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To bolster the accuracy of existing methods for automated phase identification from X-ray diffraction
(XRD) patterns, we introduce a machine learning approach that uses a dual representation whereby
XRD patterns are augmented with simulated pair distribution functions (PDFs). A convolutional neural
network is trained directly on XRD patterns calculated using physics-informed data augmentation,
which accounts for experimental artifacts such as lattice strain and crystallographic texture. A second
network is trained on PDFs generated via Fourier transform of the augmented XRD patterns. At
inference, these networks classify unknown samples by aggregating their predictions in a confidence-
weighted sum.We show that such an integrated approach to phase identification provides enhanced
accuracy by leveraging the benefits of each model’s input representation. Whereas networks trained
on XRD patterns provide a reciprocal space representation and can effectively distinguish large
diffraction peaks in multi-phase samples, networks trained on PDFs provide a real space
representation and perform better when peaks with low intensity become important. These findings
underscore the importance of using diverse input representations for machine learning models in
materials science and point to new avenues for automating multi-modal characterization.

X-ray diffraction (XRD) plays a critical role in materials development,
enabling the identification of crystalline phases following their synthesis.
With the rise of automated experiments1–3, there is a growingneed to classify
XRD patterns with minimal human intervention. Convolutional neural
networks (CNNs) are particularlywell suited for this task as theycan learn to
extract the features that are most useful to identify a given phase4. Never-
theless, there remain several factors that limit the accuracy of these models.
Recent work has shown that CNNs exhibit bias toward the largest peaks
within each pattern, causing them to overlook the less prominent features5.
This bias leads to misclassifications when such features are needed to dis-
tinguish similar phases whose largest diffraction peaks overlap. Further
complicating matters is the prevalence of measurement noise and diffuse
background signal in experimental patterns, which often are not accounted
for when training CNNs on simulated data6. Using proper data repre-
sentation is paramount when training new models, whether to improve
their performance or reduce their complexity. This motivates our investi-
gation of the pair distribution function (PDF) as an alternative repre-
sentation of diffraction data that can be used to supplement the training of
ML models for automated phase identification.

The PDF describes the probability of finding a pair of atoms separated
by some distance (r) within amaterial7. Variations in its intensity arise from
differences in atomic form factors or scattering lengths, which dictate how
each atom scatters incident X-rays or neutrons, as well as the frequency of
certain atomic distances within the structure. PDFs are derived from dif-
fraction patterns by converting the data from reciprocal space to real space
through a Fourier transform.Whereas conventional diffraction patterns are
used to assess long-range order in the average structure of a material, PDFs
are often used to inspect short-range order in the local structure while also
still accounting for the long-range order that exists8–10. This is primarily
because PDFs aremore sensitive tominor features in the diffraction pattern,
such as diffuse scattering, which otherwise might be overlooked when
studying the most prominent Bragg peaks. We note that in principle these
two representations contain identical information; however, they each
highlight different aspects of the material being examined. For this reason,
we believe they are particularly well-suited to complement one another in
the training of ML algorithms.

Building on recent advances in ML for spectroscopy11,12, Liu et al.
pioneered its use in the analysis ofPDFdataby training aCNNtoclassify the
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space groups of crystalline materials, achieving a 70% accuracy on entries
from the ICSD13. The model was also found to be robust against changes in
experimental parameters related to the choice of distances in real space (r)
and reciprocal space (Q) includedduring training14.Generativemodels have
since been developed to solve the structures of metallic nanoparticles from
PDF data, providing accurate predictions on systems containing ≤ 400
atoms15. To extract structural motifs from bulk materials, Anker et al. used
gradient boosted decision trees to iteratively refine structural models in the
fitting of measured PDF data16. Related work has shown that DFT calcu-
lations can be integrated into the refinement process to ensure the proposed
solution is low in energy, thus providing solutions that more accurately
represent the experimental sample17. Zhang et al. further showed that when
combined with feature extraction methods like principal component ana-
lysis and non-negative matrix factorization, machine-learned PDF analysis
can also yield accurate predictions of defect concentrations in oxides18.
Despite these advancements, there remains no ML technique available to
identify specific crystalline phases that match a given PDF in generic che-
mical spaces, a task that becomes evenmore challenging when dealing with
multi-phase samples.

