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A deep learning approach for quantum
dots sizing from wide-angle X-ray
scattering data
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Disclosing the full potential of functional nanomaterials requires the optimization of synthetic
protocols and an effective size screening tool, aiming at triggering their size-dependent properties.
Herewedemonstrate the successful combination of awide-angle X-ray total scattering approachwith
a deep learning classifier for quantum dots sizing in both colloidal and dry states. This work offers a
compelling alternative to the lengthy process of deriving sizing curves from transmission electron
microscopy coupled with spectroscopic measurements, especially in the ultra-small size regime,
whereempirical functions exhibit larger discrepancies. Thecoreof our algorithm is anall-convolutional
neural network trained on Debye scattering equation simulations, incorporating atomistic models to
capture structural and morphological features, and augmented with physics-informed perturbations
to account for different predictable experimental conditions. The model performances are evaluated
using both wide-angle X-ray total scattering simulations and experimental datasets collected on lead
sulfide quantum dots, resulting in size classification accuracies surpassing 97%. With the developed
deep learning size classifier, we overcome the need for calibration curves for quantum dots sizing and
thanks to the unified modeling approach at the basis of the total scattering method implemented, we
include simultaneously structural and microstructural aspects in the classification process. This
algorithm can be complemented by incorporating input information from other experimental
observations (e.g., small angle X-ray scattering data) and, after proper training with the pertinent
simulations, canbeextended toother classesof quantumdots, providing thenanosciencecommunity
with a powerful and broad tool to accelerate the development of functional (nano)materials.

The development of fast and reliable sizing methods for colloidal quantum
dots (QDs) is of paramount importance to fully exploit their size-tunable
optoelectronic properties1–4. In this regard, there is a general consensus on
the use of the so-called “sizing curves”, which plays a crucial role in opti-
mizing synthetic protocols and investigating size-dependent properties5.
Typically, these sizing curves are empirical polynomials6–9 or inverse size-
dependent terms added to the bulk bandgap5,10–13, mostly describing the
trend of photophysical properties with size. They establish phenomen-
ological relations between the average sizes of QDs, usually determined by
transmission electron microscopy (TEM), and their absorption band edge
energy, whose values are determined by the quantum confinement effect,
which is particularly relevant for the size regimes investigated in syntheses
and applications1. However, TEM has important critical issues, mainly

related to inadequate statistics5 and underestimation of ultrasmall sizes, due
to their low contrast with respect to the background signal14. Furthermore,
TEM experiments are performed under vacuum and on dry QDs, whereas
the corresponding spectroscopic data are collectedon colloidal samples; this
effect alone can potentially modify the sample by undesired ligand deso-
rption and its size estimate if self-assembly phenomena trigger size-selection
mechanisms15. Due to these intrinsic limitations of electron microscopy,
small angle X-ray scattering (SAXS) has recently emerged as an alternative
or complementary tool todefine calibration curves forQDs sizing12–14. SAXS
allows overcoming some of the TEM drawbacks, such as limitations in
sample representativeness, and collecting data directly on colloidal sus-
pensions. However, SAXSmethods are not very routinary when it comes to
data analysis, primarily due to the impact of QDs aggregation or self-
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assembly on SAXS data and to their sensitivity to (monodisperse) nano-
crystals faceting, the reconstruction of which requires a precise description
of fine morphological features of the sample16,17.

Despite their broad applicability to many QD categories, recent articles
have drawn attention to significant discrepancies among empirical sizing
expressionsderived fromdifferentdatasets for the sameclassofmaterials5,12,14.
These differences have been attributed to either inaccurate size determination
from TEM (related to the poor contrast between small particles and the
underlying carbon support), or to unresolved band edge transitions (causing
large errors in thefirst excitonic peakdetermination), andultimately resulting
in incomparable size estimation among different laboratories14.

A recent attempt to overcome the need for empirical calibration curves
and toprovide aphysicallymeaningful tool forQDs sizinghasbeen reported
by Hens and coworkers12. They provide a semiempirical expression to
describe quantum size effects for a large number of semiconductor nano-
crystals based on the band gap of the bulk material, with a single fit para-
meter, employing a correction for the impact of nonparabolic energy bands
on the QDs band gap. However, this approach, which considers quantum
confinement as the sole origin of band gap tuning in QDs, has some lim-
itations when structural aspects (e.g. lattice expansion/contraction, struc-
tural defects, octahedral rotations, etc.) play a role16,18–20.

Over the past decades, total scattering methods, in particular those
based on the Debye Scattering Equation (DSE) and operating in reciprocal
space, have been established as essential tools for characterizing the struc-
ture, microstructure and morphology of nanocrystals15,21–23, including
ultrasmall QDs16,17,24. Although wide-angle scattering-based techniques are
primarily sensitive to the atomic-scale structure of materials, reciprocal
space total scattering methods provide robust information on multiple
length scales, in particular if nanocrystalline materials are considered25.
These goals are achieved by combining a data-collection strategy favoring

high-angular resolution inQ-space26 (whereQ = 4π sinθ/λ is themagnitude
of the scattering vector), a strict data-reduction protocol and a unified
structural and morphological modeling approach, starting from atomistic
models and allowing the DSE to account for both Bragg and diffuse scat-
terings on equal footing27. This is particularly relevant for ultrasmall and/or
defectiveQDs forwhich the peak broadening and diffuse scattering induced
by size effects cannot be easily separated from those arising from structural
defects. In such cases, a comprehensive modeling approach that incorpo-
rates all these features into atomistic models becomes necessary to extract
quantitative and accurate structural and microstructural information17.

Nevertheless, constructing reliable and customized atomistic models,
to be optimized against the experimental data to extract structural and
microstructural parameters, remains a highly challenging task and often
poses a bottleneck for wide-angle scattering-based methods28–30. To over-
come this limitation, several semi-automated “mining” approaches have
been recently developed, within the framework of real-space total scattering
methods28,31–38. Inspired by these studies, we tackle the challenge of devel-
oping reliable, efficient, and user-friendly methods for QDs sizing, using a
combination of reciprocal spacewide-angle X-ray scatteringmethods based
on the DSE and a convolutional neural network (CNN) that provides
physically interpretable results.

