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Efficient finite strain elasticity solver for
phase-field simulations

Check for updates

Oleg Shchyglo , Muhammad Adil Ali & Hesham Salama

We present an effective mechanical equilibrium solution algorithm suitable for finite strain
consideration within the phase-fieldmethod. The proposed algorithm utilizes a Fourier space solution
in its core. The performance of the proposed algorithm is demonstrated using theSt. Venant–Kirchhoff
hyperelastic model, but the algorithm is also applicable to other hyperelastic models. The use of the
fast Fourier transformation routines and fast convergence within several iterations for most common
simulation scenarios makes the proposed algorithm suitable for phase-field simulations of rapidly
evolving microstructures. Additionally, the proposed algorithm allows using different strain measures
depending on the requirements of the underlying problem. The algorithm is implemented in the
OpenPhase phase-field simulation library. A set of example simulations ranging from simple
geometries to complex microstructures is presented. The effect of different externally applied
mechanical boundary conditions and internal forces is also demonstrated. The proposed algorithm
can be considered a straightforward update to already existing small strain solvers based on Fourier
space solutions.

In recent years, phase field approach has become amethod of choice for the
simulations of microstructure evolution in a variety of systems1,2. Histori-
cally, it emerged as a tool to simulate different solidification scenarios in
metallic systems3. At the same time, a phase field formulation based on
Khachaturyan’s microelasticity theory has been applied to modeling of the
martensitic phase transformation driven by the symmetry change between
the austenite (parent phase) and the martensite (product phase)4,5. At pre-
sent, the range of applications of the phase-field method covers a wide
spectrum of phase and structural transformations in solid, fluid, andmixed
systems. Such a wide spectrum of applications requires combining the
phase-field method with other methods describing various physical phe-
nomena, e.g., chemical diffusion and thermodynamics6,7, fluid flow8–10,
elasticity11–13, plasticity14–16, magnetism17 etc.

To date, most of the combined approaches involve one or another
degree of simplification achieved via the problem linearization, e.g., by
using the quasi-equilibrium approach based on linearized phase
diagrams18 to describe the thermodynamic properties instead of
considering the corresponding Gibbs energies directly, using the
Lattice-Boltzmann method19 to solve the fluid dynamics problem
instead of solving the Navier-Stokes equation directly, using linear
elasticity to solve the mechanical problem20,21 instead of the finite
strain theory within a suitable hyperelasticity model, etc. While lin-
earizations are well justified for a variety of problems characterized by

only small deviations from thermodynamic and mechanical equili-
bria, there are problems that evolve at conditions far from such
equilibria. The need to address such problems led to the creation of
more general modeling techniques to treat rigorous thermodynamics
in highly off-equilibrium systems22,23. At the same time, the combi-
nation of the phase-field approach with rigorousmechanics suitable to
model large deformations occurring during the phase transformations
led to the development of a more sophisticated approach24,25. The
complexity and the corresponding computational costs of such an
approach is well justified when modeling, for example, the dynamic
recrystallization induced by severe plastic deformation26. On the other
hand, when modeling the systems subjected to moderate deforma-
tions, which are too big to be correctly represented by the linear
elasticity but are small enough to be solved using an appropriate
hyperelasticity model within the finite strain theory, a more efficient
approach can be used. Traditionally, the mechanical deformation is
addressed by the linear elasticity when the strains are of the order of a
few percent. Higher strains can also be considered by the linear elastic
model if no significant rotations are involved. Considering larger
deformations accompanied by significant rotations requires using
finite strains and a corresponding hyperelastic model. In such a case,
the mechanical equilibrium problem is typically solved using the finite
element method, which is very convenient for modeling the
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mechanical behavior of static microstructures where relatively sparse
element density with sharp interface representation is sufficient to
obtain accurate mechanical equilibrium solution. On the other hand,
in the case of evolving microstructures with diffuse interface repre-
sentation, e.g., during phase-field simulations, the finite elements
method loses its advantages because updating the elements mesh
following the microstructure evolution is costly and requires careful
mesh generation to avoid spurious anisotropy and other artifacts.
Also, when attempting to use the finite elements method on a dense
regular mesh, similar to the finite difference grid in most phase-field
simulations, finite elements methods have no advantage compared to
finite difference methods. In fact, linear finite elements with a single
integration point are similar in numerical complexity to the nearest
neighbor finite differences scheme for small strains, but while in the
finite difference scheme, the solution is readily available in every grid
point, the finite elements solution has to be interpolated from the node
points to the integration point in the middle of the finite elements to
couple it to other fields in a typical phase-field simulation. All these
considerations are associated with the high computational costs, fre-
quently limiting the simulations using the finite elements methods to
two-dimensional systems27–30. In contrast, the spectral methods based
on the fast Fourier transformations algorithm offer a simpler and
more efficient alternative to solving the mechanical equilibrium
problem using the finite elements or finite differences models in
phase-field simulations and are successfully used in the phase-field
community for solving small strain problems for more than 20 years
since it has been introduced in ref. 31 and later extended in ref. 32.
Recently, a fully featured finite strain consideration in phase-field
simulations has been presented in ref. 33. This formulation uses
multiplicative decomposition of the deformation gradient tensor but
additive decomposition of strain. The latter poses a limitation on the
modeling of transformation-induced rotations, briefly discussed
in ref. 12.

In this paper, we present a highly efficient Fourier space iterative
mechanical equilibrium solution algorithm suitable for phase-field
simulations, which require frequent mechanical equilibrium solution
updates due to the rapid evolution of the microstructure. The devel-
opment of the proposed algorithm has been greatly inspired by the
small strain iterative mechanical equilibrium solution algorithm for
heterogeneous systems proposed in ref. 32 and the need to address the
phase transformation scenarios accompanied by not only large
deformations but also significant transformation-induced lattice
rotations. The proposed algorithm can be considered a straightfor-
ward update to already existing small strain solvers based on a fast
Fourier transformation algorithm.

