around 1% of RoF structures into non-RoF ones. It
is only when one increases the symprec to unreasonably large values (close
to 1 Å) that the slope changes—this is expected, as using such a large tol-
erance effectively considers sites with the same element that should be

Fig. 1 | The rule of four. The two datasets (the Materials Project (MP)11 and the
Materials Cloud 3-dimensional crystal structures ‘source’ database (MC3D-source))
contain a disproportionate amount (coloured in red) of compounds with a primitive
unit cell containingmultiples of 4 atoms. nRoF characterises the number of structures
in the datasets that obey the rule of four, while nnon−RoF the ones that do not. The
distributions are normalised.

Table 1 | Percentages of structures in the MP and MC3D-
source databaseswhose primitive unit cells contain a number
of atoms that is a multiple of the column header

multiple of 3 4 5 6 7

Materials
Project

32.38 60.01 18.41 26.82 12.43

MC3D-source 36.57 58.58 20.89 30.99 12.51

The RoF emerges from the higher abundance of structures with a primitive unit cell containing a
multiple of 4 atoms. Primitive unit cells with a number of atoms that is a multiple of two or more
headers will contribute to each column; hence, the percentages will sum to > 100.

Fig. 2 | Percentage of RoF structures that become labelled non-RoF as a function
of the symmetry tolerance parameter used for reduction to the primitive cell.The
black and green lines correspond to structures in theMP andMC3D-source datasets,
respectively. At typical symmetrization parameters, there is little to no change in the
number of RoF structures (roughly 1% of RoF structures go to non-RoF). At larger
symmetrization parameters (≈1 Å), this increases to roughly 6% based upon the
large deviations allowed in considering sites as symmetrically equivalent.
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different as identical, producing primitive unit cells with a reduced number
of sites, but which no longer correctly describe the structure. Encouraged by
these results, we proceed with a more extensive analysis.

Formation energy
We first test whether the RoF is correlated with stability with respect to
elemental phases, as this would provide a straightforward explanation for
the phenomenon. To test this assumption, we analyze the information
contained in theMP dataset, namely the formation energy per atomwithin
each compound. This is the energy of the compound with respect to stan-
dard states (elements), normalized per atom. For example, for Fe2O3 the
formation energy is [E(Fe2O3)–2E(Fe)–(3/2)E(O2)]/5. It is computed at a
temperature of 0 K and a pressure of 0 atm. This quantity is often a good
approximation for formation enthalpy at ambient conditions, where a
negative formation energy implies stability with respect to elemental
compounds.

Our initial results provide no evidence of a correlation between RoF
compounds and their formation energy, as shown in Fig. 3. Nevertheless, it

does appear that structures obeying the RoF have a longer positive tail of
large formation energies, seen towards the bottom right of the figure.

However, this result can be misleading—it does not take into con-
sideration the large variance in structural composition across thedatabase—
and we must aim to compare the energies of similar structures within the
RoF and non-RoF subsets, as we will do in later sections.

Correlation with symmetry descriptors
The crystal symmetries of compounds—defined by the set of symmetry
operations that, when performed, leave the structure unchanged—are
captured in crystals by their space groups and point groups. Higher sym-
metry space groups inherit the symmetry operations of their ‘parent’ point
groups; for example, cubic space groups inherit the one-fold, two-fold, and
four-fold rotational symmetries (for the interested reader, the concept of
inherited symmetry is enumerated nicely in Fig. 1.5 of the book chapter by
Hestenes24). Figure 4 shows histograms of inherited symmetries and their
relative abundance within each of the two sets (RoF in red and non-RoF in
blue). The point groups are ordered from the ones with the least number of
symmetry operations (bottom) to the highest order ones (top). Symmetry
groups that are equally represented in both sets (i.e. 1-rotation, since all
compounds are invariant to the simplest symmetry) have tails of equal
length, whereas symmetries seen in a larger percentage of RoF structures
have a red tail to the right of the histogram.

