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Physics-inspired transfer learning for ML-
prediction of CNT band gaps from
limited data
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Recent years have seen adrastic increase in the scientific useofmachine learning (ML) techniques, yet
their applications remain limited for many fields. Here, we demonstrate techniques that allow
overcoming two obstacles to the widespread adoption of ML, particularly relevant to nanomaterials
and nanoscience fields. Using the prediction of the band gap values of carbon nanotubes as a typical
example, we address the representation of the periodic data as well as training on extremely small
datasets. We successfully showed that careful choice of the activation function allows capturing
periodic tendencies in the datasets that are common in physical data and previously posed significant
difficulty for neural networks. In particular, utilization of the recently proposed parametric periodic
Snake activation function shows a dramatic improvement. Furthermore, tackling a typical lack of
accurate data, we used the transfer learning technique utilizing more abundant low-quality
computational data and achieving outstanding accuracy on a significantly expanded dataspace. This
strategy was enabled by the use of a combination of the Snake and ReLU layers, capturing data
periodicity and amplitude, respectively. Hence, retraining only ReLU layers allowed the transfer of the
periodic tendencies captured from low-quality data to the final high-accuracy neural network. Those
techniques are expected to expand the usability of ML approaches in application to physical data in
general and the fields of nanomaterials in particular.

Over recent years, the use of variousmachine learning (ML)methods saw a
drastic increase in material and nano-science fields. Overcoming the most
common ML limitation—the necessity for massive amounts of data—the
applications primarily focused onutilizingwell-developed image processing
approaches1–3, optimizing automated experimentation techniques and
existing data mining4–6, and using more widely available computational
data7–11. Such an approach, however, can only be of use in special cases,
preventing the application of ML to typical systems with scarce experi-
mental data. The reasonably accessible computational data commonly lack
the required accuracy tonaturally supplement experimental results. It is also
common for computed and experimental data to not explicitly correspond
to the same system, e.g., experimentally measured parameters can be
strongly affected by thepresence of structural defects that can’t be accounted
for in computations due to inherent scale differences. Furthermore, nano-
material properties are highly dependent on the material’s size and struc-
ture, resulting in a small set of discrete values rather than a large continuous
data space, placing a hard limit on data availability. Another common
complication to applying ML solutions to such problems is the periodic

nature of phenomena that need to be captured. ML solutions often have
difficulty representing periodic behaviors and typically use larger, more
complex models that require even more data to train.

Here, we demonstrate how those obstacles (small amount of accurate
data, periodic nature of the physical properties, etc.) can be overcome with
careful selection of the activation function, and use of the transfer learning
approach, which is further improved with physics-inspired limitations. As a
familiar and important example, we chose the prediction of the band gap
values of the carbonnanotubes (CNT) fromtheir chiral indices (n,m),which
presents a well-known step-like periodic behavior with a characteristic
period of 3 from (n-m) values. First, we will show that while the most
common ML approaches fail to represent such periodic functions due to
limited available data, the recently proposed Snake activation function
shows greatly improved results.

Posing a second obstacle, the discrete nature of the data, characteristic
of nanomaterials, significantly limits the upper limit of the available data,
creating a very difficult task for ML. As is typical for many relevant nano-
systems, the available experimental data is insufficient for use with ML
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methods; the thorough literature search produced only 137 experimental
and high-accuracy computational values12–17 (Fig. 1a) (see SI for a complete
list of used values and sources). Consequently, it is common to attempt
enrichment of the dataset through affordable computations; in our case, the
DFTB (density functional tight binding)method provides the values for 851
CNTs18,19 (Fig. 1a). Unfortunately, such data, even if precise per se, often
lacks accuracy ‘across the pools’—experimental and computed. Not only
does the magnitude of band gaps significantly vary between experimental
andDFTB results, but the fine details of the trend for semiconducting tubes
donotmatch (Fig. 1b), ruling out the use of themix of two available datasets
together. In this work, we demonstrate that this low-quality data can still be
useful, enabling the learning of general trends. Later employing the transfer
learning (TL) approach, this rough model is re-trained to accurately
represent experimental results despite extremely sparse data.

The physics of band gaps in CNTs is well understood, and it derives
from linear banddispersion at the Fermi level near theKpoint in a rolled-up
graphene sheet20,21. It must be mentioned that over the years, scientists
proposed various equations predicting the CNT band gap fitted to experi-
mental data. Such equations, based on a theoretical understanding of the
band gap origins or purely empirical, provide reasonably accurate values
with a computational speed that can not be matched even by the simplest
ML approach22–24. The goal of this manuscript is not to compete with those
equations or even to predict the band gap values but rather to illustrate a
successful transfer learning ML approach capable of handling challenging
periodic data while being trained on a realistically small dataset. The exis-
tence of the empirical equations provides a convenient way to prove the
methodology’s effectiveness and evaluate performance without being used
to generate training data.