Results
St. Venant–Kirchhoff hyperelastic model
One of the simplest hyperelasticity models is the St. Venant–Kirchhoff
model34. The basic description of themodel for anisotropicmaterials can be
expressed as follows:

ψel ¼ 1
2
E : C : E; ð1Þ

S ¼ ∂ψel

∂E
¼ C : E; ð2Þ

E ¼ 1
2

FTF� I
� �

; ð3Þ

whereψel is the elastic strain energy density,C is the elasticity tensor, S is the
secondPiola–Kirchhoff stress tensor,E is theGreen–Lagrange strain tensor,
I is the unit tensor and F is the deformation gradient tensor. The

components of the deformation gradient tensor F are given by

Fij ¼
∂xi
∂Xj

; ð4Þ

where xi are the spatial coordinates and Xj are the material coordinates
(i, j = 1, 2, 3). For further analysis it is convenient to introduce a displace-
ment vector

uðXÞ ¼ xðXÞ � X ð5Þ

and rewrite the deformation gradient tensor in the following form

F ¼ Iþ f ; ð6Þ

with f given by

f ¼ ∇Xu ¼

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z

2
6664

3
7775 ð7Þ

where ui(i = x, y, z) are the components of the displacement vector u.
In the absence of external forces, the general form of the mechanical

equilibrium condition reads

∇ � P ¼ 0; ð8Þ

where P = F S is the first Piola–Kirchhoff stress tensor.
The equations above assume purely elastic deformation. In real

situations, other deformation mechanisms can be active, e.g., plastic and
transformation induced. In such a case, the total deformation gradient
tensor can be decomposed as follows:

F ¼ FelFplFtr; ð9Þ

where Fel is the elastic deformation gradient tensor, Fpl is the plastic
deformation gradient tensor and Ftr is the transformation-induced
deformation gradient tensor.

For further analysis, it is convenient to introduce the stress-free
deformation gradient tensor

Fsf ¼ FplFtr; ð10Þ

and define the elastic deformation gradient tensor as follows

Fel ¼ FF�1
sf : ð11Þ

Using Eqs. (3) and (11) the elastic strain tensor gets the form

Eel ¼
1
2

FTelFel � I
� �

; ð12Þ

and the elastic second Piola–Kirchhoff stress tensor in the intermediate
configuration, obtained after the transformation induced and/or plastic
deformation, has the form

Sel ¼
∂ψel

∂Eel
¼ C : Eel: ð13Þ

Then, the second Piola–Kirchhoff stress tensor in the reference con-
figuration suitable for themechanical equilibrium calculation in Eq. (8) can
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be obtained via the pull back operation

S ¼ JsfF
�1
sf SelF

�T
sf ; ð14Þ

where Jsf ¼ detðFsf Þ and&�T ¼ ð&�1ÞT.
Substituting Eq. (14) into Eq. (8) the updated mechanical equilibrium

equation reads

∇ � JsfFF
�1
sf SelF

�T
sf

� � ¼ 0; ð15Þ

Small strain, anisotropic homogeneous medium
Considering only the small deformations, the elastic Green–Lagrange strain
tensor given in Eq. (3) can be reduced to

Eel≈εel ¼
1
2

FTel þ Fel � 2I
� � ¼ 1

2
fTel þ fel
� �

; ð16Þ

where εel is the small strain tensor. In Eq. (16) only thefirst order terms inFel
are considered. The equilibrium condition is thus reduced to

∇ � C : εel
� � ¼ 0; ð17Þ

∇ � 1
2
C : ðfTel þ f elÞ

� �
¼ 0: ð18Þ

Substituting Eq. (7) in Eq. (18), we get

∇ � 1
2
C : ð∇XuÞT þ∇Xu

� �� �
¼ 0: ð19Þ

If other deformation mechanisms are active, e.g., plastic, transformation
induced, or externally applied, the total strain tensor can be decomposed as
follows:

ε ¼ εel þ εpl þ εtr; ð20Þ

where εel, εpl and εtr are the elastic, plastic and transformation strains,
correspondingly. For the following analysis it is convenient to introduce the
linear stress-free strain

εsf ¼ εpl þ εtr; ð21Þ

and corresponding inelastic stress

σsf ¼ C : εsf ; ð22Þ

Thus, the Eq. (19) gets the form

∇ � 1
2
C : ð∇XuÞT þ ∇Xu

� �� �
¼ ∇ � σsf ; ð23Þ

The Eq. (23) can be rewritten in the matrix form as follows:

A : u ¼ ∇ � σsf ; ð24Þ

whereA is the acoustic differential operatorwhose components are givenby

A11 ¼ ∂yĈ16∂x þ ∂xĈ16∂y þ ∂zĈ15∂x

þ ∂xĈ15∂z þ ∂xĈ11∂x þ ∂zĈ56∂y

þ ∂yĈ56∂z þ ∂yĈ66∂y þ ∂zĈ55∂z;

ð25Þ

A12 ¼ ∂xĈ12∂y þ ∂yĈ66∂x þ ∂xĈ14∂z

þ ∂zĈ56∂x þ ∂xĈ16∂x þ ∂zĈ25∂y

þ ∂yĈ46∂z þ ∂yĈ26∂y þ ∂zĈ45∂z;

ð26Þ

A13 ¼ ∂xĈ14∂y þ ∂yĈ56∂x þ ∂xĈ13∂z

þ ∂zĈ55∂x þ ∂xĈ15∂x þ ∂yĈ36∂z

þ ∂zĈ45∂y þ ∂yĈ46∂y þ ∂zĈ35∂z;

ð27Þ

A21 ¼ ∂yĈ12∂x þ ∂xĈ66∂y þ ∂zĈ14∂x

þ ∂xĈ56∂z þ ∂xĈ16∂x þ ∂yĈ25∂z

þ ∂zĈ46∂y þ ∂yĈ26∂y þ ∂zĈ45∂z;

ð28Þ

A22 ¼ ∂yĈ26∂x þ ∂xĈ26∂y þ ∂zĈ46∂x

þ ∂xĈ46∂z þ ∂xĈ66∂x þ ∂zĈ24∂y

þ ∂yĈ24∂z þ ∂yĈ22∂y þ ∂zĈ44∂z;

ð29Þ

A23 ¼ ∂yĈ25∂x þ ∂xĈ46∂y þ ∂xĈ36∂z

þ ∂zĈ45∂x þ ∂xĈ56∂x þ ∂yĈ23∂z

þ ∂zĈ44∂y þ ∂yĈ24∂y þ ∂zĈ34∂z;

ð30Þ

A31 ¼ ∂yĈ14∂x þ ∂xĈ56∂y þ ∂zĈ13∂x

þ ∂xĈ55∂z þ ∂xĈ15∂x þ ∂zĈ36∂y

þ ∂yĈ45∂z þ ∂yĈ46∂y þ ∂zĈ35∂z;

ð31Þ

A32 ¼ ∂xĈ25∂y þ ∂yĈ46∂x þ ∂zĈ36∂x

þ ∂xĈ45∂z þ ∂xĈ56∂x þ ∂zĈ23∂y

þ ∂yĈ44∂z þ ∂yĈ24∂y þ ∂zĈ34∂z;

ð32Þ

A33 ¼ ∂yĈ45∂x þ ∂xĈ45∂y þ ∂zĈ35∂x

þ ∂xĈ35∂z þ ∂xĈ55∂x þ ∂zĈ34∂y

þ ∂yĈ34∂z þ ∂yĈ44∂y þ ∂zĈ33∂z;

ð33Þ

where ∂x ¼ ∂
∂X1

, ∂y ¼ ∂
∂X2

and ∂z ¼ ∂
∂X3

.
In the case of a homogeneous elastic medium with

C ¼ �C � const; ð34Þ

the solution of Eq. (24) can be easily found in Fourier space. The forward
Fourier transformation is formally defined by