From Fig. 4, the relative abundance of non-RoF structures in the high
symmetry point groups emerges, while on the contrarymost RoF structures
in both databases are grouped in the lowest symmetry point groups (2, m,
2/m,mm2, 222 andmmm), which generally contain a relative abundance of
them apart from one exception (the MC3D-source presents. a slightly
higher relative abundance of non-RoF structures in themm2 point group).
This analysis shows how 4-fold symmetry is not a determining descriptor to
classify the phenomenon.

The the lack of higher symmetry groups in RoF compounds could be
correlated by a heterogeneous composition of atoms; this heterogeneity can
be quantified by counting the number of atomic species (Nspecies) (first
column of Fig. 5, in logarithmic scale) composing the structures: from this
analysis we see that RoF materials are mostly composed of 4 or more
elements (statistics start being less reliable afterNspecies = 8), while non-RoF
structures present a larger abundance of simpler composition, containing
more often 1, 2, or 3 elements. When looking at chemical composition, the
hypothesis of the RoF emerging from signatures associated to a specific

Fig. 3 | Distribution of formation energies. Normalised distribution of formation
energies for the 83 989 compounds from the Materials Project, normalized for each
subgroup. RoF compounds are coloured in red and non-RoF are coloured in blue.

Fig. 4 | Point groups analysis. Proportion of structures in both databases (a) MC3D-source and (b) MP that belong to each point group represented on the y axis, counted
based on their inherited symmetries. RoF compounds are coloured in red, while non-RoF ones in blue.
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element have been ruled out. For example, when selecting from both
datasets only structures containing Si (the first direct candidate having a
typical coordinationnumber of 4), theRoF still emergeswith aprobability of
59.07% for the MP dataset and 57.32% for the MC3D-source one. These
statistics are not sufficiently divergent from the results in Table 1.

Another property that emerges from our analysis and is more evident
in the MP dataset (second column of Fig. 5(b)) is the relative abundance of
smaller atomic radii within RoF compounds, as often defined by the para-
meter x ¼ Ns

NsþNL

25, where NS andNL are the counts, in a given structure, of
the smallest and largest radii respectively.When considering this parameter,
we focus our attention on theMC3D-source dataset, which contains bigger
and more complex structures, where the divergence between the smallest
and largest atoms ismore considerable. In fact, the first peak in Fig. 1 for the
MP is very large, hinting at the implicit bias of computational studies, where
larger structures are often avoided based upon computational cost of cal-
culations. The abundance of small atomic radii in RoF compounds of the
MC3D-source dataset (higher x parameter) partly explains the lower
symmetries that characterise them, as more atoms will be inserted as
‘interstitial’ elements in a given structure, characterising the ‘imperfections’
that eventually contribute in lowering the overall structural symmetry of
point groups analyzed in Fig. 4.

In general, the symmetry typeof atomic crystal systems is strictly linked
to packing mechanisms26–28. While the mathematical problem of sphere
packing is not hard to pose (Kepler conjecture), it was historically difficult to
prove29, and the complexity of its solution rises exponentially with
polydispersity30.

Despite this, a qualitative analysis of RoF configurations shows that
they contain chemical elements whose size variance is greater compared to
the variance in the non-RoF population.

This size variance is quantified by the parameter α ¼ RS
RL
(where RL is

the radius of the largest atomic radius andRSof the smallest one), namely the
ratio between the smallest and the biggest atomic radii within each com-
pound (third column of Fig. 5). For the same reason as above, in the context

of this parameter the results of the MC3D-source dataset are considered
more relevant. RoF compounds from the MC3D-source exhibit a greater
standarddeviationbetween largest and smallest atoms,with theαparameter
presenting a peak at around 0.35; this finding suggests the presence of very
small radii filling the interstitial spaces, which contribute to keeping the
symmetry of RoF compounds low, as was previously highlighted by the
analysis of the x paramter.

However, there is no overarching evidence in the distributions of the x
and α parameters that allows us to confirm a correlation between the
emergence of the RoF and the abundance of ‘intestitial’ elements.

