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Principal component analysis enables the
designofdeep learningpotential precisely
capturing LLZO phase transitions
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The development of accurate and efficient interatomic potentials usingmachine learning has emerged
as an important approach in materials simulations and discovery. However, the systematic
construction of diverse, converged training sets remains challenging. We develop a deep learning-
based interatomic potential for the Li7La3Zr2O12 (LLZO) system. Our interatomic potential is trained
using a diverse dataset obtained from databases and first-principles simulations. We propose using
the coverage of the training and test sets as the convergence criteria for the training iterations, where
the coverage is calculated by principal component analysis. This results in an accurate LLZO
interatomic potential that can describe the structure and dynamical properties of LLZO systems
meanwhile greatly reducing computational costs compared to density functional theory calculations.
The interatomic potential accurately describes radial distribution functions and thermal expansion
coefficient consistent with experiments. It also predicts the tetragonal-to-cubic phase transition
behaviors of LLZOsystems.Ourwork provides an efficient training strategy to develop accurate deep-
learning interatomic potential for complex solid-state electrolyte materials, providing a promising
simulation tool to accelerate solid-state battery design and applications.

The performance of traditional lithium-ion batteries is approaching its
limit1. The demand for energy density has increased due to the popu-
larity of electric vehicles and the development of 5 G technology2–4. To
increase energy density, one strategy is to use a lithium metal anode5,6.
However, the safety of lithiummetal is poor due to its reactivity with the
electrolyte7. Therefore, the trend in battery development is shifting
towards all-solid-state lithiummetal batteries, which are composed of a
chemically stable solid-state electrolyte instead of a liquid electrolyte.
Among many solid-state electrolytes, Li7La3Zr2O12 (LLZO) has gained
extensive attention due to its excellent thermal stability, high Li+

conductivity at room temperature, and wide electrochemical
window8–11. LLZO exists in both tetragonal and cubic phases, where the
cubic phase exhibits higher Li-ion conductivity but lacks stability at
room temperature12,13.

Compared to batteries with liquid electrolytes, solid-state lithium
batteries using LLZO as the solid electrolyte exhibit poor contact at the
interface14,15, phase transition issues16–19, structural disorder, and chemical
segregation20, all of which contribute to the increased impedance at the

interface.Moreover, the propagation of Li dendrites along grain boundaries
(GB) can cause short circuits during cycling21.

Currently, the main challenges faced by LLZO involve the microscale
interfacial mechanisms of phase transformation, ionic transport, dendrite
growth, and interface structure evolution that are difficult to directly
observe in experiments22,23. Molecular dynamics (MD) simulations can
provide critical insights into these mechanisms by accessing the atomic-level
processes, thus accelerating the design and optimization of LLZO-based solid
electrolytes. However, utilizing Density Functional Theory (DFT) for large
system models is impractical and computationally expensive. On the other
hand, studying LLZO often produces results that are challenging to validate.

The deep interatomic potential (DP) was initially proposed by Behler
and Parrinello in 2007 as the neural network potential (NNP)24. Over the
years, various interatomic potentials have been developed, including
Gaussian approximation potential (GAP)25, moment tensor potential
(MTP), gradient-domain machine learning (GDML)26, and deep potential
for molecular dynamics (DeePMD)27. DeePMD-kit28 utilizes deep neural
networks (DNNs) to train interatomic potential functions using ab initio
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data, encompassing total potential energy, forces on individual atoms, and
virials for a set of atomic configurations. These DNN interatomic potentials
can accurately reproduce potentials and forces in the training dataset and
largely improve efficiency for molecular dynamics simulations29–32. The
computational cost of MD simulations with DNN interatomic potentials
scales linearly with the system size. However, a key factor in developing an
accurate DP usingmachine learning is constructing an appropriate training
set. Generating a massive number of random atomic configurations is
computationally wasteful, as most contain redundant data and fail to ade-
quately sample relevant configurations. An efficient approachmust balance
training set compactness against coverage of key atomic environments and
interactions. This is particularly challenging for multi-component solid-
state Li battery materials, which possess complex interface chemistry and a
significantly large configuration space. It is vital to devise a reasonable
method thatproduces a sufficiently comprehensive training set to accurately
model the diverse atomic environments and complex interface phenomena
in these materials.

