
npj | computational materials Article
Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-024-01243-4

MLMD: a programming-free AI platform to
predict and design materials

Check for updates

Jiaxuan Ma1,2,5, Bin Cao 3,5, Shuya Dong1, Yuan Tian1, Menghuan Wang1, Jie Xiong 1,4 &
Sheng Sun1,2,4

Accelerating the discovery of advanced materials is crucial for modern industries, aerospace,
biomedicine, and energy. Nevertheless, only a small fraction of materials are currently under
experimental investigation within the vast chemical space. Materials scientists are plagued by time-
consuming and labor-intensive experiments due to lacking efficient material discovery strategies.
Artificial intelligence (AI) has emerged as a promising instrument to bridge this gap. Although
numerous AI toolkits or platforms for material science have been developed, they suffer from many
shortcomings. These includeprimarily focusing onmaterial property prediction andbeing unfriendly to
material scientists lacking programming experience, especially performing poorly with limited data.
Here, we developedMLMD, an AI platform for materials design. It is capable of effectively discovering
novel materials with high-potential advanced properties end-to-end, utilizing model inference,
surrogate optimization, and even working in situations of data scarcity based on active learning.
Additionally, it integratesdataanalysis, descriptor refactoring, hyper-parameters auto-optimizing, and
properties prediction. It also provides a web-based friendly interface without need programming and
can be used anywhere, anytime. MLMD is dedicated to the integration of material experiment/
computation and design, and accelerate the new material discovery with desired one or multiple
properties. It demonstrates the strong power to direct experiments on various materials (perovskites,
steel, high-entropy alloy, etc). MLMDwill be an essential tool for materials scientists and facilitate the
advancement of materials informatics.

Novel materials have a significant impact on our daily lives and modern
industries such as the aerospace, biomedical, and energy sectors1–5. How-
ever, the conventional research and design (R&D) of novelmaterials utilizes
a “trial-and-error" approach,which is challenging due to the complexity and
diversity of materials. This approach incurs high costs, and the commercial
implementation of novel materials generally takes decades. Fortunately,
owing to the rapid advancements in artificial intelligence (AI) andmachine
learning (ML), materials R&D has evolved to a state-of-the-art data-driven
paradigm6–8. The data-driven paradigm is expected to diminish the cost and
duration of materials R&D by half, and thus expedite the materials devel-
opment cycle from decades to a few years.

The key concept of the date-driven paradigm is the integration of AI
techniques and materials science. Various AI techniques, especially ML

algorithms, have been employed to uncover Composition-Process-
Structure-Property (CPSP) relationships in materials science9–13. ML
models trained on extensive data can aid in the discovery of innovative
materials such as organic compounds14,15, solar cells16,17, alloys18–20, and
perovskites21,22. For example, Rao et al. proposed an active learning strategy
to accelerate the exploration of high-entropy Invar alloys. With the assis-
tance of ML, they characterized two novel Invar alloys from a plethora of
potential combinations23. Raccuglia et al. utilized successful and unsuc-
cessful historical reactions to train their ML model, discovering critical
factors that affect chemical reactions and synthesizing new organic com-
pounds based on this trained model24.

Within the material and physical computation community, several
notable AI platforms have emerged. Materials Cloud25 offers an ensemble
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material simulation platformwith a primary focus on ab initio computation
to emulate material mechanisms. Similarly, the Materials Project26 stands
out as a quantum computation platform providing a valuable inorganic
materials database and associated quantumproperties, leveraging advanced
ML acceleration methods such as ML-based potential fields: M3GNet27,
MEGNet28, etc. AFLOW-ML29 and JARVIS-ML30 contribute significantly
by offering crystal properties prediction tools based on DFT calculations or
ML surrogate models, covering formation energies, exfoliation energies,
bandgaps, andmagneticmoments, among other attributes.MatMiner31 and
Magpie32, popularML tools in materials research, host various downstream
ML libraries that greatly benefit the material community. In addition, the
AI/materials community has also developed general AI toolkits and plat-
forms that have broad applications in materials science33–36. For instance, a
simple but powerful tool for non-data researchers has been developed by
Peng37, which possesses a command-line interface and aweb-basedGUI for
classification and regression tasks. Another representative is AlphaMat, an
emerging materials informatics hub developed by Wang38. This platform
focuses on data preprocessing and downstream ML models, offering a
streamlined workflow for materials designers. AI platforms like AlphaMat
can automate and expedite the construction of accurate ML models for
different materials, providing AI support for materials scientists.