In thiswork,we introduce an approach to PDFanalysis and integrate it
with our existing algorithm (XRD-AutoAnalyzer) designed to identify
crystallinematerials fromXRDpatterns19. In the original method, a CNN is
trained on simulated XRD patterns that are systematically augmented to
account for several experimental artifacts that cause changes to peak posi-
tions (lattice strain), intensities (crystallographic texture), andwidths (small
particle size). We now train a second CNN on PDFs obtained through a
Fourier transform of these simulated XRD patterns. The trainedmodel can
then be used to identify crystalline phases from experimental patterns by
first transforming them in a similar fashion. The samples resulting from the
Fourier transformarehereafter referred to as virtualPDFs as they require no
changes to the experimental procedure20, instead relying on data collected
from conventional XRD scans. While the model trained on virtual PDFs is
effectivewhenusedon its own,we show in thiswork that improvedaccuracy
can be achieved by aggregating its predictions with those from the original
XRD-AutoAnalyzer method. This is accomplished by combining the pre-
dictions of each model in a confidence-weighted sum, which leverages the
strengths and minimizes the weaknesses of each CNN by assigning greater
weight to the model with higher confidence in its prediction accuracy
(Fig. 1).

The models trained on XRD patterns and virtual PDFs are evaluated
using four datasets spanning two chemistries, Li-La-Zr-O and Li-Ti-P-O.
To examine how the number of phases in a sample affects the performance
of eachmodel, we created a dataset that includes 8000 patterns derived from

mixtures containing between one and three compounds each. A second
dataset is tailored to probe each model’s ability to assess minor features in
the diffraction pattern, and as such it contains 440 patterns derived from a
single composition (LiTiO2) with varied site occupancy. A third dataset,
with 2800 patterns categorized by distinct experimental artifacts, is used to
gauge how robust each model is against perturbations of their inputs. A
fourth and final dataset is used to validate the models on real data, con-
taining 240 patterns obtained from experimentally prepared samples. Our
tests reveal that the models trained on virtual PDFs respond better to low-
intensity features in the diffraction pattern, while also being more robust
against experimental artifacts, enabling high accuracy on single-phase
samples. In contrast, the XRD-trained models perform better on multi-
phase samples as they can effectively deconvolute the largest Bragg peaks in
each pattern. Notably, combining the predictions of both models in a
confidence-weighted sum provides substantially higher accuracy than each
standalone model, demonstrating the benefit of using diverse input repre-
sentations for ML on diffraction data.

Results
Influence of the number of phases present
We generated a total of 8000 simulated XRD patterns and an equivalent
number of virtual PDFs from 28 and 45 crystalline phases within the Li-La-
Zr-O and Li-Ti-P-O chemistries, respectively. These XRD patterns and their
corresponding PDFs include 1400 single-phase, 2400 two-phase, and 4200
three-phase samples. Mixtures comprised of ≥ 2 phases were obtained
through linear combinations of the single-phase patterns, fromwhich virtual
PDFswere computed viaFourier transform.TwoCNNswere trainedoneach
chemical space, as detailed in theMethods, and then applied to the simulated
XRDpatterns andvirtualPDFs.Weassessed eachmodel’sperformanceusing
the F1-score, a commonly used metric that averages precision and recall:

F1 ¼
TP

TPþ 1
2 FPþ FNð Þ ð1Þ

In the context of this work, TP represents the number of correctly
identified phases (true positives), FP is the number of phases incorrectly
identified (false positives), and FN is the number missed phases (false
negatives). A high F1-score, close to 1, indicates that the model can effec-
tively identify all phases in a sample without incorrectly identifying phases
that are not present.

The results fromeachmodel trainedonXRDpatterns or virtual PDFs
are shown in Fig. 2, where the bar heights (y-axis) represent F1-scores and
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Fig. 1 | Combined analysis of XRD patterns and PDFs. Given a pattern to be
classified, a Fourier transform (FT) is used to calculate its virtual PDF. Each spec-
trum is fed to a separately trained CNN that predicts a set of phases (i), where each

has a confidence associated with XRD (cXRD) or PDF (cPDF). These predictions are
aggregated using a confidence-weighted sum defined by the equation shown.
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the labels (x-axis) denote the phase count in the samples on which they
were obtained. Both models performed well on the samples tested, pro-
viding F1-scores greater than 0.75 even when given three-phase mixtures.
Interestingly, the PDF-trained model slightly outperforms the XRD-
trained model on samples containing only a single phase. For reasons
outlined in the next two sections, this result suggests that PDFs provide a
more effective representation of diffraction patterns in the absence of
impurity phases. In contrast, theXRD-trainedmodel performsbetter than
its PDF-trained counterpart when applied to multi-phase samples, and
this performance gapwidenswith increasingphase count.We suspect that
the reduced accuracy in identifying multi-phase mixtures using PDFs is
due to their inherently broad and overlapping features. Unlike XRD
patterns, which often contain distinct peaks that are easier to separate,
PDFs possess diffuse characteristics that blend together when multiple
phases coexist in one sample.