In our study, we developed a potential function training process and
obtained the training set for theLi–La–Zr–Oquaternary systemafter several
iterations. We extracted the local structural feature matrices of the training
set and test set through principal component analysis (PCA). By comparing
the coverage of the two feature matrices, we evaluated the comprehen-
siveness of the training set. By training a DP model, we obtained an
interatomic potential that demonstrated effectiveness in predicting energy,
force, and kinetic processes. The DP method proves to be reliable in pre-
dicting these properties for various chemical compositions, including
crystalline and amorphous materials, as well as randomly generated com-
pounds. This versatility enables us to perform cost-effective molecular
dynamics simulations to investigate the complex structure of large-scale
interfaces.

Results
The training and iteration procedure is as follows: first, we utilized data
calculated by the crystal database and DFT as the initial training set. As
shown in Fig. 1, we use the trained potential function to performmolecular
dynamics simulations and then use PCA to calculate the coverage of local
structural features in the dynamics trajectory to determine its convergence.
If it doesnot converge, themolecular dynamics trajectories of theprocess are
used for DFT calculations to compare their energy accuracy. Through error
verification, structures with energy errors greater than 1% are used as
supplementary training data sets.

During the process, we calculated the feature matrices of the training
set and test set using PCA.We defined the coverage rate as the percentage of
configurations in the test dataset that have similar representations in the
training dataset. The coverage rate can qualitatively demonstrate the
rationality and effectiveness of the training set.

Construction of training set
To develop an interatomic potential and a deep learning model capable of
accurately describing the dynamics of complex LLZO systems, we created a
comprehensive training set. The initial training set consists of three
components.

The first part includes element andmultiplex compounds of Li, La, Zr,
and O, as well as elemental materials from the Materials Project (MP)33

database. Additionally, we included structures derived from scaling the
lattice constants for all chemical compositions and space groups. This part
provided a diverse array of structures that served as fundamental building
blocks for LLZO.

The second part includes structures obtained from first-principles
molecular dynamics simulations to further expand the variety of LLZO
structures in the training set.We performed simulations of LLZO crystals at
different temperatures (400 K, 800 K, 1200 K, and 1600 K) and obtained
amorphous structures by melting LLZO at 3000 K and cooling it to 300 K.
We included structures at various temperatures (3000 K, 2000 K, 1000 K,
500 K, and 300K) to capture the kinetic information of both crystalline and
amorphous LLZO. This part of the training set provides valuable insights
into kinetic properties such as energy, force, and dynamic processes.

The third part of the training set introduced a two-body potential to
address the issue of atoms being too close or too far apart during molecular
dynamics simulations. By incorporating this data, we effectively constrained
the interatomic distances in the dynamic processes.

Potential iteration
Figure 2a displays the error test results for crystal, amorphous, and slab
structures using the interatomic potential solely obtained from the Data 0
training set. It can be observed that the error is within a few millielectron-
volts for LLZO crystals but slightly larger for amorphous and surface
structures. To address this, we constructed additional structures containing
more surface and amorphous information. Specifically, we heated and
melted a 3 × 3 × 3 supercell structure (5184 atoms), subsequently cooling it
down to obtain an amorphous structure.

We selected ten structures in theMDtrajectories at three temperatures:
1000 K, 2000 K, and 3000 K. Because the amorphous only has short and
medium-range orders, the small pieces should contain sufficient structure
motifs that can represent the overall amorphous phase. To evaluate their
DFT properties, we divided them into 64 smaller blocks and placed them in
an empty cavity of 40 Å × 40 Å × 40 Å for calculation. This avoids unne-
cessary interactions from periodicity. The energy and force calculations to
evaluate the errors between DP and DFT results, as shown in Fig. 2d. The
parameters for the test calculations were consistent with those used to
generate the initial training set.