Despite these advancements, utilizing the aforementioned general-
purpose AI toolkits and platforms requires programming skills, which
might be a barrier for material designers lacking programming experience.
Additionally, existing platforms emphasize model construction and over-
look inverse materials design. There is significant scope for enriching AI
platforms in material R&D. Therefore, we have created the MLMD
(machine learning for materials design) platform, providing a friendly
interface and more comprehensive AI tools for material designers. MLMD
distinguishes itself with an entirely code-free interface for seamlessly
executing property inference and inversematerial design. Crucially,MLMD
not only considers inherent physical structure properties but also explores
the impact of material defects and processing/testing technologies on
material performance. It includes a range ofMLalgorithms for constructing
models besides data analysis and descriptor refactoring, enabling end-to-
end (data to new materials) novel materials discovery. MLMD can auto-
matically construct classification or regression models based on user-
uploadeddata,with a strong emphasis onprivacy protection (nodatawill be
stored). Users can simply select anML algorithm, and the associated hyper-
parameters will be automatically tuned. In addition to model construction,
MLMD also incorporates model inference20,39, surrogate optimization40–42,
and active learning43–48 techniques for materials inverse design. By utilizing
model inference or surrogate optimization, users can screen out novel
materials from a virtual search space based on the constructed models.

In addition, the MLMD framework has made significant strides in
addressing the challenge of limiteddata availability. To address data scarcity
in materials science, we develop a Bayesian toolkit for material design to
integrate into active modules in MLMD. This feature incorporates nine
utility functions that balance exploration and exploitation. Through the
active learning module, MLMD enables the provision of novel advanced
materialswith single ormultiobjectiveproperties throughan iterativedesign
process. MLMD also integrates transfer learning into heuristic algorithms
(TL-opt) to address small data problems in material design, demonstrating
its applicability in both single and multiple objective material design,
showcasing advantages in Al alloy design42.

The effectiveness and robustness of theMLMDplatform inbothmodel
construction and inverse design have been demonstrated through various
datasets in the work, including perovskites, steel, high-entropy alloy, et al.
This framework adheres to the material genome concept, thereby empha-
sizing the emerging paradigm ofmaterial design.We firmly believe that the
MLMD platform has the potential to greatly enhance the accessibility and
utility of AI techniques for materials communities.

Nomenclature

LR49 Logic regression MLPR49 Multi-layer perception
regression

SVC49 Support vector
classification

RFR49 Random forest regression

BTC49 Bagging tree
classification

XGBR50 XGBoost regression

RFC49 Random forest
classification

LOO Leave one out

XGBC50 XGBoost
classification

R2 Determination coefficient

CBC51 CatBoost
classification

NSGA-
II52

Non-dominated sorting
genetic algorithm II

CV Cross validation GA53 Genetic algorithm

SVR49 Support vector
regression

DE54 Differential evolution

KNNR49 K-nearest
neighbor
regression

PSO55 Particle swarm
optimization

SA56 Simulated
annealing

EI57 Expected improvement

AEI57 Augmented
expected
improvement

EQI57 Expected quantile
improvement

REI57 Reinterpolation
expected
improvement

PES58 Predictive entropy search

POI59 Probability of
improvement

LassoR49 Lasso regression

UCB60 Upper con-
fidence bound

KG61 Knowledge gradient

EHVI62 Expected
hypervolume
improvement

LinearR49 Linear regression

PCA49 Principal com-
ponent analysis

t-SEN49 t-distribution stochastic
neighbor embedding

ABR49 AdaBoost
regression

BR49 Bagging regression

CBR51 CatBoost
regression

GPR49 Gaussian process regression

DTR49 Decision tree
regression

GBR49 Gradient boosting
regression

RidgeR49 Ridge regression ABC49 AdaBoost classification

EIP57 Expected
improvement
with “plugin"