~f ðqÞ ¼
Z

f ðrÞ expð�2πirqÞdr; ð35Þ

and the backward Fourier transformation is defined by

f ðrÞ ¼
Z

~f ðqÞ expð2πirqÞdq: ð36Þ

where r is the spatial coordinate vector.
Performing the Fourier transformation of Eq. (24) we get

~A~u ¼ 2πiq~σsf ; ð37Þ
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where ~A and ~σsf are the acoustic tensor and the Fourier component of the
right-hand side stress tensor, correspondingly, i ¼ ffiffiffiffiffiffiffi�1

p
, q is the wave

vector, and ~u is the Fourier component of the displacement vector u. The
components of the acoustic tensor ~A are given by

~A11 ¼ �4π2 2�C16qxqy þ 2�C15qxqz þ �C11q
2
x

�
þ2�C56qyqz þ �C66q

2
y þ �C55q

2
z

�
~A12 ¼ ~A21 ¼ �4π2 �C12qxqy þ �C66qxqy þ �C14qxqz

�
þ�C56qxqz þ �C16q

2
x þ �C25qyqz

þ�C46qyqz þ �C26q
2
y þ �C45q

2
z

�
~A13 ¼ ~A31 ¼ �4π2 �C14qxqy þ �C56qxqy þ �C13qxqz

�
þ�C55qxqz þ �C15q

2
x þ �C36qyqz

þ�C45qyqz þ �C46q
2
y þ �C35q

2
z

�
~A22 ¼ �4π2 2�C26qxqy þ 2�C46qxqz þ �C66q

2
x

�
þ2�C24qyqz þ �C22q

2
y þ �C44q

2
z

�
~A23 ¼ ~A32 ¼ �4π2 �C25qxqy þ �C46qxqy þ �C36qxqz

�
þ�C45qxqz þ �C56q

2
x þ �C23qyqz

þ�C44qyqz þ �C24q
2
y þ �C34q

2
z

�
~A33 ¼ �4π2 2�C45qxqy þ 2�C35qxqz þ �C55q

2
x

�
þ2�C34qyqz þ �C44q

2
y þ �C33q

2
z

�

Utilizing the fact that Eq. (37) contains only local operations, the
mechanical equilibrium solution in Fourier space reads

~u ¼ ~A
�1

: 2πiq~σsf
� �

: ð38Þ

Next, the Fourier components of the reduced deformation gradient
tensor ~f can be easily computed using the Fourier transform of Eq. (7)

~f ¼
2πiqx~ux 2πiqy~ux 2πiqz~ux
2πiqx~uy 2πiqy~uy 2πiqz~uy
2πiqx~uz 2πiqy~uz 2πiqz~uz

2
64

3
75 ð39Þ

where ~ui (i = x, y, z) are the components of the displacement vector ~u in
Fourier space.

The components of the reduced deformation gradient tensor f can be
obtained by performing the backward Fourier transformation of ~f . Then,
using Eq. (16), the components of the small strain tensor representing the
mechanical equilibrium solution can be found.

Small strain, anisotropic inhomogeneous medium
The iterativemechanical equilibriumproblem solution given below is based
on the solution of the inhomogeneous elasticity problem byHu andChen32.
Using the homogeneous problem solution given in Eq. (38) as the basis, an
iterative solution of the inhomogeneous problem can be constructed in the
following form:

~un ¼ ~A
�1

: 2πiqð~σnsf � ~σn�1
ΔC Þ� �

; ð40Þ

where n is the iteration counter, ~σn�1
ΔC are the Fourier components of the

difference between the homogeneous and inhomogeneous stresses in n− 1

iteration given by
σn�1
ΔC ¼ ðC� �CÞ : εn�1; ð41Þ

and the homogeneous stiffness tensor is defined by

�C ¼ 1
V

Z
CðrÞ∂r ð42Þ

The last term in Eq. (40) vanishes in the case of homogeneous elasticity,
leading to a single iteration solution given in Eq. (38).

As explained in ref. 32, zero’s iteration starts with an ordinary
homogeneous problem solution. Then, the following iterations refine
the solution until the convergence is reached. Here, an appropriate
strain tolerance can be used as an iteration exit condition. Next, in a
typical phase-field simulation with evolving microstructure, the
solution from the previous time increment can be used as a starting
condition for the next time step iterative solution, which significantly
reduces the number of solver iterations for the following time step.

Finite strain, anisotropic inhomogeneous medium
As discussed in Section “Introduction”, a more consistent approach to
solving the mechanical equilibrium problem Eq. (15) is using the
multiplicative decomposition of the deformation gradient tensor
presented in Eqs. (9) and (11) within the St. Venant–Kirchhoff
hyperelastic model. Due to the non-linear nature of Eq. (15) in terms
of F, its direct numerical solution is computationally very intensive.
To simplify the solution, we will split the mechanical equilibrium
Eq. (15) such that all the non-linear terms will be moved to the right-
hand side of the equation, similar to the case of the inhomogeneous
elasticity solution presented in the previous section. We start by
introducing the following formal decomposition of the inverse stress-
free deformation gradient tensor.

F�1
sf ¼ I� f sf ; ð43Þ

where f sf ≠ f sf ≠ f
�1
sf is a formal decomposition parameter used to simplify

the decomposition of Eq. (15) into linear and non-linear parts.
Considering the fact that Fel = I+ fel and introducing formal decom-

position of the Jacobian Jsf = 1+ jsf, the mechanical equilibrium condition,
Eq. (15), can be rewritten as follows

∇ � 1þ jsf
� �

Iþ fel
� �

C : Eel

� �
I� f�T

sf

� �	 
 ¼ 0: ð44Þ

Extracting the C : Eel term from equation above allows to introduce the
new stress tensor

σn�1
ΔF ¼ 1þ jsf

� �
Iþ fel
� �

C : Eel

� �
I� f�T

sf

� �� C : Eel

� �	 
n�1
; ð45Þ

Next, using the Eq. (43) the elastic strain can be decomposed as follows

Eel ¼ 1
2 FTelFel � I
� �

¼ 1
2 F�T

sf FTFF�1
sf � I

� �
¼ 1

2 ðI� fTsf ÞFTFðI� f sf Þ � I
� �

¼ 1
2 FTF� I
� �þ ΔEel

¼ Eþ ΔEel;

ð46Þ

where ΔEel contains all the cross terms allowing to introduce the corre-
sponding stress tensor

σn�1
ΔEel

¼ C : ðEn�1
el � En�1Þ: ð47Þ
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Splitting the total strain into the linear, ε, and non-linear, ΔE, parts

E ¼ εþ ΔE; ð48Þ

with the corresponding stress tensor

σn�1
ΔE ¼ C : ðEn�1 � εn�1Þ: ð49Þ

the iterative mechanical equilibrium solution takes the form

~un ¼ ~A
�1

2πiqð�~σn�1
ΔC � ~σn�1

ΔE � ~σn�1
ΔEel

� ~σn�1
ΔF Þ

� �
: ð50Þ

Rearranging the terms and opening the brackets in the right-hand side
of Eq. (50), a significantly simplified expression is obtained

~un ¼ ~A
�1

2πiq~σn�1
RHS

� �
; ð51Þ

where ~σRHS are the Fourier components of the right-hand side term

σn�1
RHS ¼ �C : εn�1 � JsfF

n�1F�1
sf C : En�1

el

� �
F�T
sf : ð52Þ

Note, that stiffness parameters,C and the stress-free deformations, Fsf
do not change during the solver iterations.