We iterate this operation for structures at temperatures of 1000 K,
2000 K, and3000 Kandcompared the errors of these structures, as shown in

Fig. 1 | Interatomic potential training flow chart.
The training set composition of the interatomic
potential, error verification, and iterative
process of the potential function.
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Fig. 2b. At the first iteration, the energy error is very significant, reaching the
electron-volts level. We use structures with DFT and DP energy errors
greater than1%as supplementary trainingdatasets.After four iterations, the
energy error was greatly reduced to the millielectronvolt level, and the
corresponding structure is shown in Fig. 2c. The error percentage for each
iteration process is presented in Fig. 2e, and the final error is within 1%. This
demonstrates the effectiveness of the present training strategy.

Figure 3a presents the coverage of the training set in the test set, both
non-iteration and after the fourth iteration. It also provides the average
coverage rate after each iteration. Initially, the coverage rate of the structure
(test set) and training set generated by the potential function, without
iteration, is only 75.34%.After four iterations, the coverage rate significantly
improved to 99.51%. This improvement indicates that the existing training
set adequately covers the generated structure, confirming the convergenceof
our training process.

Figure 3b displays the change in each iteration’s root-mean-squared
errors (RMSE). The iteration process demonstrates effective performance,
with the error change stabilizing in the final iteration. Additionally, Fig. 3c
illustrates the relationship between the coverage rate and the error per-
centage, demonstrating that utilizing the coverage rate is a reliable method
to assess the sufficiency of the training set.

Reliability and validation of DP
To assess the accuracy of the DNN interatomic potential, we conducted
a comparison between the energies and forces predicted by the DP
model and DFT. Figure 3d–g provides a visual representation of this
comparison, demonstrating the accuracy of DP in predicting energy
and force per atom for crystal LLZO, amorphous LLZO, and slab LLZO
in comparison to DFT. These plots reveal a strong correlation between
the DP-predicted values and the results obtained fromDFT. The RMSE
for forces is below 200 meV/Å, and for energy, it is below 4 meV/atom.
The wide energy distribution observed in the figure suggests a complex
configuration space when exploring the potential energy surface (PES).
In the second part of the Supporting Information, we provide details of
tests conducted on the error of amorphous structures with varying
ratios of Li, La, Zr, and O.

Moreover, we performed a comparison of the radial distribution
function (RDF) for the cubic phase and amorphous LLZO during dynamic
processes. Figure 4 showcases the RDFs of 1000K cubic LLZO and 3000 K
amorphous LLZO, acquired through molecular dynamic simulations of ab
initio molecular dynamics (AIMD) and deep potential molecular dynamics
(DPMD). The interatomic potential accurately predicts the RDF of both
crystal and amorphous systems, further affirming the reliability and accu-
racyof our interatomic potential in dynamic processes. Additional RDFs for
the system can be found in Supplementary Fig. 2 and Supplementary Fig. 3.

Furthermore, we believe that the application of two-body potentials is
very effective for machine learning-based interatomic potential generation.
By comparing the two-body potentials and forces betweenDFT andDP, we
identifiedproblematic atomic interactions requiring enhanced training. The
two-body analysis also helpedavoid unphysical artifacts fromclosely spaced
atoms. More details are presented in the third part of the Supporting
Information,

Application of DP in LLZO phase transition
The tetragonal phase of LLZO has ionic conductivity lower than the cubic
phase by two to three orders ofmagnitude. However, the tetragonal phase is
more stable at room temperature. Therefore, understanding the phase
transition can facilitate the fabrication of the high ionic conductivity
cubic phase.