SHAP63 SHapley Additive
exPlanations

GBC49 Gradient boost-
ing classification

SMS-
EMOA52

L metric selection evolu-
tionary multiobjective opti-
mization algorithm
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Results
Overview and architecture
The primary objective of MLMD is to make ML programming free and
empower materials scientists with an end-to-end approach to materials
design. To train a predictionmodel onMLMD, users are required to upload
a CSV-formatted data file containing featurematrixX and target variableY.
The feature matrix X includes information regarding material components
and processes, and the target variable Y incorporates one or more material
properties. MLMD was developed with six core modules, as depicted in
Fig. 1, and seven functionalities:
(1) Database. MLMD provides materials scientists with databases con-

taining material data (e.g., polycrystalline ceramic, HEAs, ferroelectric
perovskites) generated from experiments or collected from literatures.
These databases are downloadable and serve various purposes,
including serving as sourcedomains for transfer learning.Additionally,
MLMD offers outlier detection algorithms like DBSCAN64,
IsolationForest65, LocalOutlierFactor66, and One Class SVM67 to
identify data points that deviate significantly from the rest. Outlier
detection can greatly enhance the generalization of ML models.

(2) Data visualization.MLMDoffers an initial data overview, including the
distribution of features and targets, along with the statistics derived
from the data.

(3) Feature engineering.Material compositions andprocesses significantly
influence the structure, properties, and performance of materials.
These components are commonly used as the feature descriptors in
ML, determining the performance limits of prediction models. Thus,
MLMD integrates feature engineering, encompassing handling miss-
ing and duplicate values, assessing feature correlation, and ranking
feature importance. Additionally, MLMD also provides transforma-
tion functions to transform the composition descriptors to atomic
descriptors, such as atomic radius, band gap, and valences.

(4) Quantitative CPSP relationships (QCPSP). The establishment of
QCPSP in material through ML is fundamental to material design.
MLMD supports nearly all widely utilized regression and classification
algorithms, such as linear analysis, sparse kernel machine, probability
model, neural network, transfer learning, and ensemble learning. The
most suitable model can be selected for training on the data and
making inference.

(5) Surrogate optimization. Integrating predictive models into numerical
optimization algorithms can accelerate the attainment of optimal
material compositions, processes, and other relevant features that align
with desired properties. Subsequently, the discovered advanced
materials will undergo experimental verification.

(6) Active learning. Achieving a high-accuracy prediction model is a
challenge in materials science due to the limited data. Consequently,
sampling-based material design strategies are provided within the
active learning module in MLMD platform. Global optimization by
Bayesian-based active learning has gainedprominence for the ability to
address data scarcity and reduce material discovery costs. Typically,
this approach explores the design space using an optimal policy that
balances exploitation and exploration to identify the global optimum.
In active learning, a probability surrogate model, Gaussian process
(GP), is constructed using initial input-output data obtained from
costly experiments or simulations.

(7) Interpretable ML. Achieving physical interpretability is a significant
challenge and goal in material informatics. Interpretable ML can
enhance materials scientists’ understanding of the CPSP relationships
of materials. MLMD platform also provides the Shapley Additive
Explanations (SHAP) method to facilitate model explanation.
As illustrated in Fig. 2, there are three primary flowcharts formaterials

design within the MLMD platform. These include model inference, surro-
gate optimization, andactive learning.The efficiency ofmodel inference and
surrogate optimization relies on the robustness of the prediction model
(surrogate model), and the model performance is limited by available data.
In surrogate optimization, the well-trained prediction model will be

integrated into stochastic optimization algorithms to accelerate materials
design. Active learning inMLMDemploys a sampling strategy grounded in
Bayesian principles. It balances exploration and exploitation in order to
formulate an optimal material design strategy. The active learning module
will recommend the next experiment via Bayesian global optimization
under limited data. The recommended experiment can be conducted, and
the new results of the experiment will validate the ML prediction and
simultaneously are fedback to thedataset for the following cycle of iterations
in the active learning loop. In thematerials designflowchartswithinMLMD
platform, some useful tools were used, including Streamlit, Scikit-Learn49,
Pymoo52, extreme gradient boosting decision tree (XGBoost)50, Scikit-Opt,
and Bgolearn.