The packing fraction (PF), defined as as PF ¼ Vtot;atoms

Vcell
(whereV tot,atoms

is the total volume of all atoms composing the structure, andV cell is the unit
cell’s volume) is another related property of sphere packing26,27. This
quantity is noticeably lower (with peaks at values around 0.1–0.2) for RoF
structures, as can be seen in the last columnof Fig. 5a, b, pointing away from
packing arguments as the cause of this database anomaly. The sharp red
peaks in PF might characterise disordered compounds such as porous
materials, which have been determined to be outliers for theMC3D-source
dataset.

Employing symmetry-adapted descriptors for further insight
Up until this point we have employed classical techniques for analyzing
crystal structures; these have offered little to no insights on the origins of the
RoF anomalous distribution, but have allowed us to exclude packing
arguments and symmetrical global descriptors as features thatmake theRoF
emerge.Here,we therefore turn tomoremoderndata- driven techniques. In
the field of atomistic modelling, it has been common, albeit non-trivial, to
represent crystal structures through symmetrized density correlations9,31,32

in order to predict broad swaths of materials properties. Here, we represent
the compounds using the Smooth Overlap of Atomic Positions (SOAP)31, a
popular ML representation for structure-energy relations that contains
information on the average three-body local environment for atomic
arrangements. SOAP vectors provide an avenue for a statistical analysis on

Fig. 5 | Distribution of geometric properties. Different geometric properties of
each compound are analysed for the (a) MC3D-source and (b) MP databases. From
left to right, the plots represent the normalised distribution of the number of ele-
mental species (Nspecies), the relative abundance of small (NS) to large (NL) atomic

radii (x), the ratio between smallest (RS) and largest (RL) atomic radii (α) and the
packing fraction (PF) for compounds with a unit cell size between 0 and 100 atoms.
All of the results are plotted for the two sets, RoF (red) and non-RoF (blue), with the
probability normalized to each set.
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local environments, offering a robust framework through which we can
explore and visualize the chemical and configuration space of the materials
studied33. We use two parameterizations of SOAP vectors, detailed in Sec-
tion II of the Supplementary Information: one that uses separate channels to
represent different chemical species and another that ignores the chemical
identities in order to highlight the geometry of the local symmetry. The
former, from hereon called the species-tagged representation, is necessary in
energetic analysis, as similar geometry symmetries can correspond towildly
different energetics given the elements present; however, this representation
is computationally cumbersome (roughly 100 000 sparse features for each
compound, fromwhich we take a diverse subset of 2 000 features). Thus, in
later analyseswhere the chemical identities play a smaller role, it is beneficial
and conceptually more straightforward to use the more lightweight, latter
representation (roughly 80 features for each compound), hereon called the
species-invariant representation.

Earlier, we noted that simply presenting a histogram of RoF and non-
RoF energetics did not provide any specific understanding of the RoF; it
might be more insightful to compare the energies of chemically similar
structures. To determine whether the RoF structures exhibit lower energy
than structurally-similar non-RoF ones, we use Principal Covariates
Regression (PCovR)34,35, a ML method which constructs a latent space
projection to explore the correlation between stability and local symmetries
within the dataset by expanding regression models to incorporate infor-
mation on the structure of the input data, as implemented in the scikit-
matter library36,37. In this mixing model, the projection is weighted towards
theproperty of interest using amixingparameter (ofwhich amore extensive
explanation is given in Supplementary Fig. 1), and, where the input linearly

correlates with the target property, the resulting embedding will reflect this
property along the first component, with subsequent components repre-
senting orthogonal dimensions in structure space. In our case the PCovR is
always trained on the species-tagged SOAP vectors and their formation
energies. We plot the first two principal covariates in Fig. 6. The first
principal covariate is strongly correlated to the energetic descriptor, as can
be seen in Fig. 6, where in the lower plots we have coloured each point in the
projection by their RoF classification (left) and formation energy (right).
However, the second covariate (and all significant subsequent covariates, see
Supplementary Figs. 2-4) fail to separate the datasets into two distinct
populations corresponding to this phenomenom. This implies that for
structurally similar compounds, there is no significant difference in energy
between RoF and non-RoF samples. We also see little difference in the
spread ofRoF versus non-RoF structures in the latent space, as shownby the
kernel density probabilitymap in the upper panel of Fig. 6. Further principal
covariates for the same PCovR representation are plotted in Supplementary
Figs. 2-4, aswell as other relevant energetic descriptors (the energy above the
convex hull energy, i.e., the envelope connecting the lowest energy com-
pounds in the chemical space, and the band gap energy), in order to show
how these targets yield similar results. Thus the RoF is neither correlated
with the energetics, nor are RoF lower in formation energy when compared
to chemically similar non-RoF ones.