Results and discussion
Representation of periodic functions with machine learning
First, we must address the ability of ML to represent periodic physical data,
which oftenposes a challenge and requires the use of overly complexmodels
and, hence, an increased amount of data. For this first stage, we used the

more numerous DFTB data, randomly split into training and testing
datasets in a 70:30 ratio (see Methods section for details). To establish a
baseline and establish the failure of the common approach in this situation,
we trained a simple 2-layer neural network (NN)with a variable width layer
using a popular ReLU (Rectified Linear Unit)25,26 activation function,
ReLU(x) =max(0, x). For simplicity, the averaged absolute error value was
used as a loss function (L1 loss). The plots of training and testing loss for this
2xReLU NNs display all common training characteristics (Fig. 2a): under-
fitting for smallerNNs (widthbelow200neuronsper layer)where themodel
simplicity prevents accurate data representation, overfitting for larger NN
(above 512 neurons per layer) where the training data memorization pre-
vents generalization and somewhat accurate prediction of testing data for
themoderate size of NN. The NNs of optimal size were able to only achieve
the relatively lowaccuracyof εmax≅ 0.45 eVand,more importantly, failed to
accurately capture the periodicity. Note that we use the maximal absolute
error εmax for an individual CNT band gap prediction of the best-
performing NN to characterize the performance through the ultimate
guaranteed accuracy of each band gap prediction. To simplify the visuali-
zation, we plot DFTB data and ML predictions for only zigzag CNTs
(m = 0), which, in the case of 2xReLUNNs, clearly show the absence of any
kind of periodic behavior, a shortcoming typical for conventional activation
functions (Fig. 2b).

It should be mentioned that in simpler cases, one can devise a scheme
thatwould separate the data intodistinct sets that do not display periodicity,
for example, using a period of 3 for our data, completely sidestepping the
problem. However, this does not represent a generic solution and, sig-
nificantly, would even further reduce the amount of data available for
each set.

Recently, Ziyin et al.27 addressed the problem of representing periodic
functions with NNs by creating a parametric periodic activation function
named Snake ∶= x + sin2(ax)/a, where parameter a can be learned within
the optimization algorithm or set by the user. While being less computa-
tionally efficient, 2-layer NN with Snake activation functions significantly
outperforms ReLU in representing periodic data (Fig. 2c, d). Not only the
performance of 2xSnake NNs is improved to εmax ≅ 0.2 eV, but more
importantly, the periodicity is accurately captured (Fig. 2d). Interestingly,
the loss value changes with the width of the layer does not show typical
overfitting behavior.

For comparison, we also evaluated the simpler traditional periodic
activation function - sin(ax), which showed performance slightly below that
of Snake (Supplementary Fig. 1). Notably, NN with sin(ax) showed a ten-
dency to be trapped in local minimums28, resulting in reduced stability
manifested in significantly increased error bars in Supplementary Fig. 1e.

Further, by combining two layerswith Snake and two layerswithReLU
activation functions, and varying the width of layers (both Snake and both
ReLU layers are set to the same width), we create the most complex model
thatwould be considered. In principle, such architecture should separate the
periodic trend to be captured by Snake layers and the magnitude trends in
ReLU layers andallow forbetter performance, aswell as the transfer learning
approach we will discuss later.

Plotting the εmax for the best-performing NN of a given architecture
against the widths of Snake and ReLU layers, we find the region of optimal
performance for 2xSnake-2xReLU NNs (highlighted in green in Fig. 2e).
The periodicity of the data was well captured by those NN (Fig. 2f) with the
accuracy even further improved significantly to εmax≅ 0.0075 eV. Note that
overfitting for larger NN is again present due to the use of ReLU layers (top
right corner of Fig. 2e).

Originally, Ziyin et al.27 showed the use of the Snake for conventional,
continuous periodic functions. Obtaining those promising results, we
have clearly confirmed the ability of NN with the Snake27 activation
function to reproduce almost step-like periodic trends in the discrete
physical data where more common activation functions fail. The rather
remarkable ability of Snake to extrapolate should also be mentioned. The
importance of this for physical data ML cannot be overstated. While we
use a rather simple case here, significantly more complex periodic

Fig. 1 |Data. aThe range and values of the available experimental andDFTBdata for
the CNT band gap (the color bar is shown in the top right). b Comparison of the
experimental (hollow blue) and DFTB (filled green) values of (n,0) CNTs high-
lighting the difference in magnitude and the fine details of the trend.
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functions, such as Hamiltonians, could be of interest to the nanomaterials
community.