The solution algorithm in Eqs. (51) and (52) is similar to the algorithm
presented in ref. 35.

The presented scheme works as follows:
1. start by solving the homogeneous elastic problem in iteration n = 0,

assuming zero initial solution on the right-hand side
2. next, feed the solutionof the iterationn = 0 into the right-hand side and

obtain an updated solution in iteration n = 1
3. continue iterating until one of the following conditions is satisfied:

max∣Fn � Fn�1∣ < ϵF; ð53Þ

max∣Snel � Sn�1
el ∣ < ϵS; ð54Þ

where ϵF and ϵS are the desired deformation gradient and stress evaluation
accuracy, correspondingly.

In the iterative procedure listed above, the deformation gradient
tensor components can be calculated in two different ways. First, they can
be calculated in reciprocal space from the Fourier components of the
displacement vector, followed by the Fourier transforming back to the real
space. Second, in real space, using the finite differences method after the
Fourier components of the displacement vectorwere Fourier transformed
back to the real space. In our test simulations, thefirst alternative provided
more accurate results, while using the second method often produced
nonphysical “hourglass” modes due to the known issue of the central
difference gradient stencil.

Depending on the problem’s complexity, the proposed iterative
mechanical equilibrium solution can take from a single to hundreds of
iterations. On the other hand, in a running phase-field simulation with a
slowly evolving microstructure, only a few iterations are needed to update
the solution if the previous time-step solution is used as the startingpoint for
the next time-step iterations.

The stability of the solver can be significantly improved if the updated
solution, Fnst, is obtained as follows

Fnst ¼ Fn�1 þ λ Fn � Fn�1
� �

; ð55Þ

where Fn is the actual solution in the n-s iteration and 0 < λ≤1 is the scaling
factor. The effect of the scaling parameter, λ, will be demonstrated in the
simulation examples.

The iterative solution given in Eqs. (51) and (52) is very general and
allowsusingdifferent strainmeasures andmechanicalmodels.Note though,
that using strainswhicharenon-linear in termsof theCauchy strainFTF, e.g.
logarithmic Hencky strain, requires finding Cauchy strain eigenvalues and
eigenvectors in every gridpoint for evaluating the strain values.Thus, it takes
significantly longer computational time than using the Green–Lagrange
strain. Nonetheless, the proposed iterative solution can easily handle dif-
ferent strain measures and has been tested with several strain models (see
Section “Introduction” for details).

External boundary conditions
Periodic boundary conditions imposed by the Fourier transformation used
to solve themechanical equilibriumproblemapply severe limitations on the
system geometry and mechanical boundary condition. Here, we present an
effective way to overcome some of the limitations.

Analyzing the mechanical equilibrium condition in Eq. (8) and its
Fourier space solution, it is clear that the homogeneous part of the defor-
mation gradient can not be obtained directly from the solution because it
would violate the periodic boundary conditions imposed on the displace-
ment vectors. Such conditions result in residual stresses if the mechanical
equilibrium requires homogeneous volumetric or shear deformation. One
way to overcome the limitations imposed by the periodic boundary con-
ditions is to consider the homogeneous part of the deformation in real space
as an external condition. This is achieved by splitting the deformation
gradient tensor into homogeneous and inhomogeneous parts as follows:

F ¼ Iþ �f þ f̂ ; ð56Þ

where �f and f̂ are the homogeneous and inhomogeneous parts of the dis-
placement gradient tensor, correspondingly.

The Fourier solution delivers the inhomogeneous displacement gra-
dient tensor f̂ while the homogeneous displacement gradient tensor com-
ponent can be found using the following equation

�C : �ε ¼ ��S; ð57Þ

where �ε and �S are the average residual strain and average second
Piola–Kirchhoff stress, correspondingly. The average stress is obtained by
averaging the stress tensor over the entire simulation domain

�S ¼ 1
V

Z
SelðrÞ∂r: ð58Þ

Solving the Eq. (57) with regards to �ε yields

�ε ¼ � �C
�1

: �S; ð59Þ

which allows finding the components of the symmetrized homogeneous
displacement gradient tensor

�f
sym

≈�ε: ð60Þ

From Eq. (60), only symmetric homogeneous deformation can be
obtained following the proposed procedure. The consequences of such
limitationwill be discussed at the end of this section. Eq. (60) is approximate
but is sufficient for constructing the iterative scheme to adjust the homo-
geneous deformation and compensate for the residual stress associatedwith
the homogeneous deformation. Thus, the updated total deformation gra-
dient tensor reads

Fn ¼ Iþ �f
n þ f̂

n
; ð61Þ
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where

�f
n ¼ �f

n�1 � �C
�1

: �Sn�1
: ð62Þ

The updated deformation gradient tensor Fn is then fed back into the
right-hand side of the next iteration in Eq. (52).

Even if we consider the average stress in Eq. (57), the obtained
homogeneous deformation gradient tensor correction leads to an inho-
mogeneous response of the mechanical system due to inhomogeneous
elasticity. Thus, the solution of the inhomogeneous part of the deformation
gradient should be updated within the iterative procedure. Only in the case
of small strains and homogeneous elasticity the solution of Eq. (60) does not
require iterations, and the correct deformation gradient tensor solution can
be obtained in a single step along with the inhomogeneous part of the
deformation given by the Eq. (39).

The procedure described above has been originally introduced in
ref. 36 and corresponds to free (or unconstrained) homogeneous boundary
conditions leading to zero residual average stress.

Now, to consider the externally applied mechanical boundary condi-
tions, the procedure described above can be modified as follows:

�f
n ¼ �f

n�1 � �C
�1

: ð�Sn�1 � σextÞ; ð63Þ

which considers the externally applied stress σext. Suppose an applied strain
should be used instead of the applied stress. In that case, it is sufficient to use
the corresponding applied displacement gradient tensor in Eq. (61) instead
of the correction term�f

n
. If a component-wise combinationof applied stress

and applied strain is used, the system of equations in Eq. (63) should be
reduced by taking out the equations corresponding to the applied strain
components and using the combined residual and applied displacement
gradient tensor in iterative procedure Eq. (61).