Classification module
Here, eightmaterials datasets labeled as C1-C3 andR1-R5were used as case
studies to showcase the reliability and effectiveness of four commonly used
moduleswithin ourMLMDplatform.Details of the datasets can be found in
Table 1.

The proposed classificationmodule aims to address classification issues
in materials science. It merely necessitates uploading a dataset in the CSV
format and the programming-free selection of an MLMD-implemented
algorithm to complete model construction. Moreover, the user can
straightforwardly adjust or auto-optimize hyper-parameters to further refine
constructed MLMD classification models to enhance their accuracy (metric
details are provided in Supplementary Note 1). The performances of six
MLMD-implemented classification algorithms (LR, SVC, BTC, RFC,XGBC,
andCBC),were accessed andcomparedwith the baselinemodels across three
distinct classification issues, described as follows. C1: Identify the crystalline
structure of a polycrystalline ferroelectric ceramic, categorizing it as either a
perovskite or a non-perovskite structure. C2: Categorize an alloy into one of
three classes: crystalline alloy (CRA), ribbon metallic glass (RMG), or bulk
metallic glass (BMG). C3: Discriminate between solid-solution HEAs and
classify them as hexagonal close-packed (HCP), body-centered cubic (BCC),
face-centered cubic (FCC), or mixed solid solution (MSS). The baseline
models were SVC implemented in R75, RFC implemented in Java13, and RFC
implemented in python76 for C1, C2 and C3, respectively.

As depicted in Fig. 3a, c, e, the default MLMD-implemented SVC,
RFC, andXGBCmodels achieved a 10-foldCVaccuracy exceeding 80% for
all three issues. The results demonstrate that the default MLMD-
implemented model can provide satisfactory classification accuracy with-
out requiring any other operations. In addition, the optimization of hyper-
parameters can significantly enhance the performance of all MLMD-
implemented models. The MLMD platform also offers a user-friendly
hyper-parameter tuning feature that can achieve improvedmodels without
requiring programming skills. In the three cases, the recommended
MLMD-implemented models are the tuned XGBC model (CV-accu-
racy = 86.5%), tuned RFC model (CV-accuracy = 87.4%), and tuned RFC
model (CV-accuracy = 92.6%) for C1, C2, and C3, respectively. The
recommendedMLMD-implemented model performed comparably to the
baselinemodel forC2, andoutperformed the baselinemodel forC1andC3,
indicating the robust classification capability of our platform. MLMD
platform also provides a confusionmatrix for each recommendedmodel in
the classificationmodule, as illustrated in Fig. 3b, d, f. The confusionmatrix
is used to observe the performance of the classification model in each
category, and is able to calculate the other classify performance metrics,
such as precision and recall. (raw confusion matrix plots are provided in
Supplementary Fig. 1). According to theCPSP relationship, the property of
a material significantly relies on its microstructure. Therefore, identifying
themicrostructure based on composition and process is very important for
material design. For instance, the BCC HEAs are much harder than FCC
HEAs, and a HEA that belongs to BCC class should be designed for wear
resistance. Researchers generally modify microstructures based on
experience in conventional materials design paradigm, while our platform
provides a convenient tool for identifying the microstructure through
classification.
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Regression module
Similar to the Classification Module, the regression module only requires a
CSV-format dataset for constructing predictivemodels. It isflexible to select
various regression algorithms and adjust corresponding hyper-parameters
without programming. We compared the performance of six MLMD-
implemented regressors (SVR,KNNR,MLPR,RFR,XGBR, andCBR) to the
baseline model for predicting the fracture stress of low-alloy steels (R1), the
Curie temperature of ferroelectric perovskite (R2), and the flow stress of
FGH98 superalloys under hot deformation (R3). The baseline models uti-
lized here were RFR implemented in Java77, SVR implemented in R75, and
GPR implemented in python78 for R1, R2 and R3, respectively. As can be
seen in Fig. 4a, c, e, the 10-fold CV-R2 (metric details are provided in
Supplementary Note 1) of the recommended XGBR model for R1, SVR
model for R2, and CBR model for R3 are 0.9427, 0.8480, and 0.9828,
respectively. The recommended MLMD-implemented models outperform
the baseline model for all three regression problems. The properties pre-
dicted from the recommended MLMD-implemented regressors have been
plotted against the experiment measurement, as shown in Fig. 4b, d, f.