The linear correlation between the average local symmetries and the
RoF is not particularly strong (a logistic regression on the SOAP vectors
results in an accuracy on the order of 0.6, as listed in Table 1 of the SI); thus,
we turn to non-linear classifications to understand if the RoF is potentially
correlated with these local neighbourhoods. We ignore the species

Fig. 6 | PCovR representation of the MP dataset
with a mixing parameter of β= 0.5. The model is
regressed on the formation energy per atom. The
three plots contain the same data, represented on the
top through a kernel density probability distribution
(the RoF subset is coloured in red and the non-RoF
one in blue), coloured according to the subset clas-
sification (lower left) and according to the formation
energy per atom (lower right). The plot on the top is
generated with the seaborn.kdeplot() function.
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information to focus solely on the average local symmetries. We build a
Random Forest (RF) classification38 on both datasets, first varying the
interaction cutoff that defines the local environment (see Fig. 7). We see a
plateau in accuracy on the test set at 87% as we consider local environments
of 4.0 Å, suggesting that differentiating local symmetries occur within the
first two neighbour shells, also supported by the high false positive (FP) rate
at small cutoff radii. From the learning curve on the 4.0 Å escriptors (inset),
we see that the classificationhas apositive learning rate, although shows little
saturationdespite the large training set. This result implies that local features
are sufficient for theMLmodel to pick up the complexity of the datasets and
to predict with good probability the correct classification. We report the
accuracy on the test set achievedbyother classification algorithms in Section
V of the SI. To visualise the stoichiometry ofmaterials falling into one of the
two categories, the interested reader is referred to our Materials Cloud
Archive39 entry, from which a json.gz file for each database can be down-
loaded. This can be uploaded on the Chemiscope40 web interface to visualise
a 2Dplot of the first principal covariates. The chemical composition of each
dataset structure can be inspected by clicking on the dots composing the
scatter plot. The colouring can be done according to different parameters, of
which the most insightful one is the classification outcome.

Discussion
Through an extensive investigation, in this work we highlight and analyze
the anomalous abundance of inorganic compounds whose primitive unit
cell contains a number of atoms that is amultiple of four, a property that we
name rule of four (RoF) and that is observed in both experimental andDFT-
generated structure databases. Here, we:
• highlight the rule’s existence, especially notable when restricting one-

self to mostly experimentally known compounds;
• explore its possible relationship with established energetic descriptors,

namely formation energies, and utilise hybridMLmethods combining
regression and principal component analysis to surprisingly rule out

the possibility that the relative abundance has the (expected) effect of
stabilising compounds, bringing them to a lower energy state;

• conclude, through a global structural composition analysis of point
groups and packing fractions, that the overabun- dance does not either
correlate with high-symmetry structures, but rather to low symmetries
and loosely packed arrangements maximising the free volume;

• predict, with an accuracy of 87% the association to the rule of four of a
compound by providing a random forest classification algorithm with
local structural descriptors (the smooth overlap of atomic positions)
only, eventually highlighting the importance of local symmetry rather
than global one for the emergence of the rule of four.

This analysis constitutes a valuable reference for further systematic
studies targeting the classification of materials’ features with specific ML
approaches in order to screen for optimal experimental candidates. More-
over, the study provides a starting point for future investigations on the
rule’s emergence, given that a fully satisfactory explanation of such anom-
alous distribution is as yet lacking.

Methods
Reduction to the primitive cell
All the structures inbothdatabases are reduced to theprimitive cell using the
find primitive function of the spglib23 package, varying the symprec value in
the range of 1E− 8 to 1 Å.