In contrast to the appliednodal displacements and forces typically used
in the finite element method, the applied stresses and strains are symmetric
quantities. Thus, the procedure described above cannot consider simple
shear deformation because it requires considering non-symmetric defor-
mation tensor containing rotation. Thus, the proposed algorithm can
consider only pure shear in combination with volumetric change.

Considering internal forces
The forces originating within the mechanical system can be considered by
using the general form of the mechanical equilibrium condition

∇ � JsfFF
�1
sf SelF

�T
sf

� � ¼ N; ð64Þ

whereN is the local force density. Then themechanical equilibrium solution
given in Eq. (51) transforms into

~un ¼ ~A
�1

: 2πiq~σn�1
RHS þ ~N

� �
; ð65Þ

where ~N are the Fourier components of the force densitiesN.

Considering other strain measures
As discussed in the previous sections, the St. Venant–Kirchhoff hyperelastic
model is constructed using the Green–Lagrange strain, which has a direct
physical interpretation. On the other hand, the St. Venant–Kirchhoff
hyperelasticmodelhas stability issuesuponcompression. Figure 1 illustrates
the stress-strain relations for different strain measures considered in this
study.One can easily see that upon compression, theGreen–Lagrange strain
is limited by −50%, allowing system inversion upon further compression,
which is nonphysical. In contrast, the correct physical behavior of the
deformed system at large deformations is described by Hencky, also called

logarithmic, natural, or true strain:

EHencky ¼
1
2
lnðFTFÞ: ð66Þ

Note that the stress obtained using theHencky strain diverges to� inf
for the deformation gradients approaching zero, preventing infinite com-
pression and inversion. While the Hencky strain is a desirable strain mea-
sure to represent large deformations, its use is associated with the
computations of the logarithm of the Cauchy strain, which makes it
impractical in real simulations. The most frequently used approach to
approximate the Hencky strain behavior is using the rate equations where
the deformation is accumulated in small steps due to the fact that Hencky
strains are linearly additive (see, e.g. refs. 24,25). On the other hand, in
ref. 37, the author proposed other sets of strain measures, some of which
closely approach the Hencky strain behavior without the need to evaluate a
computationally costly lnðFTFÞ function. Figure 1 shows the behavior of the
strain obtained from ref. 37 using the exponent 2:

EBazant ¼
1
4

FTF� ðFTFÞ�1
� �

: ð67Þ

Such strain formulation has significant advantages compared to the
Green–Lagrange and Hencky strains because it avoids the instability asso-
ciated with the Green–Lagrange strain and avoids evaluating computa-
tionally intensive functions needed for theHencky strain.On top of that, the
behavior of the strain given in Eq. (67) is such that its values vary almost
linearly between the factor two compression and factor two stretch, e.g., the
strain is equal to 93.75% for the deformation gradient value 2.0 upon stretch
and −93.75% for the deformation gradient value 0.5 upon compression.
Thus, such strain offers an easy interpretation, numerical evaluation, and
correct physical behavior, similar to the Hencky strain, simultaneously. In
ref. 38, the authors argue that there are no preferred strain measures for the
description of themechanical systems. Thus, using the strainmeasure given
in Eq. (67) is a well-justified approach when using the Green–Lagrange
strain leads to simulation instability or the use of Hencky strain becomes
prohibitively expensive computationally.

Using the Hencky strain model, Eq. (66), the right hand side Eq. (52)
gets the form

σn�1
RHS ¼ �C : εn�1 � JsfF

n�1F�1
sf C�1

el

� �n�1 C : En�1
el

� �
F�T
sf : ð68Þ

where Cel ¼ FTelFel is the elastic Cauchy strain tensor.

Fig. 1 | Different strain measures as functions of the deformation gradient.

https://doi.org/10.1038/s41524-024-01235-4 Article

npj Computational Materials |           (2024) 10:52 6



Using the Bazant strain model, Eq. (67), the Eq. (52) gets the form

σn�1
RHS ¼ �C : εn�1 � 1

2 JsfF
n�1F�1

sf C : En�1
el

� �
F�T
sf

� 1
2 JsfF

n�1F�1
sf C�1

el

� �n�1 C : En�1
el

� �
C�1
el

� �n�1
F�T
sf :

ð69Þ

Eshelby’s inclusion problem
To analyze the mechanical equilibrium solution obtained using the pro-
posed algorithm, Eshelby’s inclusion problem is solved for different strain
models considered in this study. The analytical solution of Eshelby’s
inclusion problem for a spherical inclusion is taken from ref. 36. The 3D
simulation domain is shown in Fig. 2, where an elastic inclusion with 1%,
3%, 10%, and 20% eigenstrain is embedded into an elastic matrix. Young’s
modulus of 208 GPa with the Poisson ratio of 0.3 is used in the test simu-
lations, which corresponds to the elasticity moduli values C11 = 280 GPa,
C12 = 120 GPa, and C44 = 80 GPa. The system is discretized using
129 × 129 × 129 grid points with an interface width of 5 grid points.
Boundary conditions are periodic and imposed by the spectral elasticity
solver. The normal, σr, and tangential, σt, stress components are displayed in
the radial direction fromthe center of theparticle. Figure 3a, b shows that the
numerical and analytical solutions are in excellent agreement with each
other outside the diffuse interface region. Inside the diffuse interface region,
thenumerical solutionvaries smoothly forbothnormal and tangential stress
components, leading to the noticeable deviation of the tangential stress
component from the analytical solution. Such behavior is typical for diffuse
interface models where the material properties vary smoothly across the
interface region while the analytical solution is obtained for the sharp
interface case. In Fig. 3, small, Green–Lagrange, Hencky, and Bazant strains
are displayed for 1% and 3% inclusion eigenstrain, whereas 10% and 20%
eigenstrain cases are presented only for Green–Lagrange, Hencky, and
Bazant strainmodels. All simulations using the finite strainmodels result in
an increased number of iterations, with around 4 iterations in the case of 1%
inclusion eigenstrain and around 10 iterations in the case of 10% and 20%
eigenstrain. The small strain solution takes only one iteration.