Notably, the data points clustering near the diagonal line exhibit that our
MLMDplatformdelivers satisfactory performance across diverse regression
problems (raw plots are provided in Supplementary Fig. 2). Different from
the classification, regression is commonly employed to predict material
performance in relation to properties like strength, elongation, and hard-
ness, among others. Researchers can leverage well-trained regression
models to surrogate time-consuming trial-and-error experiments and
design advanced materials at low cost. The regression module within
MLMD offers a convenient tool for the experiment researchers lacking
programming skills.

In summary, the classification and regression module within MLMD
platform allow the acquisition of accurate models through programming-
free algorithm selection and hyper-parameter tuning. Additionally, well-
trained prediction models can be preserved for various other applications.

Surrogate optimization module
Thewell-trained regressionmodel serves as a surrogatemodel, which canbe
integrated into the efficient numerical optimization algorithm to accelerate
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Fig. 1 | Overview and architecture of MLMD. a Data module, which encompasses
material databases, data visualization, and feature engineering. bRegressionmodule,
which comprises a group of ML regression algorithms. These algorithms can be
further utilized in the surrogate optimizationmodule. cClassificationmodule, which
involves a group of ML classification algorithms. These algorithms can be further
leveraged in the surrogate optimization module. d Surrogate optimization module,

where the ML model is incorporated into numerical algorithms to accelerate
materials design. eActive learningmodule, samplingmethods based onBayesian are
provided to search the material composition space and discover novel materials,
particularly under limited available data. fOther module, which provides advanced
ML algorithms such as transfer learning, dimensionality reduction, and
interpretable ML.
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the materials design. The surrogate optimization module within MLMD
platform necessitates an experimental or simulation dataset, corresponding
ML prediction models, and boundary constraints for feature variable. The
surrogate optimization module provided a convenient tool that quickly
finds out a reasonable combination in the search space of compositions and
processing parameters according to the targeted properties.

Reduced activation ferritic-martensitic (RAFM) steels developed from
conventional 9Cr-1Mo steels have been regarded as promising candidate
structural materials for fusion reactors, owing to their good thermo-phy-
sical, thermomechanical, and irradiation-resistant properties compared to
those of austenitic steels68,69. In the section, the surrogate optimization
module was utilized to design RAFM steels with enhanced strength and
excellent ductility. Initially, twoML predictionmodels were constructed via

the regression module in MLMD platform based on dataset R4. It is worth
noting that an accurate prediction model is an essential prerequisite for
optimization.TheCV-ρ (metric details are provided in SupplementaryNote
1) of the regressor for predicting UTS and total elongation (TE) is 0.9912
and 0.8816, respectively, as shown in Fig. 5a, b. Hence, these two ML
prediction models can be employed to discover novel RAFM steels with
given physical constraints (details are provided in Supplementary Table 1).
Figure 5c, d depict the tensile properties of RAFM steels in R4-dataset and
MLMD-recommended steels at 600 °C and 300 °C, respectively, and the
Pareto front of RAFM steel is significantly pushed forward, especially at
300 °C. Li et al.70 proposed an intelligent designmodel, which consists of the
forwardmodel thatmaps composition and processing to properties and the
reverse model that maps properties to composition and processing. The

Dataset

Verified by experiment

Feature engineering

1. K-fold CV

2. ML prediction model

3. Feature physical 

constraints , surrogate

model

4. The stochastic 

optimization algorithm 

b. Surrogate 
optimization

5. The recommended 

novel material

1. Gaussian process

regression

2. Virtual sampling point

3. Select the suitable

utility function

c. Active learning

4. The recommended 

novel material

2. ML prediction model

5. The recommended 

novel material

a. Model inference

Loop

Target B

Target A

Goal achieved!