Transfer learning for ML of small experimental datasets
Our second goal was to overcome the scarcity of accurate computational
and experimental data. Characteristically for discrete physical data, one is
not interested in predictive interpolation between available data points;
for example, in our case, such predictions would correspond to non-
existentCNTswith partial chiral indexes. Itwouldbe of significant benefit,
however, to predict the values of the band gaps for a much wider range of
CNTs than is already described by the experimental data, looking to create
an extrapolative model. To this end, we are going to use the transfer
learning technique, where the NN previously trained on the low-quality

data (DFTB) is then partially re-trained on limited, accurate experimental
data. In our particular case, we start with the best-performing 2xSnake-
2xReLU NNs trained on DFTB data and re-train only the ReLU layers
(Fig. 3a). The distribution of learned Snake period a for both layers is
shown in Supplementary Fig. 4. The motivation for this particular
architecture is to preserve thepre-learned periodicity of the data present in
DFTB results and captured by the parameters of the Snake layers. To
evaluate the extrapolative performance, we would consider both maximal
error εmax and average error 〈ε〉 for the training set (comparison with the
experimental data) and testing set (comparison with the values predicted
with empirical equations22–24 on the range of DFTB data), for convenience
we would refer to those characteristics as an experimental (Exp.) and
extended range (Ext. Range). We train 50 NN instances with randomized

Fig. 2 | Representation of the periodic function with ML, results on DFTB data.
ML results of two-layer NN with ReLU a, b and Snake c, d activation functions and
four-layer NN with two Snake and two ReLU layers e, f. The best achievable εmax by
the 4-layer NN (circle size) e with corresponding widths of the Snake and ReLU
layers was used to identify combinations of widths resulting in the best performance
(shaded green area). Simplified (m = 0) visualization of the best performance

2xReLU b, 2xSnake d, and 2xSnake-2xReLU f networks demonstrating repre-
sentation of the periodic data. NN with just ReLU layers fails to capture the general
trend of the data b with εmax > 0.45 eV. The performance with just Snake is greatly
improved, well-representing periodic data, εmax > 0.2 eV d. The combination of
Snake and ReLU shows the best performance with εmax > 0.0075 eV f. Error bars
indicate standard deviation.
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initiation for all considered approaches and NN architectures to evaluate
achievable performance.

For an initial comparison, we start with the NN architecture with 2
Snake layers 16 nodes (neurons) wide, and 2 ReLU layers 64 nodes wide
(performance results shown in Fig. 3b, e and Fig. 3f, g)—the smallest NN
within the optimal region highlighted in Fig. 2e.We perform a from-scratch
training of 2xSnake-2xReLU NN on experimental data for completeness
(marked as ML). Due to the significant complexity of the model and the
small size of the dataset, the results are plagued by overfitting, showing

outstanding results in the prediction of the data points within the experi-
mental dataset (the best performance εmax = 0.097 eV and 〈ε〉 = 0.007 eV)
and poor performance on the extended range (the best performance
εmax = 1.20 eV and 〈ε〉 = 0.15 eV) (Fig. 3b). The experimental and extended
ranges are shown in Supplementary Fig. 2. The employment of the transfer
learning procedure (marked as TrL in Fig. 3 and Fig. 4) described above
markedly improve the extrapolative performance of the model, lowering
achieved error level to εmax = 0.31 eV and 〈ε〉 = 0.043 eV (Fig. 3c).

Even further improvement can be achieved by incorporating some
restrictions based on the understanding of the physical nature of the data.
Including such additional rules during the optimization process is a com-
monapproach that allows scientists to leverage preexisting knowledge of the
phenomena, only requiring that the restrictions are formulated to be
compatible with the form of the loss function. Such physics-inspired
restrictions generally are accomplished through the design of both restric-
tions and loss functions ahead of time. In our case, relying on an under-
standing of the band gap nature, we include the additional condition that
punishes the prediction of any negative values (marked as Phys-TrL in Figs.
3 and 4). Despite being relatively simple, this modification is effective in
improving the results on the extended range to εmax = 0.28 eV and
〈ε〉 = 0.032 eV (Fig. 3d). Even further improvement can be achieved by
limiting the range of extrapolation (marked as Range-Phys-TrL in Figs.
3 and 4). Considering only CNTs with a size below the diameter of (40,0)
nanotube, the performance can reach εmax = 0.098 eV and 〈ε〉 = 0.030 eV
(Fig. 3e). Note that while the performance on the extended range is
improved, the restrictions applied to the optimization inevitably results in
reduced performance on the training data (Fig. 3f, g).