In this work, we develop and apply this tool to lead-chalcogenide
binary QDs, which serves as a benchmark system. Indeed they have been
extensively characterized within the DSE approach, which has provided a
well-established knowledge about their structural and morphological
features16,24. Moreover, a notable aspect of these materials is the absence of
planar defects, a high density of which typically challenges the determina-
tion of nanocrystal sizes by using wide-angle scattering methods17,19,21. The
proposed supervised deep learning (DL) approach enables direct sizing of
colloidal QDs within 3–5 s on standard personal computers (details are

Fig. 1 | Library of DSE simulations and physics-
augmented data. a Schematics of the pipeline for the
generation and standardization of the DSE X-ray
pattern simulations to feed the CNN classifier. The
standard workflow for training and testing the
algorithm using DSE simulations is represented by
blue arrows, while the red arrows show the path
followed for additional testing (Robustness test)
using newly created datasets. b DSE X-ray simula-
tions of PbS QDs of average diameters of 3.0 nm
(bottom line) and 8.0 nm (top line) generated with:
relative lattice strain of +0.51% (red trace),−0.25%
(blue trace) and 0% (green trace). The strain is
computed as (a-aB)/aB × 100 (aB = 5.934(1) Å).
Residual traces at the bottom correspond to
−0.25%–0% and +0.51%–0% pattern differences;
relative size dispersions of 5% (blue trace) and 20%
(red trace). The size dispersions of the population of
spherical nanocrystals, modeled as standard devia-
tions of lognormal size distribution functions, are
shown in the insets as histograms along with the
number fraction of each cluster in the population;
QDs concentrations in toluene (w/w = 7%-magenta,
20%-green, 44%-blue, 100%-red traces) used for
training the CNN; signal to noise ratio (SNR) equal
to 14 (red trace) and 122 (blue trace), which follows a
Poisson distribution around the simulated values26.
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given in the Methods section), without the use of calibration curves, and
employing wide-angle X-ray scattering data, easily accessible via synchro-
tron and even laboratory measurements, as sole input information. The
simulated data used to train the CNN are modified with physics-informed
data augmentation, through the implementation of experimental artifacts
that perturb the synthetic X-ray scattering patterns. Importantly, our
algorithm does not require any prior information on the material or strict
requirements on the collected Q-range, and datasets of both colloidal and
dry samples can be used, without significant loss of accuracy even down to a
minimum Qmax∼4 Å−1. Therefore, the presented automated tool can be
readily used for real-time sizing of PbS QDs via wide-angle X-ray patterns,
even from diluted colloidal suspensions, within the limitations of the Q-
range and signal-to-noise ratio typically encountered in in-situ and in-
operando diffraction experiments or from fast data acquisition using a
conventional laboratory diffractometer. Additionally, it can serve as a rapid
screening tool for the optimization of synthetic protocols. Furthermore, the
proposed method can be easily extended to other classes of nanocrystals,
allowing non-experts in crystallography and X-ray diffraction (XRD) to use
the proposed automated workflow to generate the required DSE pattern
libraries used to train the CNN classifier.

Results and discussion
Debye Scattering Equation (DSE) simulations for training and
testing datasets
In this work, similar to other DL-based methods, we treated the X-ray
scattering dataset as a holistic profile, analogous to an image. To train and
test our model we first created a library of synthetic wide-angle X-ray total
scattering (WAXTS) patterns computed by theDSE, following a bottom-up
strategy, as illustrated in Fig. 1a (1. DSE simulations) and detailed in the
Methods39. The use of simulated data, for themodel training ismotivated by
practical considerations: as demonstrated elsewhere in a similar case of
study30, the accuracy of the DLmodel is highly dependent on the size of the
training set, and reaching a plateau requires a substantial amount of data. At
this stage, an initial set of 1292DSE simulations was created, by considering
instrumental conditions that are rather standard for QDs studies at the
Material Science beamline of the Swiss Light Source (0.5°–84° 2θ range, step
0.0036°, wavelength = 0.56Å) and a combination of structural and micro-
structural parameters of lead sulfide (PbS) QDs, as follows: (i) for each size,
19 isotropic lattice deformation were included (from−0.25% to+0.51% of
the PbS bulk lattice parameter 5.934(1)Å40, with a step of 0.04%), to account
for size/ligands induced strain effects16; (ii) average diameters of PbS QDs
from 2.0 to 10.0 nm (in steps of 0.5 nm), which encase the typical range of
interest of strong quantum confinement regime for most common QDs12.
This size range covers 17 classes, each of them combined with four different
measures of size dispersion, in the form of standard deviations of a log-
normal size distribution function (relative size dispersions of 5, 10, 15, 20%,
considering the range of interest forQDs applications). Figure 1b showcases
the effect of different lattice strains (−0.25% and+0.51% vs the bulk value,
see Methods) and relative size dispersions (5% and 20%) on the DSE
simulations of 3.0 nm and 8.0 nm PbS QDs.

Physics-informed DSE datasets augmentation
Typically,QDs are stored as colloidal suspensions of an organic solvent, and
the WAXTS experiments can be performed either in capillaries filled with
colloids or in dry conditions, by drop-casting or spin-coating the colloidal
suspension on a flat substrate, or by letting them dry in open capillaries by
solvent evaporation.

To bridge the gap between simulated patterns and real datasets, a
physics-based data augmentationwas implemented (2. DataAugmentation
in Fig. 1a). This augmentation was obtained by combining each of the 1292
DSE simulations with (i) experimental WAXTS signals of two solvents
commonly used for post-synthesis storage of QDs (hexane and toluene),
properly rescaled to the PbS QDs trace to account for variations in the
concentration of nanocrystals in the solvent. Four different QDs con-
centrations (7%, 20%, 44%, 100% in w/w% - where 100% indicates the dry

condition) were treated. The corresponding DSE simulations are shown in
Fig. 1b; (ii) four noise levels, chosen to represent the average signal/noise
ratios (SNR) of 14, 24, 46, and 122 (Fig. 1b), according to a Poisson
distribution26. By applying this augmentation method, 41344 WAXTS
patterns were generated, resulting in an expanded dataset that encompasses
a wide range of experimental conditions.

Before feeding the DSE patterns into the developed CNN, a data
standardization step was implemented, corresponding to point 3. Data
Standardization in Fig. 1a, to ensure a constant number of equispaced
points, and a standardized integral area underlying the simulations. This
pre-processing stage is aimed at obtaining uniformly scaled input datasets
for both the training and the testing workflows shown in Fig. 1. The data
standardization is applied to all input datasets, including simulated X-ray
patterns and experimental data, and involves the following operations: (i)
the x-scale of the X-ray patterns is converted from 2θ to Q, being Q ¼
4π sin θ=λ independent from the wavelength used for the experiments or
simulations. This conversion is particularly convenient when dealing with
synchrotron data, which can be collected with a wide range of different
photon energies. (ii) A specific Q-range (1.0 Å−1 ≤Q ≤ 15.0 Å−1) is selected
from the input data. This approach eliminates the need for manual inter-
vention to specify a range of the input vector for the DL model. If the Q-
range of the input data falls outside the default choice of
1.0 Å−1 ≤Q ≤ 15.0 Å−1, it is automatically adjusted: if longer, it is cut tofit the
default range, if shorter,missing intensities are padded by adding a constant
value obtained by averaging the last five intensity points of the trace (to
mitigate fluctuations due to the noise). Therefore, the pre-selectedQ values
allowamultitudeof different experimental ranges to be accommodated. (iii)
The input pattern is sampled, through a spline interpolation, to have a final
number of 5004 equispaced points in the selected Q-range
(1.0 Å−1 ≤Q ≤ 15.0 Å−1), with a Q-step of 0.0028 Å−1 (~0.016° in 2θ
degrees). This step is particularly convenientwhendealingwith synchrotron
data which are collected with high angular resolution and stored as several
thousands of data points. iv) Each calculated pattern is rescaled to have the
same integral area, in order to deal with comparable signals, which may
significantly vary depending on the experimental conditions.

According to this strategy, a 1D vector with dimensions 5004 × 1 × 1 is
generated from each DSE simulation (intensities only) of the database; these
vectors are all collected in a comprehensivematrix used as input for theCNN.