Scalar global descriptors
The symmetry of compounds is investigated by looking at space groups and
point groups. subgroup of symmetry operations overwhich the space group
is invariant.With a total number of 32 point groups, it is easier to convey the
symmetric properties of the vast variety of compounds via their point group
rather than their space groups; while space groups uniquely identify geo-
metric properties, point groups identify symmetry classes and reduce the
parameter space to a lower degree when investigating the symmetries of all
compounds. The point groups are calculated through the spglib23 and
seekpath41 packages for the MC3D-source database, while we used the
SymmetryAnalyzer pymatgen module—which also relies on the spglib
package developed by Togo and Tanaka23—to find the symmetry operators
and point groups for the MP dataset, at a symprec of 0.3 Å. As concerns
packingmechanisms, we extend the conventions employed byHopkins25 to
n-elements packing and employ the α, PF and x parameters. In structures
with FCC andHCP symmetry, themaximumpacking fraction is 0.74. α = 1
denotes unary compound. Conversely, when α 0 the compounds contain
elements whose atomic radii distribution presents a wider spread.

Local symmetry descriptors and ML pipeline
Weadopt the followingMLpipeline to study local symmetries and energetic
effects. First, the atomic representation of each compound is obtained with
SOAP vectors (see section II of the Supplementary Information), computed
with the librascal library33. The SOAP features are thenaveragedwithin each
compound, and the representations from the two datasets are normalised
simultaneously. We then select a diverse subset of 2 000 features through
Furthest Point Sampling (FPS) algorithm36,37,42,43, efficiently reducing the
dataset sizewithout losing important information. For Sec.IIID,weperform
a linear ridge regression with 4-fold cross-validation—which optimises the
regularisation parameter to prevent overfitting—on the formation energies
data retrieved from theMP database to ascertain the accuracy of themodel.
Table 2 illustrates the RMSE and the uncertainty in units of eV of the
predicted energetic quantities.

Compared to results in the literature, which achieve an accuracy in
formation energy prediction of 0.173 eV (Automatminer44) and 0.0332 eV
(Crystal Graph Convolutional Neural Networks45), the accuracy of
0.4002 eV is sufficient for this study, since the aim of our study is not to find
the most efficient way to predict energies, but rather to provide a sufficient
regression prediction to employ in PCovR analysis. We use the species-
invariant SOAP vectors to classify the RoF phe- nomenon using

Fig. 7 | Random forest classification on local symmetries.Here we use the species-
invariant 3-body SOAP vectors to build a random forest ensemble classifier. Test set
accuracy, represented on the y axis, saturates at ~4.0 A, with little additional gain at
larger cutoff radii. Below the figure we show the table of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) results, showing that the
classifier is unable to differentiate RoF and non-RoF structures at lower cutoff radii,
leading to a high false positive (FP) rate. Inset in the upper figure is a learning curve
for a cutoff radius of 4.0 Å, which shows a positive learning rate, albeit no saturation,
an indication that secondary effects beyond the local environments play a role (or,
more unlikely, that the dataset is not sufficiently large).

https://doi.org/10.1038/s41524-024-01248-z Article

npj Computational Materials |           (2024) 10:73 6



scikit-learn’s46 RandomForestClassifier algorithm47, which accepts binary
labels as target properties (RoF or non-RoF) and outputs a probability
between 0 and1 for each compound to fall into theRoF subset. Training and
testing set constitute respectively 90 and 10% of the whole dataset. Our
random forest classification comprises 100 random decision trees. This
classifier performs better in our case compared to Support Vector Machine
(SVM) and Logistic Regression (LR) classifiers, signifying a need for a
stochastic model.

Data availability
The full dataset employed for the analysis can be downloaded from the
Materials Cloud Archive39, where the MC3D- source data is only provided
in SOAP format as the experimental structures can not be released due to
licensing constraints. Its DFT–relaxed counterpart is available at: https://
archive.materialscloud.org/record/2022.38. Instead, we provide the full list
of structure IDs for each database, including the version of the database
upon the time of extraction.

Code availability
The codes to reproduce the results and figures can be found at: https://
github.com/epfl-theos/r4-project. As the MC3D- source structure data
cannot bemade publicly available due to licensing contraints, the repository
contains example data from a reduced random subset of the publicly
available MP dataset in order to test run a preliminary analysis.
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