For easier comparison, we also provide the whisker charts of results on
the experimental (Fig. 3f) and extended range (Fig. 3g) for simple ML,
transfer learning, transfer learning with physics-inspired restrictions, and
transfer learningwithphysics-inspired restrictions on the reduced range. As
mentioned above, it is easy to see that the performance on the training set
worsenswith additional restrictions, while the results on the extended range
drastically improve.

Now that the potential of the transfer learning is shown on a singleNN
architecture, we proceed to test various combinations of Snake and ReLU
layer widths, using the best-performing DFTB-trained NN as a starting

Fig. 3 | Transfer learningML. a Schematic of the 2xSnake-2xReLUNN used for the
transfer learning, where the parameters of the first two layers are kept constant after
pre-training on DFTB data while 2 ReLU layers are re-trained using only the
experimental dataset. b–e The performance of 2xSnake-2xReLU NNs (Snake layer
width of 16 and ReLU layer width of 64 nodes) performance on experimental (Exp.,
blue) in comparison to the extrapolative performance of the extended range (Ext.
Range, orange) trained with simple training (ML, b), transfer learning (TrL, c),

transfer learning with physics-inspired restrictions (Phys-TrL, d), and transfer
learning with physics inspired restriction on the reduced range of CNTs with the
diameter smaller than (40,0) (Range-Phys-TrL, e). The zoomed-in version of panels
b–e is shown in Supplementary Fig. 3. Whisker plots (showing outliers, mean,
median and all quartile boundaries) of results for simple and transfer learning
approaches on experimental f and expanded ranges g at different approximations.

Fig. 4 | Transfer learning results. Experimental a and extended range b results for
2xSnake-2xReLU NNs with various layer widths partially re-trained on the
experimental data. Whisker plots show outliers, mean, median, and all quartile
boundaries.
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point. We limit our investigation to the NN highlighted in green in Fig. 2e.
As previously, for each architecture, 50 instances of NN are trained fol-
lowing TrL, Phys-TrL, and Range-Phys-TrL approaches.

It is clear that the performance on the experimental range is uni-
versally good, with the error level slightly dipping at the Snake width of 32
nodes (Fig. 4a). At the same time, the prediction accuracy on the extended
range is progressively and significantly improved with the increased
complexity of the model, reaching a plateau at a Snake width of 64 (Fig.
4b). Interestingly, not only the best performance is enhanced with higher
complexity, but the variability of the results from the producedNNs is also
decreased, suggesting more robust models. The accuracy achieved
through the transfer learning approach on the extended range reaches
εmax = 0.091 eV and 〈ε〉 = 0.016 eV, on par with that of conventional ML
training on DFTB data despite a very small dataset size.

To further investigate the potential usefulness of the outlined
methodology on experimental data, we consider its performance of
the data with imperfect periodicity. While the local deviations from
periodicity are very typical for material science datasets (e.g., loca-
lized structural defects within perfect lattice), they are absent in our
test case. We artificially introduced such deviations to an increasing
number of points within the DFTB dataset (Supplementary Fig. 5),
finding only a slight performance decrease for the data with up to 10%
non-periodic data (Supplementary Fig. 6). This level of tolerance
towards imperfect periodicity in pre-training data opens a variety of
possible applications. While used as an example here the CNT
bandgaps are indeed a representative and relevant dataset. It is worth
reminding that the band gap variability with chiral symmetry of
nanotubes has been seen as both opportunity and a hurdle to elec-
tronics applications, a decades-long challenge to reveal the origins of
chiral type distributions29,30 and especially to achieve chiral-selective
synthesis31.

In conclusion, we have successfully demonstrated a methodology
to overcome several common obstacles to the use of ML on datasets in
the nanomaterials field. First, the use of the recently proposed Snake
activation function enables the learning of the periodic functions quite
common in physical data. Here Snake’s effectiveness is illustrated on a
discrete step-wise periodic function of the CNT band gap that is com-
mon for electronic and optical properties of nanostructures (the Per-
iodic Table of the chemical elements is also a compelling example of
this kind); yet its use on more conventional continuous periodic
functions, such as Hamiltonians32, can prove to be important for the
field of nanomaterials. It can also find application in many other tasks
that remain challenging for NN, such as learning symmetry from
diffraction images33,34. Furthermore, we employed transfer learning
techniques by re-using NNs pre-trained on the numerous but inac-
curate DFTB data. This approach allowed us to successfully represent
accurate experimental data from just 137 data points, clearly illus-
trating transfer learning capabilities for the typical case of extremely
limited data availability. Moreover, the represented range significantly
exceeded that of the used data. We believe that the demonstrated
approach should significantly expand the usability ofML techniques in
the nanomaterial research field.