The architecture of thefinalCNNclassifier, inspired by that reported in
ref. 30, consists of an input layer, followed by five convolutional layers, a
Global Average Pooling Layer (GAP), and an output layer, as detailed in the
Methods and in the Supplementary Information (Supplementary Methods
and Supplementary Fig. 1). The final model presented in this work was
trained on (randomly picked) 80% of the total DSE simulations (10% of
which represents the validation set), and the remaining 20% of the dataset
was used for testing. The cross-entropy loss function and accuracy curves
across epochs for both the training and validation sets are reported in
Supplementary Fig. 2.

We initially trained and tested the CNN using a single solvent (either
hexane or toluene), whereas we evaluated the overall performances on a
combined dataset, consisting of simulations with both solvents added. The
outcomes revealed a poor performance of the algorithm under the afore-
mentioned conditions, with accuracies as low as 60% (details are given in
Supplementary Table 1). This result suggests a crucial influence of the type
of solvent in accurately determining the size of particles in suspension, as
highlighted in Supplementary Fig. 3. Therefore, we built the final expanded
dataset by incorporating DSE traces that combine PbS QDs simulations
with both toluene and hexane traces (41344 patterns). These are indeed the
solvents commonly used for storage of colloidal suspensions of nanosized
oleate-capped II-VI and IV-VI semiconductors.

To assess the robustness of thedevelopedDLmodel across experimental
conditions that were not accounted for during training, additional datasets
were built for testing (Robustness tests in Fig. 1a). In this regard, a portion of
the DSE simulations generated at point 2 in Fig. 1a (27% of the physics-
augmented database), is randomly picked up and coupled with variations in
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Qmax values (5 reduced ranges, down to 2.50 Å
−1) andQ-step (20 subgroups),

down to 0.056Å−1 (corresponding to 251 points only in the DSE pattern);
moreover, an extra subset is generatedby encodingnewsolvent contributions
(corresponding to 11 new QDs concentrations, down to 2 w/w%).

Convolutional Neural Network (CNN) as QDs size classifier
The CNN was trained and tested on the augmented dataset, containing
41344 simulated patterns, achieving accuracies exceeding 97%.

The confusion matrices of this run (Supplementary Fig. 4), resulting
from the fivefold cross-validation (as detailed in the Methods and Supple-
mentary Methods), were evaluated to visualize and summarize the perfor-
mance of the model, together with the histograms reporting the error
distribution throughout the 17 classes (Fig. 2a) and for the QDs con-
centrations (in w/w%) used for training/testing the model (Fig. 2b).

The size prediction accuracy (computed as the ratio of correct size
classifications to the total number of predictions) decreases toward larger
QD sizes, as shown in the confusionmatrices of Supplementary Fig. 4. This
result is further clarified by the analysis of the labels incorrectly assigned
during testing, as illustrated in Fig. 2 and Supplementary Fig. 5, which
provide a physical interpretation of the results obtained from theDLmodel.
The number of errors of the CNN classifier rises with increasing PbS dia-
meter (Fig. 2a), rather thanbeing concentratedat the smaller sizes, forwhich
themore significant peakbroadening and solvent contribution (especially in
highly diluted conditions) smear out themain diffraction peak features (Fig.
2c). In contrast, for the larger sizes, the Bragg peaks are quite sharp andwell-
defined, butmore similar among adjacent classes (Fig. 2c). This observation
emphasizes the limits in the applicability of the method, and in general of
WAXS techniques, when dealing with larger average sizes, especially when
coupled with low angular resolution instrumental setups due to the dom-
inance of instrumental over sample features on the diffraction peaks26. On
the other hand, an important implication of these results is the ability of the
developed DL classifier to discriminate ultrasmall sizes (above reasonable
dilution/SNR), typically one of themost challenging tasks at the nanoscale14.

To further analyze the effect of colloids dilution on QDs size classifi-
cation, we evaluate the DL model by sorting the classified traces in the four
QDs concentrations used for data augmentation (w/w = 7%, 20%, 44%,
100%), each concentration encompassing all sizes (Fig. 2b and Supple-
mentary Fig. 5).

Very promising results are gained for the dry condition (w/w = 100%)
for which no errors are found in size predictions. For the other

concentrations, the number of misclassified elements positively correlates
with the colloid dilution. This is quite an encouraging result, considering
that the QDs colloidal suspensions can be easily drop-casted or spin-coated
on a flat substrate, allowing the measurements to be performed in dry
conditions using the typical lab XRD instrument in Bragg-Brentano geo-
metry. It should be noted that (pseudo)dry conditions can always be
obtained (even for QD colloidal suspensions) by subtracting the solvent
scattering signal from the total scattering of the sample collected under the
same experimental conditions. This is indeed a very convenient work-
around, especially when dealing with solvents other than those used to train
the CNN (toluene and hexane).

QDs size classification versus CNN regression model
To compare the performance on the same task, we also developed an
alternative regression model for size prediction using a tailored CNN
architecture (described in the Supplementary Methods) and the same
database of 41344 augmented DSE simulations for training, validation, and
testing. Supplementary Fig. 6 shows the mean square error loss function
over epochs for both the training andvalidation (10%of the original training
set) sets, along with the results of the predictions generated by this alter-
nativemodel. Thenumber of errors (calculatedas thenumber of predictions
deviating more than ± 0.25 nm from the corresponding true values, in line
with the bin size of 0.50 nm used for size classification) is approximately
twice that of the size classifier (accuracy ∼91%). This result is attributed to
the intrinsic discrete nature of QDs well reproduced by the proposed ato-
mistic model (see details in the Method section), which makes the size
classifier more suitable than the regression model to the scope of deter-
mining the QDs size from WAXS data. On the other hand, a comparable
error distribution to the classifier is found over sizes (Supplementary Fig. 6)
and colloids concentration (Supplementary Fig. 7) when using the regres-
sionmodel, highlighting that this feature is primarily due to the information
encoded in the input data rather than to the applied model.

Evaluating the robustness of the size classifier
We assessed the performance of the developed model in predicting the size
of QDs while dealing with experimental artifacts different from those
accounted for in the training set. To perform these robustness tests on the
formerly trainedmodel, we created additional datasets by varying theQmax,
Q-step, and QDs concentrations independently, within limits that were
considered experimentally reasonable.

Fig. 2 | QDs size classifier. Error distribution
among the different size classes (a) and as a
function of colloid dilution (b) cumulative for all
sizes. Errors are calculated as the fraction of mis-
classifications during the testing phase with respect
to the total number of predictions. This analysis
provides insights into how the misclassifications
are distributed across the 17 size classes (a) and
colloid dilutions (b). c DSE simulations of PbS
QDs with different average sizes, highlighting a
progressive increase in the similarity of spectral
features as the average diameter increases from
small to large QDs; the Clark distance metric
(dCl, very efficiently discriminating changes due to
size effects)49 is computed between representative
peaks shown in (c) (1.5 Å−1 ≤Q ≤ 2.5 Å−1) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i;¼1 ðIsmall
i � Ilargei Þ

���
���=ðIsmall

i þ Ilargei Þ
h i2r

, Ii

being the intensity at Qi for the two adjacent sizes.
The smaller the dCl distance, the more similar the
signals. The same trend is obtained by comparing
the simulated full patterns
(1.0 Å−1 ≤Q ≤ 15.0 Å−1).
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The developed model was fed with the new DSE simulations without
retraining, and the accuracy in the classification of the PbSQDs size, defined
as the ratio of correct size classifications to the total number of predictions,
was computed as a function of the experimental parameters explored.