Literatures 

data

Computation/

Experiment

data

Build database

1. K-fold CV

3. Virtual sampling point

4. Model inference

Fig. 2 | Flowcharts ofmaterials design inMLMDplatform. aModel inference involves establishing anMLmodel, generating visual samples, executingmodel inference, and
subsequently verifying the recommended new materials through experiment. b Surrogate optimization entails establishing ML models, incorporating feature physical
constraints, selecting heuristic optimization algorithms, and subsequently verifying the recommended newmaterials through experiment. cActive learning involves utilizing
GPRmodel, creating a virtual sample space, selecting a suitable utility function, and ultimately verifying the recommended newmaterials through experiment. Notably, the
results from experiments on the new materials of the three methods can be iterated into the next loop for building more better ML model.
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intelligent design model is capable of implementing property-oriented
composition and processing design. As illustrated in Fig. 5c, the optimal

RAFM steel at ambient temperature 600 °C achieved by Li is denoted by the
blue star, and the RAFM steels designed by MLMD are highlighted by the
red star. It is evident that the properties of the designed materials are very
close. Furthermore, the compositions and processing of the materials are
also similar, as shown in Table 2. Besides, MLMD can also discover other
advancedmaterials with interesting properties that lie on Pareto Front, and
the novel material number depends on the simple hyper-parameter setting.
These materials can be applied in various scenarios according to specific
requirements (the composition and processes at 600 °C are provided in
Supplementary Table 2). Meanwhile, we also design RAFM steels at tem-
perature 300 °C to further demonstrate the convenience and effectiveness of
material design inMLMDplatform, as shown in Fig. 5d. The recommended
properties exhibit a sharp improvement compared to the report71, with a
UTS of 643 MPa and TE of 14.64%. The selected material on Pareto Front,
highlightedwith a red star at 723.10MPa and a TE of 20.7%, shows a 12.5%
improvement in UTS and a 41.4% improvement in TE. An experiment will
be conducted to validate the finding in a future study (the composition and

Table 1 | Eight case material datasets

Dataset Materials Property

C175 polycrystalline ceramic formability

C213 alloy glass-forming ability

C376 high-entropy alloy solid-solution structure

R177 low-alloy steel fracture strength

R275 ferroelectric perovskites Curie temperature

R378 FGH98 superalloy flow stress

R470 reduced activation ferritic- mar-
tensitic steel

ultimate tensile strength and total
elongation

R574 AlCoCrCuFeNi high-entropy alloy hardness
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Fig. 3 | Cross-validation results of six ML models through classification module
within our MLMD platform. a The 10-fold CV accuracy for classifying perovskite
formability of ferroelectric perovskites (Case C1). b The confusion matrix of the
tuned MLMD classification model of perovskite formability of ferroelectric per-
ovskites (Case C1). c The 10-fold CV accuracy for classifying the glass-forming
ability of alloys (Case C2). dThe confusionmatrix of the tunedMLMDclassification

model of the glass-forming ability of alloys (Case C2). eThe 10-fold CV accuracy for
classifying solid-solution structures of HEAs (Case C3). f The confusion matrix of
the tuned MLMD classification model of solid-solution structures of HEAs (Case
C3). In each sub-figure, the lighter bar, darker bar, and red dashed line represent the
default MLMD model, tuned MLMD model, and baseline model, respectively.
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processes at 300 °C are provided in Supplementary Table 3). In summary,
these results demonstrate the powerful ability of the surrogate optimization
modulewithin theMLMDplatform to effectively accelerate the discovery of
high performance materials (raw plots are provided in Supplementary
Fig. 3).

Active learning module
As previously mentioned, an accurate predictive model is necessary for
implementing surrogate optimization, but it often requires a large quantity
of data, while the data in materials science are typically limited. Conse-
quently, we provide a sampling-based material design strategy within the
active learning module of MLMD platform. The active learning module
necessitates only two datasets: the experimental/simulation data and the
virtual sample data. Novel materials with desired properties can be dis-
covered via Bayesian sampling implemented in MLMD platform from the
virtual sample space.