Deformation of polycrystal
In order to further highlight the capabilities of the proposed algorithm, the
polycrystalline sample with 200 randomly orientated grains shown in Fig. 4
was analyzed under different mechanical boundary conditions. A set of
elastic constants C11 = 240 GPa, C12 = 160 GPa, and C44 = 80 GPa with a
Zener ratio of 0.5 is assigned to the individual grains considering their

orientation. The tensile strain is applied along the vertical direction. The
simulatedmicrostructure distortion is displayed in Fig. 5a, and the resulting
spatial von Mises stress distribution is displayed in Fig. 5b. The obtained
stress distribution is sensitive to the orientation of the grains due to the
elasticity anisotropy, with the grains oriented with their soft direction along
the vertical direction showing significantly lower stress. Similar results are
also found under compression, as shown in Fig. 5c with the corresponding
von Mises stress distribution in Fig. 5d. The system compression is clearly
visible in the figure, and the stress behavior under compression is com-
parable to the tensile case. Figure 5e illustrates the microstructure subjected
to shear strain, and Fig. 5f shows the corresponding von Mises stress dis-
tribution. The Green–Lagrange, Hencky, and Bazant strain models are
employed for performing these tests, and the simulation statistics are shown
in Fig. 6. Analyzing the solver convergence using different strain models,
applieddeformations, and the effect of scalingparameter λ (seeEq. (55)) one
can conclude that Bazant strain model has the widest convergence range of
all tested strain models and that smaller λ parameter greatly increases the
solver convergence range, though at the expense of the increased number of
iterations, up to the point where the models lose their physical stability due
to, e.g., Green–Lagrange strain model nonphysical inversion upon com-
pression and lack of polyconvexity of the elastic energy when considering
Hencky strain model.

Deformation of metallic foam
Further, the proposed algorithm is tested on the metallic foam simulations
with the extreme difference in the elasticity moduli with C11 = 280 GPa,
C12 = 120 GPa and C44 = 80 GPa for the metal membranes and
C11 = 280 KPa,C12 = 120 KPa andC44 = 80 KPa for the pores, which results
in the bulk modulus of pores of the same order of magnitude as the bulk
modulus of ambient air. Figure 7 shows an initial microstructure of the
metallic foam obtained using the model presented in ref. 39. Then, the
microstructure shown in Fig. 7 has been subjected to tensile, compressive,
and shear strains similar to the polycrystal case above. The resulting
deformation is shown in Fig. 8a, c and e, respectively. Figure 8b, d, f shows
the corresponding vonMises stress distributions in themetallicmembranes
obtained from the correspondingCauchy stress. Since the total deformation
is elastic, the obtained stresses are high,with amagnitude in the rangeof tens
of GPa in thematrix, whereas they are negligible in the pores. This indicates
the capability of the algorithm to solve mechanical problems with sig-
nificantly varying elasticity moduli, which was also demonstrated in the
original small strain algorithm presented in ref. 32. The Green–Lagrange,
Hencky, and Bazant strainmodels are employed for performing these tests,
and the simulation statistics are shown in Fig. 9. Analyzing the solver
convergence using different strain modes, different applied deformations
and the effect of scalingparameter λ (seeEq. (55)) one can conclude that also
in these test simulations, Bazant strain model has the widest convergence
range of all strain models tested in this study and that smaller λ parameter
greatly increases the solver convergence range at the expense of the
increased number of iterations. The convergence parameters for these tests
have been relaxed compared to the polycrystal case shown above. Here, the
stress convergence threshold has been set to 10MPa and deformation
gradients convergence has not been considered because it is very poor in the
pores and is not representative of the quality of the solution. Note, that the
solver does not break if higher accuracy is requested but enters an oscillatory
mode where solution accuracy oscillates around 1~6MPa stress deviation,
which is around 0.1~1.0%of themaximumstress value in the system. In our
test simulations, the solution in the bulk of themetalmembranes converged
relatively quickly, and it took significantly longer to converge in the diffuse
interface regions between the pores and the metallic matrix.

Effect of force density
The effect of the applied force density is illustrated in Fig. 10, where the
force density has been applied over the circular area and its perimeter in
the center of the simulation domain. For illustration purposes, the force
densities used in the simulation are relatively high, which results in

Fig. 2 | Phase-field representation of Eshelby’s inclusion.White line represents the
line of inspection.
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visibly high elastic deformation with the maximum shear strain values
around 100%. Note that only using the Bazant strain model, the simu-
lations of force application shown in Fig. 10 converged while using the
Green–Lagrange or Hencky strainmodel, the solver converged for lower
force density limited by the solver deformation convergence range
according to Fig. 6. The solver took around 100 iterations to converge to
10−6 deformation accuracy in all simulations shown in Fig. 10 using the
scaling factor λ = 0.125.

Martensitic transformation in steel
To provide a more thorough illustration of the potential of the proposed
algorithm, a 3D phase-field simulation of martensitic transformation in
carbon steel has beenperformed tomodel the large transformation strains of
the order of 20% associated with the transformation from the face-centered
cubic (FCC) lattice of austenite to thebody-centered tetragonal (BCT) lattice

Fig. 3 | The normal σr and tangential σt stress components of Eshelby test. a, b are
the test results compared to the analytical solution for small strain model at 1% and
3% strain, correspondingly. c, d are the test results for small, Green–Lagrange,

Bazant and Hencky strain models at 1% and 3% strains, correspondingly. e, f are the
test results for Green–Lagrange, Bazant and Hencky strain models at 10% and 20%
strains, correspondingly.

Fig. 4 | Initial polycrystal microstructure containing 200 randomly oriented grains.
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of martensite. In this simulation, a full set of 24 Kurdjumov–Sachs (K-S)
variants of martensite40 with real transformation strains and a full-featured
crystal plasticity model coupled to the proposed finite strain algorithm has
beenused. The crystal plasticitymodel used in these simulations is described
in ref. 16. The material’s properties used in this simulation are similar to
ref. 12. The resulting martensite microstructure containing 24 K-S variants
is shown in Fig. 11a. Figure 11b shows the local lattice rotations obtained
from the local deformation gradients, which were first decomposed into
pure stretch and pure rotation tensors, and then axis-angles were extracted
from the rotation tensors. Only rotation angles are shown in the figure.
Figure 11b emphasizes the high degree of local rotations in linewith the K-S
variants transformation requirements41. It is important to emphasize that
the elastic strain in this studyhas been evaluated following themultiplicative
decomposition given in Eqs. (9)–(12) allowing to consider transformation-
induced rotations. In contrast, considering the additive decomposition of
thefinite strain tensor, similar to ref. 33, results in the loss of transformation-
induced rotations andoversimplified simulatedmartensitemicrostructures,
which have been obtained in ref. 12.

To examine the performance of the proposed mechanical equilibrium
solver during the phase-field simulation ofmartensite, three simulation box
sizes (323, 643, and 1283 grid cells) have beenconsidered. Figure 12 shows the
analysis of the solver performance fordifferent simulationdomain sizesover
the entire simulation from 100% austenite to fully martensitic micro-
structure. The solver demonstrates a consistently low number of iterations
per time step with a weak dependence on the simulation domain size where
the number of iterations increases from3 to 4 for the box size of 323 grid cells
to 5~6 for the box size of 1283 grid cells.