Firstly, we considered the robustness against the variation of the Q-
range of the pattern simulations, here adjusted as variable Qmax depending
on the experimental setup.Data collected eitherwith laboratory instruments
(typical Qmax ∼ 7 Å−1) or at synchrotron facilities with tunable Qmax

(typically up to 12–15 Å−1 in high-angular resolution configurations41) are
therefore considered. To this aim, we explored reduced ranges of that ori-
ginally used for training themodel (Qmin = 1.0 Å−1 andQmax = 15.0 Å−1), by
selecting five representative values in between. Figure 3a displays different
values of Qmax each exemplified by color-coded vertical dashed lines, with
the corresponding accuracy, in terms of model prediction, reported in Fig.
3b. In contrast towhat is observedwith real space total scatteringmethods36,
applying Qmax truncation to reciprocal space data does not lead to irre-
parable signal distortions across the entire data range, instead, it results in a
limited subset of information, contingent upon the explored range.

Figure 3b shows that the accuracy of our model classifications remains
consistently above 97% until a remarkably low Qmax value of 4.4 Å−1 is
reached, a particularly relevant result considering limited experimental
conditions, such as those accessible for example during in-situ/in-operando
experiments. Below this threshold, a significant decay in the model’s per-
formance is observed, with the accuracy dropping to 48% atQmax = 2.5 Å

−1,
emphasizing the critical role of the low-Q data in accomplishing the targeted
task. Indeed Qmin variation (tested at Qmin = 1.7 Å−1 and Qmax = 15.0 Å−1,
not shown in Fig. 3 for the sake of clarity) produces an effect even if low-Q
Bragg peaks are included in the simulations causing a substantial drop in the
performances of the model down to 83% (Supplementary Fig. 8). It is
noteworthy that the observed decrease in accuracy is somewhat dependent
on the padding strategy employed: as reported in Supplementary Fig. 9,

when a zero-filling approach is used to compensate for missing intensities
within the referenceQ-range, the accuracyof size predictions associatedwith
Qmin = 1.7 Å

−1 andQmax = 15.0 Å
−1 drops to 41%. In addition, slightlyworse

performances are associated with the same Qmax cutoffs shown in Fig. 3,
probablydue to significant changes in the overall scale of theX-ray scattering
traces as a result of integrating the area over smallerQ-ranges. However, this
effect is significantly mitigated by the padding strategy presented in Fig. 3,
where themissing intensities are replaced by the value averaged over the last
five intensity points, thus ensuring substantial invariance of the integrated
patternarea.The errordistributionanalysis for the selectedQ-ranges ofFig. 3
is reported in Supplementary Fig. 8, showing a higher accumulation of
misclassifications at larger QDs sizes down to Qmax = 4.4 Å−1. The drops in
accuracy observed for the Q-ranges 1.0–2.5 Å−1 and 1.7–15.0 Å−1 are
accompanied by a general increase in the number of errors across all classes,
indicating that the limitations imposed by these specific Q-ranges have a
significant impact on the accuracy of the size classifier.

To further evaluate the tradeoff between accuracy and XRD data col-
lection times, we investigated the impact of dataset coarsening on QDs
sizing using the trainedmodel (Fig. 3c, d and Supplementary Fig. 10). In Fig.
3c, we report representative DSE simulations of 8.5 nm colloidal QDs (10%
of relative size dispersion)with increasedQ-step from the bottom to the top.

Data coarsening was achieved by downsampling the original physics-
augmented data used for training from 5004 points (Q-step = 0.0028 Å−1)
down to 251 points (5% of the original number of points, Q-
step = 0.056Å−1), while preserving the Q-range. The accuracy in the size
prediction was found to gradually decrease as the input data was coarsened,
which corresponds to a decrease in both the number of observations and
angular resolution. Remarkably, accuracies higher than 90%were preserved
even when reducing the data points down to 25% of the original quantity in
the range 1.0 Å−1 ≤Q ≤ 15.0 Å−1 (Fig. 3b bottom, 1251 points, Q-
step = 0.011Å−1), and when data coarsening is applied to the reduced

Fig. 3 | Robustness test and accuracy for size
classification. Q-range modification: (a) simulated
DSE X-ray pattern of 3.0 nm PbS colloidal QDs in
toluene, the dashed vertical lines represent the Qmax

cut considered to estimate the robustness of the
trained model. b Accuracy for size classification of
PbS colloidal QDs, at different Qmax and the same
Qmin = 1.0 Å−1. The colors of the markers corre-
spond to the dotted vertical lines in (a), indicating
the associated Qmax. Datasets coarsening:
c simulated DSE X-ray patterns (y-offset for clarity)
of representative 8.5 nm PbS colloidal QDs in
toluene, and data coarsening from bottom (yellow
trace 5004 points, Q-step = 0.0028 Å−1) to top (dark
red trace 251 points,Q-step = 0.056 Å−1). A reduced
Q-range is shown in the figure for the sake of clarity.
d Accuracy for size classification of PbS colloidal
QDs (x-axis in logscale) upon data coarsening (dif-
ferent Q-steps) at two representative Q-ranges: top
1.0 Å−1 ≤Q ≤ 5.0 Å−1 (typical XRD lab. conditions,
green markers); bottom: 1.0 Å−1 ≤Q ≤ 15.0 Å−1

(typical synchrotron wide-angle X-ray scattering
setup). QDs dilution: e simulated DSE patterns of
3.0 nm PbS colloidal QDs in toluene, characterized
by different colloids concentrations, from
w/w = 100% (black trace) down to w/w = 2% (red
trace). A reduced Q-range is shown in the figure for
the sake of clarity. fAccuracy for size classification of
PbS colloidal QDs, considering the different colloid
concentrations indicated on the x-axis. The colors of
the markers correspond to the DSE simulations
shown in (e).
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1.0 Å−1 ≤Q ≤ 5.0 Å−1 range for dried PbSQDs (Fig. 3b top, greenmarkers),
corresponding to an angular resolution of∼0.2° with aCu(Kα) X-ray source
andmimicking the conditions of a typical XRD laboratory experiment. The
latter result is of prime relevance in view of amassive application of this size
classifier to XRD laboratory data, well matching the conditions of this
robustness test.

The corresponding error analysis (Supplementary Fig. 10) indicates a
more pronounced error accumulation at PbS sizes larger than 5 nm, while
increasing the 2θ/Q-step of the input data. This observation can be attrib-
uted to the limited number of points in the coarsened dataset, which results
in the smearing of the input information, more effective in the presence of
sharper Bragg peaks, as it is for larger QDs sizes.