One of the important characteristics of LLZO is its transition from the
tetragonal phase to the cubic phase. In our study, we investigated the phase
transition of LLZO from the tetragonal phase to the cubic phase using npt
ensemblemolecular dynamics simulationsof a 3 × 3 × 3 supercell of t-LLZO
with 5148 atoms. The simulations, depicted in Fig. 5a, demonstrate that the
interatomic potential effectively captures the thermal phase transitions of
LLZO. We observed the tetragonal-to-cubic phase transition occurring
around 900 K, as evidenced by the lattice constant, which is consistent with
the experimental value of 923 K34.

To further validate the phase transition, we examined the X-ray dif-
fraction (XRD) pattern variation with temperature, as shown in Fig. 5d. It
can be observed that as the temperature increases, the characteristic peaks of
the tetragonal phase gradually disappear at 300 K and are completely

Fig. 2 | Error verification of the iterative process. aTesting of test sets with primary potential. bTesting of 1/64 structure with primary potential. cTesting of 1/64 structure
with final potential. d Schematic diagram of 1/64 structures. e Error of the fourth iteration.
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replaced by the characteristic peaks of the cubic phase at nearly 900 K.
Additionally, we predicted the thermal expansion coefficient of c-LLZO
between 1000 K and 1500 K to be 5.48 × 10−5 K−1, which is similar to the
experimentally34 measured value of 1.30 × 10−5 K−1. We observed a

significant volume mutation between 1900 K and 2100 K, resulting in
random lattice constants a, b, and c. At the same time, the results of
structural RDF (Fig. 5e) can explain that LLZO melts to form liquid
amorphous LLZO at this time.

Fig. 3 |Changes in iterative process coverage. aPrincipal component analysis of the
test set and training set before and after iteration, and the change of coverage.
b Changes in RMSE of each category for each iteration. c The relationship between

error and coverage. d–g The RMSE of the final interatomic potential for energy and
force in each direction.
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Furthermore, Fig. 5b, c presents PCA comparisons of the crystal
structure and amorphous structure with the training set, respectively. Both
the crystalline structure and the amorphous structure are adequately cov-
ered in the training, enabling an accurate description of the tetragonal-to-
cubic phase transition and subsequent melting.

Discussion
Because of the limitation of DFT, an issue arises: the interatomic potential
trained on small systems can accurately describe small-scale models, but its
transferability and accuracy for large-scale simulations are unclear. To
demonstrate the accuracy of large-scale simulations, we adopted Principal
Component Analysis to extract local structural feature matrices from the
large-scale simulation results, which allows us to assess the reliability of the
results. This method can evaluate the similarity between any structure and
its training set, thus providing strong validation for the accuracy of large-
scale simulations.

In this manuscript, we trained the DNN interatomic potentials for
LLZO systems through DeepMD. Compared to DFT, the DP model can
accurately predict the energies, forces, andmolecular dynamicsproperties of
the LLZO system at a greatly reduced cost. The training set for this study
comprised three main components: databases, first-principles simulations,
and two-body potentials. Through iterative training and validation, we
achievedconvergence anddemonstrated the accuracyof thepotential. In the
iterative process, we employed PCA and coverage analysis to judge the
convergence of training and indicate the reliability of the results.

We utilize this potential function to investigate the phase transition
behavior ofLLZO, specifically the transition fromthe tetragonal phase to the
cubic phase. Molecular dynamics simulations captured the transition
temperature and thermal expansion coefficient in good agreement with
experimental values. The potential accurately predicted the radial dis-
tribution function for both crystal and amorphous systems, further vali-
dating its performance in dynamic processes.

Overall, by constructing a diverse training set and validating con-
vergence, we develop a generalizable approach for training high-precision
machine learning potentials. our study verifies the efficacy of the deep
learning-based interatomic potential in capturing the dynamics and phase
transitions of LLZO systems. The DP model provides an accurate and
efficient tool to investigate the microscale interface phenomena in solid-
state Li batteries, which is challenging to explore experimentally. The
accuracy, transferability, and convergence of the interatomic potentialmake
it a valuable tool that enables extensive simulations to provide atomic-level
insights into complex processes governing the performance of LLZO-based
solid-state batteries.