In all simulations shown above using the Green–Lagrange or Bazant
finite strain models, the performance of the solver should be similar to the
performance of the solver in ref. 33. Using the Hencky strain formulation
increases the workload significantly, leading to factor 4~5 performance
degradation in each iteration due to solving the eigenvalue problem in every
grid cell to evaluate the logarithm of the Cauchy strain. Therefore, the
Bazant strain model can be used as an alternative to Hencky strain if solver
performance and convergence range become the limiting factor in the
simulations.

Discussion
In this paper, we propose an iterative mechanical equilibrium solution
algorithm suitable for treatingfinite deformations by rigorously considering
the finite strains and transformation-induced rotations, which is essential
for the phase-field modeling of transformations involving large
transformation-induced or externally applied deformations. The proposed
algorithm is based on the Fourier space solution and is greatly inspired by
the iterative procedure proposed in ref. 32.Our algorithm is built around the
St. Venant–Kirchhoff hyperelastic model, but it also allows the use of dif-
ferent strain measures that better approximate the stress-strain relation at
finite deformations. This allows us to overcome the well-known St.
Venant–Kirchhoff model instability and better describe the natural stress-
strain relation of the deformed system typically obtained using the Hencky
strain. To further improve the performance and stability of the algorithm at
large deformations, a scaling parameter has been introduced to fine-tune its
convergence behavior. Also, an alternative strain model formulation
according to Bazant37 has been introduced to further improve the

Fig. 5 | Polycrystal deformation results using
Bazant strain model. The polycrystal subjected to
100% tensile strain (a), 50% compressive strain (c)
and 100% shear strain (e). b, d, f are the von Mises
stress distributions obtained from the correspond-
ing Cauchy stresses.
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performance of the solver and the physical behavior of the hyperelasticity
model. The algorithm has been tested on various simulation scenarios
ranging from simple Eshelby’s inclusion benchmark problem to the
microstructure formation simulations in martensitic steel and Ni-based
superalloys16. The proposed handling of the mechanical boundary condi-
tions allows us to partially overcome the limitations of the Fourier space
solution,which imposesperiodicity on thedisplacementfield.Theproposed
algorithm also allows considering local force densities, which makes it
possible to directly model the effect of gravitational, electro-magnetic, and
other internal and external forces. The presented example simulations show
that strains in the range from −50% to +100% can be treated by the
algorithm.Note that in the case of extremely large deformations, the effect of
grid distortion and, thus the accuracy of the underlying microstructure
description using the phase-field variables becomes an issue. Therefore,

despite a wide range of convergence of the proposed algorithm in terms of
the attainable deformation, we do not recommend considering the defor-
mations significantly exceeding 20% in the phase-field simulations. The
main reason for this is the increased grid distortion, which inevitably affects
the accuracy of themechanical equilibriumsolution itself and the solutionof
mass and heat transport equations, as well as the phase-field evolution,
which is bound to the reference (undistorted) regular grid. Therefore, in the
case of extremely large deformations, beyond 20~30%, a different approach
which allows retaining the undistorted regular grid for the phase fields and
other field variables, e.g., chemical composition, should be used as it is
described in ref. 25.

Considering the wide convergence range and the overall performance
of the mechanical equilibrium solution algorithm proposed in this paper, it
opens a broad range of new applications for the phase-fieldmodeling, which

Fig. 6 | Polycrystal deformation simulation statistics for different values of
scaling factor λ. The solver convergence results for uniaxial deformation using the
Green–Lagrange strain model (a), Bazant strain model (c) and Hencky strain model

(e). The solver convergence results for shear deformation using the Green–Lagrange
strain model (b), Bazant strain model (d) and Hencky strain models (f).
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were not accessible before due to the limitations of the linear elasticity solvers
typically employed in the available phase-field models.

Methods
Multi-phase-field model
To define local mechanical properties and to study the microstructure
evolution in general, we employ the well-known multi-phase-field
model2,36,42. Within this model, the phase or grain is represented by the
phase-field variable ϕα, where α is the running index of a given entity. The
presence of a given entity (phase or grain) in amaterial point is indicated by
ϕα∈ (0, 1]. The bulk region of a given entity is described by the phase-field
value 1, whereas 0 indicates that the entitywith the indexα is not present in a
material point. The interfaces between different entities are described by
smoothly varying phase-field values in the range (0, 1). To ensure mass
conservation, the sumconstraint is applied on the phase-field values in every
material point X: XN

α¼1

ϕαðXÞ ¼ 1: ð70Þ

For simplicity only interfacial ψint and elastic strain energy densities ψel

are considered in the following:

Ψ ¼
Z

Ω
ψint þ ψel; ð71Þ

where Ψ is the total free energy of the system Ω.
The interfacial free energy density is given by

ψint ¼
XN
α¼1

XN
β≠α

4σαβ
η

� η2

π2
∇ϕα � ∇ϕβ þ ϕαϕβ

� �
; ð72Þ

where ηαβ is the numerical diffuse interface width and σαβ is the interface
energy between entities α and β.

The elastic strain energy density ψel is given by the Eq. (1) where the
material properties Ĉ and F are described using the appropriate homo-
genization procedure or material model and will be discussed in the next
section.

The evolution of the phase-field with index α, _ϕα, is calculated by the
pairwise interaction of phase-field ϕα with all the other phase-fields ϕβ:

_ϕα ¼ � 1
N

XN
β≠α

μαβ
δΨ

δϕα
� δΨ

δϕβ

" #
; ð73Þ

whereN is the local numberof phasefields andμαβ is the effectivemobility of
the interface between grains (or phases) α and β. The resulting phase-field
evolution equation reads:

_ϕα ¼
1
N

XN
β≠α

μαβ σαβ Iβ � Iα
� �

þ
XN
γ≠α≠β

σβγ � σαγ

� �
Iγ þ

2π
η

ffiffiffiffiffiffiffiffiffiffi
ϕαϕβ

q
ΔGαβ

2
4

3
5;
ð74Þ

where Iζ ¼ ∇2ϕζ þ π2

η2 ϕζ ; ðζ ¼ α; β and γÞ andΔGαβ is the transformation
driving force between grains or phases α and β. Iζ is the capillarity term
associatedwith the individual phasefieldsϕζ and is calculatedusing thefinite
difference method on a uniform regular grid. The full description of the
multi-phase-field model is given in ref. 2 and the performance of its
numerical implementation is presented in ref. 43.