Reducing PbS QDs concentrations in the hexane/toluene colloidal
suspensions, simulated by the decreasing of the scales ratio of PbS/solvent
data in Fig. 3e, has a significant impact on the prediction performance, due
to the smearing of the information content of theXRD traces, at constantQ-
range (1.0 Å−1 ≤Q ≤ 15.0 Å−1) and number of points (5004). Interestingly,
similar to the Q-range truncation effect, the developed model preserves its
ability to predict QDs size with an accuracy exceeding 90% across a wide
range of concentrations (Fig. 3f), including values different from those used
in the training set. It remains accurate down to concentrations as low as w/
w = 6%, which is close to the minimum value employed in the training set
(w/w = 7%). A larger number of errors starts to accumulate towards smaller
sizes when colloid concentrations lower than 6% are reached (Supple-
mentary Fig. 11). This result is because the size features encoded in theBragg
peaks width and shape become particularly blurred at low PbS/solvent
ratios, as highlighted in Fig. 3e for 3 nm QDs size, thus increasing the
uncertainty in size prediction for smaller QDs.

QDs sizing from experimental wide-angle X-ray total scattering
(WAXTS) data
To validate the applicability of the developed size classifier to real cases, we
applied it to QDs direct sizing by using experimental scattering data as sole

input information. Experimental synchrotron data of PbS QDs in the
3–7 nm size range (Fig. 4a)were collected as colloidal suspensions in hexane
or toluene and underwent the appropriate data reduction process described
in the Methods section. Accurate DSE-based modeling was performed to
extract detailed structural and microstructural information, as reported
elsewhere16,24. It should be noted that the synchrotron setup used for this
data collection ensures an adequate angular resolution, at the expense of a
more limitedQ-range (Qmax∼15–17 Å−1). Nevertheless, when dealing with
larger nanocrystal sizes (exceeding∼20–30 nm, out of the scope of this
work) the potential impact of additional instrumental broadening on the
WAXS data must be carefully evaluated26.

Additional laboratory XRD data have been collected in flat plate
sample geometry, upon drop-casting of as-synthesized QDs and after a few
months of aging. Figure 4b showcases a selectionof these datasets. It isworth
noting the much more restricted accessible Q-range than in synchrotron
data, and that the peak intensities ratio of laboratory XRD data may differ
significantly from those obtained in colloidal suspensions shown in Fig. 4a.
This discrepancy is attributed to preferred orientation effects (texture) that
occur when faceted QDs are deposited and dried on a flat substrate16. Our
previous studies have shown that PbSQDs exhibit preferential alignment on
{110} facets in fresh samples and {111}-{100} upon aging16, due to a pro-
gressive morphological evolution from a rhombic dodecahedral to a
cuboctahedral shape. This less-than-perfect spherical morphology of QDs
has important consequences when collecting XRD data from flat samples,
resulting in alteredpeak intensity ratios, andpartially hampering a thorough
data analysis. This case further highlights the need for a modeless tool that
can effectively extract size information from such type of data.

At this aim, we tested the size classifier developed in this work, on both
texture-free synchrotron and textured laboratory data, without additional
training (Fig. 4c and Supplementary Tables 2, 3). Very small deviations
between the predicted and the reference average sizes (determined through
DSEdatafittings) are found.These discrepancies are estimatedonaverage at
0.11 nm for synchrotron (Supplementary Table 2) and 0.25 nm for

Fig. 4 | QDs direct sizing from experimental data.
aWAXTS synchrotron data of PbS colloidal QDs in
toluene (magenta trace) with different average dia-
meters (as estimated byDSE datamodeling reported
in ref. 16). b Laboratory XRD data of PbS QDs
deposited and dried on a monocrystalline silicon
zero-background plate. c A comparison between
DSE-estimated (DDSE) and CNN-predicted (DCNN)
PbS colloidal QDs average diameters, showing an
almost perfect linear correlation with y ∼ x. d PbS
empirical sizing curves (purple, red, and blue dotted
lines)14,42,43, and the semiempirical equation by Hens
and coworkers reported in ref. 12 (gray solid line),
showing the relationship between the first excitonic
peak energy and the QDs diameter. The green
squares represent the PbS reference diameters (D)
determined through data fitting with the DSE (x-
error bars are the e.s.d.’s of the associated lognormal
size distribution functions, measuring the size dis-
persions), while the blue circles are the size predic-
tions obtained with the DL size classifier developed
in this work.
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laboratory XRD data (Supplementary Table 3), both consistently less than
0.50 nm, that is the step size employed during the model training, repre-
senting indeed the limiting factor in the prediction performance. It is worth
mentioning that employing a finer step size could potentially exceed the
resolution of our method in the present case of study, particularly when
coupled with the narrow-size dispersions typically exhibited by colloidal
QDs, prepared with tailored syntheses. This limitation arises from the size
discretization limit of the atomistic model construction database, which is
defined by the diameter of the sphere having a volume equivalent to a single
PbS primitive unit cell (0.46 nm, as detailed in the Methods).

The slightly worse performance of the size classifier when dealing with
laboratory XRD data can be mostly attributed to the preferred orientation
effects, which partially alter the intensity distributions “seen” by the model.
Nevertheless, the method still exhibits very good accuracy even under these
varied conditions. The accurate prediction of QD size dealing with both
synchrotron and laboratory experimental data is highlighted in Fig. 4c in
which the reference DSE sizes vs. the CNN classifier predictions are
reported, showing a very good linear correlation at y∼x. Once again, worse
performances are obtained with the regressionmodel when applied to both
synchrotron and laboratory experimental data, as outlined in Supplemen-
tary Fig. 12 and Supplementary Tables 4, 5, likely attributed to the limited
size distribution of the samples analyzed16, emphasizing their inherent size
discretization features favoring a more ‘rigid’ classification model, rather
than a regression.

Figure 4d illustrates the relationship between the 1st excitonic peak
energy and the diameter of PbS QDs using various empirical sizing curves,
from TEM/SAXS (Tisdale and coworkers, red dashed line)42, SAXS (Hens
and coworkers, purple dashed line)14, andWAXS (Ozin and coworkers, blue
dashed line)43, some of them sourced from ref. 5. The gray solid line in Fig.
4d represents the generalized semiempirical sizing function recently pro-
posed by Hens and coworkers12, which incorporates a correction for non-
parabolic energy bands on theQDs band gap. This sizing curve for PbSQDs
has been reproduced by using 45 nm as Bohr diameter, 17.4 for the (high
frequency) dielectric constant, and 0.42 eV as optical band gap, as reported
in ref. 12.Reference sizes (green squares)16,24, aswell as predictions generated
by our CNN classifier (blue circles) are also displayed. As noted in ref. 5, the
empirical sizing curves for PbS exhibit the largest discrepancies at smaller
QD sizes, likely stemming from the strong confinement regime in which
lead chalcogenides reside. For this reason, PbS QDs demonstrate a more
pronounced dependence of the band gap on their size compared to other
binary IV-VI QDs5, emphasizing the potential for sizing errors and high-
lighting the need for robust methods for accurately determining the ultra-
small sizes of PbSQDs.On the other hand, our experimental results, derived
from DSE data modeling and the CNN classifier presented in this work,
nicely match the semiempirical sizing function derived by Hens and
coworkers12 which takes into account precise physico-chemical
considerations12. We further highlight the excellent match with the
empirical curve by Ozin and coworkers from XRD data and conventional
size analysis based on the approximated Scherrer equation, suggesting that
peakbroadening inPbSQDsoriginatesmainly fromfinite-size effects, and it
is not affected by structural defects.