HEAs possess excellent properties, including cryogenic toughness,
strength, and thermal stability at elevated temperatures, as well as good
corrosion and wear resistance72,73. Wen et al. designed a strategy combining
SVM with experimental design algorithms to search for

AlxCoyCrzCuuFevNiwHEAs with large hardness
74. After seven iterations by

iterative loops ofAI-dominated and knowledge-dominatedmethods, the 10
new alloys with high hardness were achieved and synthesized, and their
compositions are listed in Table 3. To assess the effectiveness and con-
venience of the active learning module within the MLMD platform, we use
the identical samples as those utilized inWen’ report74, which encompassed
155 synthesizedHEAs as well as the supplementary virtual sample space, to
design theHEAs with high hardness. The concentrations of six-component
alloys in the virtual sample space are constrained within
34 < x < 47, 5 < y < 33, 8 < z < 34, 0 < u < 13, 5 < v < 20, and 0 <w < 16 at.%.
Various utility functions are utilized for HEAs design within active learning
module, towards desired properties, including EI, EIP, AEI, EQI, REI, UCB,
POI, and PES. The distinction between utility functions lies in their varying
emphasis on exploration or exploitation during the sampling process.
Furthermore, the appropriate utility function may exhibit varying levels of
efficiency, necessitating a case-by-case evaluation. Fortunately, the selection
of the utility functions can be easily changed due to the programming-free
nature ofMLMD. Here, the results of three samples designed using EI, REI,
and UCB in active module are illustrated in Fig. 6a–c, d–f, g–i, respectively
(the results of remaining utility functions are provided in Supplementary
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Fig. 4 | Cross-validation results of six ML models through regression module
within ourMLMDplatform. aThe 10-fold CVR2 for regressing fracture strength of
steels (Case R1). (b) The prediction of tunedMLMD regression model of perovskite
fracture strength of steels (Case R1). c The 10-fold CV R2 for regressing high fer-
roelectric Curie temperature of perovskite (Case R2). d The prediction of tuned
MLMD regressionmodel of high ferroelectric Curie temperature of perovskite (Case

R2). e The 10-fold CV R2 for regressing flow stress of FGH98 superalloys under hot
deformation. (Case R3). f The prediction of tuned MLMD regression model of flow
stress of FGH98 superalloys under hot deformation (Case R3). In each sub-figure,
the lighter bar, darker bar, and red dashed line represent the default MLMDmodel,
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Note 2). The compositions of three samples recommended by the three
sampling approaches closely resemble the alloys designed in the original
work74 through multiple iterations. The detailed composition of HEAs
through the active learning module is presented in Table 4. Consequently,
these alloys designed using MLMD demonstrate a high potential to posses
high hardness. A similar design strategy can be applied to optimize other
properties, such as light HEAs with high strength and parameters of HEA
coatings. The active learning module within MLMD platform can also be
extended to bulk metallic glasses, superalloys, and other materials.

Discussion
In this work, MLMD, a cutting-edge AI platform for material design was
developed, aiming toaccelerate thediscovery of advancedmaterials.MLMD
provides a user-friendly programming-free interface. MLMD enables effi-
cient end-to-end materials design with one or more desired properties.
Simultaneously, to tackle the issues of limited data availability in materials
science,MLMDalso provides the sampling-based active learningmethod to
recommend new materials efficiently. It also integrates commonly utilized
functions in AI platform such as data analysis, descriptors refactoring, and
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Fig. 5 | The RAFM steels design process through surrogate optimization module
in MLMD. a The prediction of UTS via the tuned MLMD regression model. b The
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represents the optimal material designed by MLMD at an ambient tempera-
ture 300 °C.

Table 2 | Comparison among the AI-model-based designs and experiment results

UTS (MPa) TE Ttest Alloy elements (wt%) NT Nt TT Tt

(%) °C C Cr W Si Mn V Ta Zr Y Ti N (°C) (min) (°C) (min)

Designed by work70 500 20.0 600 0.13 9.5 1.7 0.49 0.67 0.25 0.20 0.002 0.03 0.005 0.021 1010 36 660 76

Designed by MLMD 498 21.0 600 0.11 9.7 1.6 0.41 0.27 0.49 0.20 0.004 0.009 0.010 0.039 1045 49 658 75

Experiment in work70 539 20.6 600 0.13 9.5 1.7 0.49 0.67 0.25 0.20 0.002 0.03 0.005 0.021 1010 36 660 76

The designed data are provided in original work70. The targeted properties are UTS of 500 MPa and TE of 20% at 600 °C.
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prediction modules. The outcomes of regression, classification, surrogate
optimization, and active learning modules within MLMD in the study
demonstrate the strong power of material design.