Methods
First-principles calculations
Our first-principles calculations were performed by using the projector
augmented wave (PAW)35,36 method within the density functional
theory (DFT) as implemented in the Vienna Ab initio Simulation
Package (VASP)37,38. The electronic exchange-correlation function was
treated within the spin-polarized generalized gradient approximation
(GGA) parameterized by Perdew–Burke–Ernzerhof (PBE)39. The con-
vergence criteria were set to be 10−4 eV for the energy of the unit cell in
the electronic minimization and 0.1 eV/Å for the force on each atom in
relaxation, respectively. Electronic occupancies were decided using
Gaussian smearing and an energy width of 0.1 eV in relaxation. The
cutoff energy was set to 500 eV. Brillouin zones were sampled to
accommodate different cell sizes by using the VASP k-spacing para-
meter sk = 0.25.

DP training details
The DeePMD-Kit27 package utilizes the smoothing method during the
training process of the DP model. For this work, we used the descriptor
“se_e2_a”, which is short for the Deep Potential Smooth Edition (DeepPot-
SE) constructed from all information (both angular and radial) of atomic
configurations. The cutoff radius of adjacent atoms in the model was set to
6.0 Å, and the inverse distance was gradually smoothed from 0.5 Å to 6 Å.
The filtering neural network was composed of three hidden layers [10, 20,
40], while the fitting network consisted of [120, 120, 120]. The neural net-
work was initialized with random parameters, and the total number of
training steps was 6000000. The Adam stochastic gradient descent method
was used for training the model40, which caused the learning rate to expo-
nentially decrease relative to the starting value of 0.001. The decay step and
decay rate were set to 2000 and 0.996, respectively.

The loss function L was defined as follows:

L pe; pf ; pξ

� �
¼ pe

N
ΔE2 þ

pf
3N

X
i

jΔFij2 þ
pξ
9N

jjΔΞjj2 ð1Þ

where ΔE and ΔFi represent the mean square errors in energies and forces,
respectively. The energy perfector pe decreased from 0.02 to 1, while the
force prefactor pf decreased from 1000 to 1. It is worth noting that the
training process did not include viral data.

Principal component analysis
Principal component analysis (PCA)41 is a widely adopted algorithm for
reducing data dimensionality. Its primary objective is to transform

Fig. 4 | Comparison of RDFs of atomic pairs derived from AIMD and DPMD. a Cubic LLZO at 1200 K; b Amorphous LLZO at 3000 K.
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p-dimensional features intom-dimensions, where thesem-dimensions are
orthogonal features known as principal components. These principal
components are reconstructed from the original p-dimensional features,
providing a representation of the data in m-dimensions.

To analyze the local structures using descriptors, we obtain a matrix
xn×p that describes numerous local structures. We then standardize this
matrix to obtain the standardized matrix Xn×p. Next, we calculate the cov-
ariance matrix Rp×p based on Xn×p. For a detailed computation process,
please refer to Fig. 6 and the first section of the Supporting Information.

xn× p ¼
x11 � � � x1p

..

. . .
. ..

.

xn1 � � � xnp

2
664

3
775X ¼

X11 � � � X1p

..

. . .
. ..

.

Xn1 � � � Xnp

2
664

3
775Rp× p ¼

r11 � � � r1p

..

. . .
. ..

.

rp1 � � � rpp

2
664

3
775

ð2Þ

As a result, we obtain the eigenvectors a1; a2; . . . ; ap
� �

and eigenva-
lues λ1; λ2; � � � λp.

a1 ¼

a11
a21

..

.

ap1

2
666664

3
777775
; a2 ¼

a12
a22

..