In this work, we have developed aDLmodel that enables fast, accurate,
and fully automated sizing ofQDsbyusingwide-angleX-ray scattering data
as sole input information, and without the need for calibration curves,
paving the way for alternative AI-based methods for nanocrystals
characterization.

Wehave addressed several experimental challenges by implementing a
physically meaningful data augmentation, which enhances the flexibility of
the model to handle extreme conditions encountered in experiments, such
as low QDs concentrations and SNR for colloidal suspensions, resulting
from rapid data collection or limited material availability.

We have shown that the proposed approach exhibits excellent per-
formance (accuracy exceeding 90%) even under untrained experimental
conditions such as a very limited Q-range of the input data (Qmax ∼4 Å−1),
coarsening of the dataset (down to a Q-step of ~ 0.01 Å−1), and reduced

colloidal QDs concentrations (w/w > 6%). This suggests that reasonably
high accuracies can be maintained with significantly reduced XRD data
collection times and/or angular resolutions, particularly for smaller QDs.

The validity of our approach, which combines a CNN classifier with
reciprocal space X-ray scattering methods, is strongly supported by the
excellent agreement observed between our size classifications and those
obtained by accurate DSE data modeling and validated by TEM analysis16.
Moreover, our PbSQDs size predictions align perfectly with the generalized
semiempirical sizing function recently proposed by Hens and coworkers12

which includes a correction for non-parabolic bands on the QDs band gap.
We would like to emphasize that the methodology proposed here is

intended as a simplified and reliable tool for conducting fast-size screening
for QDs in the 2–10 nm range, particularly in situations requiring a fast
response (e.g. during the optimization of synthetic methods); additionally,
our model can be easily integrated into high-throughput experimental
workflows, including in-situ/in-operando experiments, even by non-experts
in crystallography and XRD. Moreover, this pioneering integration of
reciprocal space X-ray total scattering and DL, which allows direct sizing of
QDs both in colloidal and dry states, addresses some of the limitations of
traditional methods based on empirical calibration curves, which are
inherently limited in their general applicability and often hampered by the
different experimental conditions required for TEM (dry samples) and
optical spectroscopy (colloidal QDs). By combining the detailed multiscale
information, from atomic-to-the nanometer length scales, accessible
through the DSE-based approach with the performance predicting cap-
abilities of DL, we intend to promote an original perspective in functional
(nano)material characterization.

The approach proposed here can be extended to predict structural and
microstructural properties of different classes of QDs and semiconductor
nanocrystals fromXRD and total scattering data, provided that appropriate
training is performed. The training process can be easily facilitated using the
comprehensive set of tools developed in this study, which complements the
fast DSE computation from atomistic models of nanocrystals, already
available through the distributed Debussy Suite of programs (https://
debyeusersystem.github.io)39.

Further developments in this field, e.g., addressing the sizing of
nanocrystals characterized by anisotropic morphologies (for which the
different growth directions are not accessible by TEM characterization) or
other atomic precise information (like lattice strains), and complementing
the scattering information with other experimental and computational
methods, are envisaged in the near future.

Methods
Debye Scattering Equation (DSE) simulations from atomistic
models of PbS QDs
The DSE provides the average differential cross-section (or the powder
diffraction pattern) of a randomly oriented powder from the distribution of
interatomic distances between atomic pairs, without any assumption of
periodicity and order27,44:

I Qð Þ ¼
XN

j¼ 1

f jðQÞ2oj þ 2
XN

j > i

f jðQÞf iðQÞTjðQÞTiðQÞojoi
sinðQdijÞ
ðQdijÞ

ð1Þ

where Q = 4πsinθ/λ is the magnitude of the scattering vector, λ is the
radiation wavelength, fi is the atomic form factor of element i, dij is the
interatomic distance between atoms i and j, N is the total number of atoms
and T and o are the thermal atomic displacement parameter and the site
occupancy factor associated to each atomic species, respectively. The first
summation in the above equation includes the contributions of zero dis-
tances between one atom and itself and the second term (the interference
term) the non-zero interatomic distances dij = |ri− rj|.

The DSE-based simulations in the present work were performed using
theDebUsSy Suite of programs39, relying on a two-step approach. In thefirst
step, starting from the structural information encoded in the
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Crystallographic Information File for the bulk material40, we generated
atomistic models PbS QDs of spherical shape and increasing size. To create
each cluster of the database, we generated a lattice of nodes and dressed it
with a rhombohedral unit cell, that is theprimitive unit cell corresponding to
the face-centered cubic structure reported for the bulkmaterial (cell edge of
the primitive cell a = 4.196 Å vs ak = 5.934(1) Å in the fcc structure)40. This
choice is motivated by the advantage of reducing the step size between
adjacent clusters in the population, thus ensuring an increased resolution in
terms of size retrieval16. Accordingly, the final monovariate population of
spherical PbSQDs contains 45 clusters in the size range 0.46–20.87 nmwith
a constant step of 0.46 nm,which corresponds to the diameter of a sphere of
volume equivalent to one PbS primitive unit cell.

Gaussian sampled interatomic distances45 and related pseudo-
multiplicities are calculated from the atomistic models of PbS QDs and
encoded in suitable databases.

The DSE equation is computed in the second step by using the
structural andmicrostructural information detailed in themain text and fed
by the sets of sampled interatomic distances calculated in the first step.

Convolutional Neural Network (CNN) architecture
The architecture of the CNN for size classification developed in this work is
detailed in the Supplementary Information (Supplementary Methods and
Supplementary Fig. 1). Briefly, it consists of an input layer (1D input vector
with dimensions 5004 × 1 × 1), followed by five convolutional layers, with
32kernels each, and strides/kernel sizesof 10, 5, 4, 3, and2units respectively.
After the final convolutional layer, a flattening step is performed by using a
Global Average Pooling Layer (GAP), which replaces conventional fully
connected layers. The use of aGAPoffers advantages in terms of reinforcing
the direct correspondence between feature maps and classes thereby pro-
moting a more physically interpretable classification. Additionally, it helps
mitigate the risk of overfitting46. The final output layer of themodel consists
of 17 nodes, representing the 17 classes of QDs sizes for classification.

This CNN was trained on 80% of the 41344 total simulated data, and
the remaining 20% of the dataset was used for testing. To address potential
overfitting issues, 10% of the training set was used as validation set. Fivefold
cross-validation was performed, to check whether different parts of the
dataset lead todifferent performances (SupplementaryFig. 4), and the cross-
entropy loss function and model accuracy for both the training and vali-
dation sets were monitored across epochs (Supplementary Fig. 2).

The whole training/validation/testing process of the network was
performed in 10min on a GPU-enabled personal computer (Intel Core i7-
12700Hprocessor;NVIDIAGeForceRTX3060 graphics card) and in about
35min on a multi-core processor (AMD EPYC 7301 16-Core processor).
Once the model was developed, the size prediction took 3–5 s, as tested on
the same PCs used for the training and on an Apple Macbook Air with a
1.7 GHz Intel Core i7 processor.

Details on the architecture of the developed neural network imple-
menting a regression method are reported in the Supplementary
Information.