Notably, the approach to material design employed in MLMD differs
from that outlined in the original research work70,74. In the surrogate opti-
mization and active learningmodule,MLMDemploys a distinctmethod for

recommending novel materials, albeit yielding highly consistent results
withinprevious research.Additionally, theuser-friendly interfaceofMLMD
streamlines the design process, ensuring that researchers without extensive
programming skills can focus their efforts on conducting experiments,
analyzing mechanisms and characterizing novel materials.

Finally, we will continue to commit to ongoing enhancements and
releases ofMLMD, aiming to address the challenges frequently encountered
in material design, including the development of more efficient ML algo-
rithms, more frontier tools, and visualization interfaces to enhance the
efficiency of processing material data. We believe that MLMD has the
potential to become an indispensable tool for material design, especially
friendly for researcherswhoareunfamiliarwithprogramming, and facilitate
the advancement of material informatics.

Methods
Architecture
MLMD offers a complete materials design wrokflow, encompassing data
collection, data preprocessing, feature engineering, model establishment,
parameters optimization, material discovery, and experiment validation, as
illustrated in Fig. 2. This process can be executed through a user-friendly
interface. Various material data can be sourced from simulations, experi-
ments, literature (manually collected data from published papers and
patents), and open databases. In addition, MLMD provides material data-
bases (e.g., polycrystalline ceramic, HEAs, ferroelectric perovskites). The
feature engineering module involves descriptor refactoring, correlation

Table 3 | The top 10 newly predicted and synthesized alloys
after seven iterations by iterative loops of AI-dominated and
knowledge-dominated methods in original work74

Al Co Cr Cu Fe Ni

No.1 43 22 23 0 7 5

No.2 47 20 18 5 5 5

No.3 43 22 22 0 8 5

No.4 47 19 19 5 5 5

No.5 43 24 22 0 5 6

No.6 43 25 22 0 5 5

No.7 43 24 23 5 5 5

No.8 43 18 20 5 12 7

No.9 43 23 21 5 8 5

No.10 47 14 20 5 9 5

0 10 20 30 40 50
0

10

20

30

40

50

C
o

Al

Designed by Wen

Designed by EI

Designed by Wen

Designed by REI

Designed by Wen

Designed by REI

Designed by Wen

Designed by REI

Designed by Wen

Designed by UCB

Designed by Wen

Designed by UCB

Designed by Wen

Designed by UCB

a b c

0 10 20 30 40 50
0

10

20

30

40

50

C
u

Cr

Designed by Wen

Designed by EI

fed

hg i

0 10 20 30 40 50
0

10

20

30

40

50

N
i

Fe

Designed by Wen

Designed by EI

0 10 20 30 40 50
0

10

20

30

40

50

C
o

Al

0 10 20 30 40 50
0

10

20

30

40

50

C
u

Cr

0 10 20 30 40 50
0

10

20

30

40

50

N
i

Fe

0 10 20 30 40 50
0

10

20

30

40

50

C
o

Al

0 10 20 30 40 50
0

10

20

30

40

50

C
u

Cr

0 10 20 30 40 50
0

10

20

30

40

50

N
i

Fe
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analysis, and feature importance ranking. The classification and regression
modules are used to predict the material properties, which integrate dif-
ferent AI models. The surrogate optimization module encompasses GA,
PSO, DE, SA, and NSGA-II to accelerate the material discovery with single
or multiple objectives. The active learning module offers various material
design strategies such as EI, PI, AEI, UCB, and EHVI to direct experiments.
The core elements and detailed architecture can be found in Fig. 1.

Data availability
More raw details and tutorials are also available from Supplementary
Information. The program and source codes of the MLMD platform are
available (https://github.com/Jiaxuan-Ma/MLMD).
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