.

ap2

2
666664

3
777775
; � � � ; ap ¼

a1p
a2p

..

.

app

2
666664

3
777775

ð3Þ

By multiplying the eigenvectors a1; a2; . . . ; ap
� �

with the standar-
dized matrix Xn× p, we obtain our target matrix Tn× p.

Tn× p ¼ Xnp × ða1; a2; . . . ; apÞ ð4Þ

Fig. 5 | Coverage analysis and XRD comparison of the phase change process.
a The lattice parameters and volume of LLZO as a function of temperature. b PCA
comparison and coverage of the crystal structure with the training set. c PCA

comparison and coverage of the amorphous structure with the training set. d The
relationship between XRD and temperature transformation. e The relationship
between RDF and temperature transformation.
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In the matrix Tn × p, n still represents the number of local structures,
and p remains the dimensionality.

Additionally, λm represents the contribution rate of the mth dimen-
sion. Typically, a contribution rate exceeding 95% is considered reliable.
When the cumulative contribution rate λ1 þ λ2 þ � � � þ λm ≥ 0:95ðm< pÞ
is reached, the dimensionality is reduced from p-dimensions to
m-dimensions. As a result, we obtain the transformed matrix T 0

n×m.

Calculation of coverage rate
In order to compare the coverage of the feature matrices of the training set
and the test set, we need to check whether the values in each dimension
match. However, the dimensionality is too high to be understood through
visualization. So, we convert it into a projection on a two-dimensional plane

for understanding. This process can be understood by comparing the degree
of coincidence of points in three-dimensional space. We only need to
confirm that these points coincide in xy, xz, and yz, and you can determine
that this point coincides in three-dimensional space. The same concept can
be generalized to any dimension.

m� 1ð Þ þ m� 2ð Þ þ . . .þ 1 ¼ m m� 1ð Þ
2

ð5Þ

Consequently, the matrix T 0
n×m can be decomposed into m m�1ð Þ

2 n×2-
dimensional matrices, which can then be projected onto a two-dimensional
plane. By dividing the two-dimensional plane into equal partitions, we can

Fig. 6 | Schematic diagram of coverage calculation. PCA is the data dimensionality reduction process and coverage calculation method.
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analyze the distribution of these points on the two-dimensional grid to
determine if they are equal.

More importantly, each dimension can represent a certain feature of
the local structure. Even if these points do not completely overlap in the
high-dimensional space, as long as these structural features are consistent,
the description of the test set can also be accurate.

Weproject the training set and test set onto a two-dimensional grid. If a
point from the test set falls within a grid cell, we setTij = 1; otherwise, it is set
Tij =−1. For the training set, we setTij = 1 if a point exists within a grid cell,
otherwise, it is set Tij ¼ 0. Consequently, we obtain two N×N matrices,
Ttest set, and Ttrain set. Additionally, we define Tcover i; j

� � ¼
T training i; j

� �
×T test i; j

� �
, and by computing it, we obtain the distribution on

the Tcover grid. A value of 1 in the Tcover matrix indicates that the local
structure from the test set can be found in the training set, while a value of 0
means the structure does not exist in the test set, and−1 indicates that the
structure from the test set is not found in the training set. By utilizing
equation 9, we can determine the ratio of structures in the training set to
those in the test set. Ideally, if all structures from the test set can be found in
the training set, the coverage rate would be 100%.

P i; j
� � ¼ NUM Tcover ¼ 1

� �

NUM T test ¼ 1
� � ; i 2 N; j 2 N ð6Þ

Data availability
The training set is provided at https://doi.org/10.5281/zenodo.10556106.
Example input files for DPMD calculations performed in this work are
provided as Supplementary Information.

Code availability
The machine learning training potential function adopts the open-source
DeePMD-kit code (https://github.com/deepmodeling/deepmd-kit). All
molecular dynamics simulations were performed with the open-source
LAMMPS code (https://github.com/lammps/lammps).
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