Wide-Angle X-ray Total Scattering (WAXTS) data collection and
reduction
To evaluate the performance of the developed deep learning (DL) model in
predicting the average sizes of PbS quantum dots (QDs), we used experi-
mental datasets from a series of synchrotron WAXTS experiments. These
experiments were conducted directly on colloidal suspensions of fourteen
PbS QDs samples ranging from 3 to 8 nm in size, dispersed in hexane or
toluene, inside borosilicate glass capillaries of 0.7–0.8 mm in diameter. The
data collection was performed at the X04SA-MS Powder diffraction
beamline of the Swiss Light Source (SLS, PSI)47, using a position-sensitive
single-photon counting 1D-detector (MYTHEN-II)48. Two different beam
energies of 25 KeV and 22 KeV were used, and the corresponding opera-
tional wavelengths were precisely determined by measuring a silicon
powder standard (NIST 640d, a0 = 0.543123(8) nm at 22.5 °C) under the
same experimental conditions. All datasets were collected in the 0.5–120°

2θ-range with a step of 0.0036°. Independent scattering curves were
obtained for air and empty capillaries, as well as empty and sample-loaded
direct beam transmissions. These additional measurements were necessary
to perform angle-dependent absorption corrections and subtract any extra-
sample scattering contributions. Inelastic Compton scattering is added in
the DSE simulations as an additional component.

X-ray powder diffraction (XRD) measurements
Laboratory XRD data were collected and analyzed as described in ref. 16
on dried samples. A droplet of each colloidal sample was deposited on
the surface of a silicon monocrystal zero-background plate with the aid
of a micropipette and dried in air within minutes. The XRD diffracto-
grams were collected using Cu-Kα radiation (λ = 1.5418 Å) on a Bruker
AXS D8 Advance Diffractometer equipped with a Lynxeye detector
operating at 40 kV and 40 mA. Occasionally, data were also collected on
a Rigaku Miniflex diffractometer equipped with a DTEX detector
operating at 30 kV and 10 mA. No significant differences were observed
between the two instrumental setups, as contributions of the instru-
mental broadening to peak shapes and widths were negligible in both
cases. Themeasured angular ranges for all datasets are characterized by a
2θmin = 20° and a 2θmax ranging between 80° and 120°, with a common
2θ-step of 0.02°.

Data availability
The training and test simulations used in this work are publicly available
through https://github.com/DeByeUSerSYstem/QDots-sizer. All other data
are available from the corresponding authors on reasonable request.

Code availability
All codes developed and implemented in this work can be found in a public
repository located at https://github.com/DeByeUSerSYstem/QDots-sizer.

Received: 11 October 2023; Accepted: 6 March 2024;

References
1. Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals.

ACS Nano 9, 1012–1057 (2015).
2. Carey, G. H. et al. Colloidal quantum dot solar cells. Chem. Rev. 115,

12732–12763 (2015).
3. de Mello Donega, C. Synthesis and properties of colloidal

heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011).
4. Zhang, J. et al. Colloidal quantum dots: synthesis, composition,

structure, and emerging optoelectronic applications. Laser Photonics
Rev. 17, 2200551 (2023).

5. Kuno, M., Gushchina, I., Toso, S. & Trepalin, V. No one size fits all:
semiconductor nanocrystal sizing curves. J. Phys. Chem. C. 126,
11867–11874 (2022).

6. Jasieniak, J., Smith, L., van Embden, J., Mulvaney, P. & Califano, M.
Re-examination of the size-dependent absorption properties of
CdSe. Quantum Dots. J. Phys. Chem. C. 113, 19468–19474 (2009).

7. deMello Donegá,C. & Koole, R. Size dependence of the spontaneous
emission rate and absorption cross section of CdSe and CdTe
quantum dots. J. Phys. Chem. C 113, 6511–6520 (2009).

8. Lin, S. et al. Surfaceand intrinsic contributions to extinctionproperties
of ZnSe quantum dots. Nano Res. 13, 824–831 (2020).

9. Moreels, I. et al. Composition and size-dependent extinction
coefficient of colloidal PbSe quantum dots. Chem. Mater. 19,
6101–6106 (2007).

10. Moreels, I. et al. Size-dependent optical properties of colloidal PbS
quantum dots. ACS Nano 3, 3023–3030 (2009).

11. Capek, R. K. et al. Optical properties of zincblende cadmium selenide
quantum dots. J. Phys. Chem. C 114, 6371–6376 (2010).

12. Aubert, T. et al. General expression for the size-dependent optical
properties of quantum dots. Nano Lett. 22, 1778–1785 (2022).

https://doi.org/10.1038/s41524-024-01241-6 Article

npj Computational Materials |           (2024) 10:54 8

https://github.com/DeByeUSerSYstem/QDots-sizer
https://github.com/DeByeUSerSYstem/QDots-sizer


13. Toufanian, R., Zhong, X., Kays, J. C., Saeboe, A. M. & Dennis, A. M.
Correlating ZnSe quantum dot absorption with particle size and
concentration. Chem. Mater. 33, 7527–7536 (2021).

14. Maes, J. et al. Size and concentration determination of colloidal
nanocrystals by small-angle X-ray scattering. Chem. Mater. 30,
3952–3962 (2018).

15. Bertolotti, F. et al. Size segregation andatomic structural coherence in
spontaneous assembliesof colloidal cesium leadhalidenanocrystals.
Chem. Mater. 34, 594–608 (2022).

16. Bertolotti, F. et al. Crystal symmetrybreakingandvacancies in colloidal
lead chalcogenide quantum dots. Nat. Mater. 15, 987–994 (2016).

17. Moscheni, D. et al. Size-dependent fault-driven relaxation and
faceting in zincblende CdSe colloidal quantum dots. ACS Nano 12,
12558–12570 (2018).

18. Prasanna, R. et al. Band gap tuning via lattice contraction and
octahedral tilting in perovskite materials for photovoltaics. J. Am.
Chem. Soc. 139, 11117–11124 (2017).

19. Bertolotti, F. et al. Band gap narrowing in silane-grafted ZnO
nanocrystals. A comprehensive study by wide-angle X-ray total
scattering methods. J. Phys. Chem. C 125, 4806–4819 (2021).

20. Frison, R. et al. Magnetite–Maghemite nanoparticles in the 5–15 nm
range: correlating the core–shell composition and the surface
structure to the magnetic properties. A total scattering study. Chem.
Mater. 25, 4820–4827 (2013).

21. Bertolotti, F. et al. A total scattering Debye function analysis study of
faulted Pt nanocrystals embedded in a porous matrix. Acta
Crystallogr. A 72, 632–644 (2016).

22. Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in
cesium lead Halide Perovskite nanocrystals. ACS Nano 11,
3819–3831 (2017).

23. Bertolotti, F. et al. Crystal structure, morphology, and surface
termination of Cyan-Emissive, six-monolayers-thick CsPbBr3
nanoplatelets from X-ray total scattering. ACS Nano 13,
14294–14307 (2019).

24. Bertolotti, F. et al. Ligand-induced symmetry breaking, size and
morphology in colloidal lead sulfide QDs: from classic to thiourea
precursors. Chem. Sq. 2, 1–14 (2018).

25. Ferri, F., Bertolotti, F., Guagliardi, A. & Masciocchi, N. Nanoparticle
size distribution from inversion of wide angle X-ray total scattering
data. Sci. Rep. 10, 12759 (2020).