Methods
Dataset preparation
We used three distinct data sources to compose two different data sets. The
first data set was composed of DFTB data18,19 for training and testing. The
DFTB data were used to evaluate the ability of the network to learn char-
acteristically periodic patterns. The second was composed of experimental
and high-accuracy DFT12–17 for training, and the testing was performed
using empirical formulas22–24. This second dataset was used primarily to
evaluate the transfer learning potential of the neural network. The exact
datasets used are available upon request.

The DFTB dataset included all valid n and m combinations in [4,40],
[0,n], respectively, a total of 851 points (see Fig. 1). The data were then split
into training and testing subsets in approximately 70:30 ratio (592 and 259
points respectively) (Fig. 5 visualizes full and training subsets). The training
set was randomly upsampled, sampled with replacement to 1024 points
from 592 points, and the testing set was left at native 259 points.

The transfer learning training set was composed of 137 training
points12–17 (see Supplementary Information for a complete list of used
values and sources) that were upsampled to 342 points by resampling
the less represented dataspace (larger diameter and larger chiral angle
CNTs). The oversampling of the large diameter CNTs corrected for the
underrepresentation in the dataspace with smaller absolute energy
values. The testing set was evaluated over the entire n, m range of
interest in that experiment. The full range of DFTB data was used
except for the transfer learning evaluation on the reduced extended
range, where only nanotubes with a diameter below (40,0) nanotubes
were included.

Neural network methods
The networks were built using python 3.7.9, pytorch 1.7, and cuda 11.0.We
evaluated threedifferentnetworks in thiswork, twoversionsof the two-layer
and one four-layer fully connected feed-forward network. All of these are
traditional neural networks that include the bias term as part of their
topology. For brevity, we will denote the topology of the network by the
number of elements in each of the feed-forward layers and by the transfer
function used in that layer, as the input and output were the same across all
networks studied.

All networks in this work utilized AdamW35 optimization methodol-
ogy with an initial learning rate of 10−3. ReLU layers were initialized using
He initialization25. The Snake layers were initialized using He initialization
for the weight component and for the period component the Uniform [0,3]
distribution. Unlike the implementation used by Ziyin et al.27, we allowed
bothof these components toupdatewith thenetwork.Thenetworkswere all
trained to minimize the L1 loss between the prediction and the band gap in
the dataset. Networks were stopped after they ran for 20 × 106 epochs of the
training set data, and the best-performing network was evaluated by L1 loss
over the testing set. We also recorded the absolute value of the maxim
deviation of any given prediction vs. the actual to evaluate theworst possible
prediction of the network.

The first variation of the two-layer network utilized the ReLU transfer
function. The second variation of the two-layer network utilized the Snake
transfer function. For both types of two-layer networks, we evaluated

Fig. 5 | DFTB data preparation. The chiral map
showing the full DFTB dataset (851 points) and
randomly chosen 592 data points (~70% of the full
set) that were further randomly upsampled to 1024
data points used as a training set.
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networkswith the samenumber of neurons in eachof the twohidden layers.
The examined sizes are 16, 32, 64, 128, 256, 512, and 1024.

We observed that the Snake layers did an excellent job of learning
the underlying periodic behavior; therefore, we decided to use a four-
layer network that consisted of two Snake layers followed by two ReLU
layers. The Snake layers learned the underlying phenomena, and the
ReLU layers would learn the appropriate scale. This allowed us to
transfer train the network by relearning only the ReLU layers using the
much smaller, highly accurate datasets. To help ensure that these net-
works were learning physically meaningful outputs, we modified our L1
loss to also penalize negative band gaps energies equivalent to 10x the
negative value. This strongly discouraged the network from learning any
non-physical solutions. The evaluation of the retrained networks over
the range significantly exceeding the limited range of the accurate dataset
was performed using empirical data22–24 (see SI for details) in the range of
theDFTB dataset or slightly reduced, as described above. To simplify the
evaluation, the widths of the ReLU and Snake layers were varied inde-
pendently while keeping two ReLU layers and two Snake layers of the
same width. We evaluated the four-layer networks in the following layer
widths: 16, 32, 64, and 128 for both ReLU and Snake layers, and 200 and
256 for ReLU layers only.

Data availability
The dataset used in this study is included in this published article and its
Supplementary Information files. The model parameters generated during
the current study are available from the corresponding author upon a rea-
sonable request.

Code availability
The code used in the current study is available from the corresponding
author upon a reasonable request.
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