Elasticity models
Within the phase-field model the free energy density of a heterogeneous
system is typically defined as

ψ ¼
X
α

ϕαψα; ð75Þ

whereψα is the free energy density of the phase or grainα. Consequently, the
elastic strain energy density of the system reads

ψel ¼
X
α

ϕαψ
el
α ¼

X
α

ϕα
1
2
Eα
el : Cα : E

α
el ð76Þ

The direct use of Eq. (76) in themechanical equilibrium Eq. (8) results
in every interface point of the system being subject tomechanical boundary
conditions, which significantly complicates the mechanical equilibrium
solution. Instead, a homogenized elastic strain energy density is typically
used in the phase-field simulations

ψel ¼ 1
2
Eel : C : Eel ð77Þ

In order to define the elastic properties of an elastically inho-
mogeneous system in the phase-field simulations, a corresponding
homogenization model or material model has to be used. A compre-
hensive overview of the existing homogenization and elasticity models
used in the phase-field simulations is given in ref. 44. In addition45,
introduces the rank-1 homogenization model for small strains, which
has been later extended to the case of finite strains in ref. 46.

The most widely used in the phase-field community is the well-
known Khachaturyan’s elasticity model4. This model is not based on
the homogenization theory but postulates a material’s model where
the linear interpolation functions define the stiffness tensor and the
transformation stretches, respectively:

C ¼
X
α

ϕαCα; ð78Þ

Ftr ¼
X
α

ϕαF
α
tr; ð79Þ

whereCα and F
α
tr are the stiffness and transformation stretch tensors of the

phase (or grain) α, correspondingly. Note, that both,Cα and F
α
tr, are subject

to the local orientation of the crystal lattice with respect to the simulation
frame of reference. The stiffness model in Eq. (78) is similar to the Voigt/
Taylor elasticity homogenization but differs in the definition of strains.

Fig. 7 | Initial metallic foam microstructure.
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An alternative elasticity model has been proposed in ref. 36 and is
inspired by the Reuss/Sachs homogenization model when defining the
stiffness tensor of the inhomogenouse system. In this elasticity model, the
stiffness and the transformation stretch read:

C ¼
X
α

ϕαC
�1
α

" #�1

; ð80Þ

Ftr ¼
X
α

ϕαF
α
tr; ð81Þ

Comparing the Eqs. (78) and (80) it is easy to see that the later favors
the lower stiffness values in the interface region. In ref. 47 it is shown that the
use of eithermodel results in comparablemechanical response so the use of
either model is a matter of preference and computational efficiency.

The more advanced rank-1 homogenization model is the preferred
model for systems developing coherent and semi-coherent interfaces
accompanied by the high elasticity tensor anisotropy. Due to the relative
complexity of the rank-1model, especially in the case of thefinite strains, it is
not repeated here and the reader is referred to the original literature45,46.

Note, that if different grain orientations and/or transformation-
induced deformation contains rotations all orientation sensitive vector and
tensor quantities have to be properly rotated according to

v̂ ¼ Rv; ð82Þ

T̂ ¼ RTRT; ð83Þ

T̂ ¼ RRTRTRT; ð84Þ

where v̂ and v are the rotated and the original vector quantities, T̂ andT are
the rotated and the original second rank tensors, T̂ andT are the rotated
and the original fourth rank tensors, respectively. The rotation tensor R ¼
RtrRini includes initial grain orientation Rini which does not change in the
course of simulations and transformation-induced rotationRtr which varies
during the phase transformation.Rtr stems from the polar decompositionof
the transformation-induced deformation:

Ftr ¼ RtrUtr; ð85Þ

where Utr is a rotation-free transformation stretch tensor.

Fig. 8 | Metallic foam deformation results using
Bazant strain model. The foam microstructure
subjected to 50% tensile strain (a), 15% compressive
strain (c) and 25% shear strain (e). b, d, f are the von
Mises stress distributions obtained from the corre-
sponding Cauchy stresses.
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Fig. 9 | Metallic foam deformation simulation statistics for different values of
scaling factor λ. The solver convergence results for uniaxial deformation using the
Green–Lagrange strain model (a), Bazant strain model (c) and Hencky strain model

(e). The solver convergence results for shear deformation using the Green–Lagrange
strain model (b), Bazant strain model (d) and Hencky strain model (f).

Fig. 10 | Effect of the force density application.
a Initial undeformed configuration, b the effect of
force density application over the circular area in the
middle of the simulation domain and c, d over the
circular area perimeter. The force vectors are not
to scale.
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The use of the Khachaturyan’s elasticity model in the case of finite
strains results in the following mechanical driving force in the phase-field
equation:

ΔGel
αβ ¼ 1

2Eel : Cβ �Cα

� �
: Eel

� J trEel : C : FTelFF
�1
tr Fβtr � Fαtr

� �
F�1
tr F�1

pl

h isym
;

ð86Þ

where &sym ¼ 1
2 ð&þ&TÞ and J tr ¼ detðFtrÞ is the Jacobian obtained

from the transformation induced deformation gradient tensor.
The alternative elasticity model formulation from ref. 36 results in

ΔGel
αβ ¼ 1

2Eel : C C�1
α �C�1

β

� �
C

h i
: Eel

� J trEel : C : FTelFF
�1
tr Fβtr � Fαtr

� �
F�1
tr F�1

pl

h isym
:

ð87Þ

Considering the Hencky strain and Khachaturyan’s elasticity model
the driving force has the form

ΔGel
αβ ¼ 1

2Eel : Cβ �Cα

� �
: Eel

� J trEel : C : C�1
el FTelFF

�1
tr Fβtr � Fαtr

� �
F�1
tr F�1

pl

h isym
:

ð88Þ

Considering Bazant approximation in Eq. (67) and Khachaturyan’s
elasticity model the driving force reads

ΔGel
αβ ¼ 1

2Eel : Cβ �Cα

� �
: Eel

� 1
2 J trEel : C : FTelFF

�1
tr Fβtr � Fαtr

� �
F�1
tr F�1

pl

h isym ð89Þ

� 1
2
J trEel : C : C�1

el FTelFF
�1
tr Fβtr � Fαtr

� �
F�1
tr F�1

pl

h isym
C�1
el : ð90Þ

Fig. 11 |Martensite simulation results. a Simulated
martensite microstructure, b orientation map
showing local rotation angles.

Fig. 12 | Mechanical equilibrium solver perfor-
mance during the martensite microstructure
simulation. aThe number of iterations at every time
step and bmartensite volume fraction evolution for
three different box sizes: 32, 64 and 128 grid cells in
three dimensions.
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Themulti-phase-fieldmodel and the elasticitymodels presented above
are implemented in the OpenPhase software library48, which is used to
perform all simulations presented in this paper. In all example simulations
presented above Khachaturyan’s elasticity model is used. The convergence
parameters in all simulations are set to ϵF = 10−6 and ϵS = 105 Pa unless
specified otherwise.

Data availability
The simulation data produced in this study can be reproduced using the
official distribution package of the OpenPhase library48 which includes all
relevant simulation examples.

Code availability
The small strain iterative elasticity solver described in Section “Introduc-
tion” is freely available via the OpenPhase library distribution48 in the form
of an open-source code under the GNUGPL v3. The finite strain extension
will be made available via the OpenPhase library distribution in one of its
official releases in the near future.
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