26. Dengo,N.,Masciocchi, N., Cervellino, A.,Guagliardi, A. &Bertolotti, F.
Effects of structural and microstructural features on the total
scattering pattern of nanocrystalline materials. Nanomaterials 12,
1252 (2022).

27. Bertolotti, F., Moscheni, D., Guagliardi, A. & Masciocchi, N. When
crystals go nano - the role of advanced x-ray total scatteringmethods
in nanotechnology. Eur. J. Inorg. Chem. 2018, 3789–3803 (2018).

28. Anker, A. S. et al. Extracting structural motifs from pair distribution
function data of nanostructures using explainable machine learning.
npj Comput. Mater. 8, 1–11 (2022).

29. Szymanski, N. J., Bartel, C. J., Zeng, Y., Tu, Q. & Ceder, G.
Probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra. Chem. Mater. 33, 4204–4215 (2021).

30. Oviedo, F. et al. Fast and interpretable classification of small X-ray
diffraction datasets using data augmentation and deep neural
networks. npj Comput. Mater. 5, 1–9 (2019).

31. Banerjee, S. et al. Cluster-mining: an approach for determining core
structures of metallic nanoparticles from atomic pair distribution
function data. Acta Cryst. A 76, 24–31 (2020).

32. Yang, L., Juhás, P., Terban, M. W., Tucker, M. G. & Billinge, S. J. L.
Structure-mining: screening structure models by automated fitting to
the atomic pair distribution function over large numbers of models.
Acta Cryst. A 76, 395–409 (2020).

33. Magnard, N. P. L., Anker, A. S., Aalling-Frederiksen, O., Kirsch, A. &
Jensen, K. M. Ø. Characterisation of intergrowth in metal oxide

materials using structure-mining: the case of γ-MnO2. Dalton Trans.
51, 17150–17161 (2022).

34. Kjær, E. T. S. et al. In situ studies of the formation of tungsten and
niobium oxide nanoparticles: towards automated analysis of reaction
pathways fromPDFanalysis using thePearsoncorrelationcoefficient.
Chem.–Methods 2, e202200034 (2022).

35. Liu, C.-H., Tao, Y., Hsu, D., Du, Q. & Billinge, S. J. L. Using a machine
learning approach to determine the space group of a structure from
the atomicpair distribution function.ActaCryst. A75, 633–643 (2019).

36. Lan, L., Liu, C.-H., Du, Q. & Billinge, S. J. L. Robustness test of the
spacegroupMining model for determining space groups from atomic
pair distribution function data. J. Appl. Cryst. 55, 626–630 (2022).

37. Kjær, E. T. S. et al. DeepStruc: towards structure solution from pair
distribution function data using deep generative models. Digit.
Discov. 2, 69–80 (2023).

38. Anker, A. S. et al. Characterising the atomic structure of mono-
metallic nanoparticles from X-ray scattering data using conditional
generative models. Preprint at https://doi.org/10.26434/chemrxiv.
12662222.v1 (2020).

39. Cervellino, A., Frison, R., Bertolotti, F. & Guagliardi, A. DEBUSSY 2.0:
the new release of a Debye user system for nanocrystalline and/or
disordered materials. J. Appl. Cryst. 48, 2026–2032 (2015).

40. Noda, Y., Ohba, S., Sato, S. &Saito, Y. Chargedistribution andatomic
thermal vibration in lead chalcogenide crystals. Acta Cryst. B 39,
312–317 (1983).

41. Chupas, P. J. et al. Rapid-acquisition pair distribution function (RA-
PDF) analysis. J. Appl. Cryst. 36, 1342–1347 (2003).

42. Weidman,M. C., Beck,M. E., Hoffman, R. S., Prins, F. & Tisdale,W. A.
Monodisperse, air-stable PbS nanocrystals via precursor
stoichiometry control. ACS Nano 8, 6363–6371 (2014).

43. Cademartiri, L. et al. Size-dependent extinction coefficients of PbS
quantum dots. J. Am. Chem. Soc. 128, 10337–10346 (2006).

44. Debye, P. Zerstreuung von Röntgenstrahlen. Ann. Phys. 351,
809–823 (1915).

45. Cervellino, A., Giannini, C. & Guagliardi, A. On the efficient evaluation
of Fourier patterns for nanoparticles and clusters. J. Comput. Chem.
27, 995–1008 (2006).

46. Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at https://
arxiv.org/abs/1312.4400v3 (2013).

47. Willmott, P. R. et al. The materials science beamline upgrade at the
Swiss Light Source. J. Synchrotron Radiat. 20, 667–682 (2013).

48. Bergamaschi, A. et al. The MYTHEN detector for X-ray powder
diffraction experiments at the Swiss Light Source. J. Synchrotron.
Radiat. 17, 653–668 (2010).

49. Hernández-Rivera, E., Coleman, S. P. & Tschopp, M. A. Using
similarity metrics to quantify differences in high-throughput data sets:
application to X-ray diffraction patterns. ACS Comb. Sci. 19,
25–36 (2017).

Acknowledgements
A.G. contributed in the frameworkof the research activitiescarried outwithin
the Project “Network 4 Energy Sustainable Transition—NEST”, Spoke 1.,
Project code PE0000021, funded under the National Recovery and
Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3— Call for
tender No. 1561 of 11.10.2022 of Ministero dell’Universita‘ e della Ricerca
(MUR); funded by the European Union—NextGenerationEU. F.B.
acknowledgesFondazioneCariplo, Project nr: 2020-4382 -CubaGREEN for
partial financial support.

Author contributions
A.G. and F.B. conceived the research, collected and modeled the
synchrotron WAXTS and laboratory XRD data from PbS QDs. L.A.
developed, implemented, tested theCNNmodel, andprocessed the results,
withkey intellectualcontributions fromA.G.andF.B.;A.G.andF.B.wrote the
manuscript, with input from L.A.

https://doi.org/10.1038/s41524-024-01241-6 Article

npj Computational Materials |           (2024) 10:54 9

https://doi.org/10.26434/chemrxiv.12662222.v1
https://doi.org/10.26434/chemrxiv.12662222.v1
https://doi.org/10.26434/chemrxiv.12662222.v1
https://arxiv.org/abs/1312.4400v3
https://arxiv.org/abs/1312.4400v3
https://arxiv.org/abs/1312.4400v3


Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41524-024-01241-6.

Correspondence and requests for materials should be addressed to
Federica Bertolotti or Antonietta Guagliardi.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41524-024-01241-6 Article

npj Computational Materials |           (2024) 10:54 10

https://doi.org/10.1038/s41524-024-01241-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A deep learning approach for quantum dots sizing from wide-angle X-ray scattering�data
	Results and discussion
	Debye Scattering Equation (DSE) simulations for training and testing datasets
	Physics-informed DSE datasets augmentation
	Convolutional Neural Network (CNN) as QDs size classifier
	QDs size classification versus CNN regression�model
	Evaluating the robustness of the size classifier
	QDs sizing from experimental wide-angle X-ray total scattering (WAXTS)�data

	Methods
	Debye Scattering Equation (DSE) simulations from atomistic models of PbS�QDs
	Convolutional Neural Network (CNN) architecture
	Wide-Angle X-ray Total Scattering (WAXTS) data collection and reduction
	X-ray powder diffraction (XRD) measurements

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