Even in cases where the overall F1-scores are comparable between the
models trained onXRDpatterns and virtual PDFs, their failures often occur
on different samples. Indeed, 42% of all errors affect samples that are mis-
classified in one representation but correctly classified in another. We
exploit these differences, combined with eachmodel’s ability to evaluate the
confidenceof its ownpredictions, to enhance the accuracy of the twomodels
by aggregating their outputs in a confidence-weighted sum.As shownby the
purple bars in Fig. 2, our combined approach to phase identification leads to
substantially improved accuracy relative to each standalone model. The
aggregated predictions yield an average F1-score of 0.88, exceeding the
average score of 0.83 obtained by the individually trained models, which
corresponds to a near 30% reduction in the total error rate.

The results presented in Fig. 2 correspond to predictions made on
samples containing known (previously reported) phases in the Li-La-Zr-O
or Li-Ti-P-O chemistries. However, exploratory syntheses can sometimes
lead to the formation of novel phases, which do not have any reference
structures available in databases like the ICSD.Ourmodels therefore cannot
predict the identities of such phases since each CNN needs to be trained on
XRD patterns or virtual PDFs generated from known materials. Never-
theless, they can often detect the presence of unknown phases by giving
predictionswithunusually lowconfidence.To illustrate this,weperformeda
series of tests where themodels trained onknownphases from the Li-La-Zr-
O chemistry were applied to 10 compounds randomly selected from other

chemistries (Supplementary Table 2). A total of 200 XRD patterns and
virtual PDFs were simulated from these compounds, each including a
mixture of experimental artifacts (“Methods” section). As shown in Sup-
plementary Fig. 1a, the models give predictions with low confidence (on
average, 18%) when applied to these unknown phases. For comparison, the
predictions made on data from known phases generally have much higher
confidence (on average, 92%) as shown in Supplementary Fig. 1b. Onemay
therefore use low prediction confidence as a possible indicator for the
presence of unknown phases.

Assessment of minor diffraction peaks
The tests reported in the previous section reveal that CNNs trained on
virtual PDFs perform better than those trained on XRD patterns when
dealing with single-phase samples. To clarify why this might be, we inspect
theClassActivationMap (CAM)of eachmodel. TheCAM illustrateswhich
parts of the input spectrum most significantly contribute to the model’s
output4,21. TakingTiO2 as an example, we examine theCAM for eachmodel
using its associated input. TheXRDpattern and virtual PDF for this sample,
as well as their respective CAMs, are shown in Fig. 3. These plots reveal that
the CAM for each spectrum directly correlates with its magnitude. In the
case of XRD, the model’s output is predominantly influenced by the few
largest peaks while the smaller features are overlooked. On the other hand,
given the frequent presence of many prominent features in the PDF, a
greaterportionof the spectrumhasa strong influenceon themodel’s output.
This difference highlights a key advantage of using virtual PDFs as input to
CNNs; by using a representation that evenly weighs its features, the model
can more effectively harness their information. In contrast, it is more dif-
ficult for aCNNto leverageminor peaks inXRDpatterns.Doing so requires
the network to learn high weights in the training process to compensate for
these peaks’ low intensities. However, high weights are generally penalized

Li-La-Zr-O Li-Ti-P-O

1-Phase

2-Phase

3-Phase

1-Phase

2-Phase
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Aggregate
PDF
XRD

Fig. 2 | Performance on multi-phase mixtures. F1-scores from the predictions of
two CNNs that were trained on XRD patterns (blue) or PDFs (red). These models
were applied to simulated data from the Li-La-Zr-O and Li-Ti-P-O chemistries. Also
included are the F1-scores obtained by aggregating the predictions from bothmodels
in a confidence-weighted sum (purple). The data is categorized by the number of
phases included in each sample. Yellow stars denote which standalone model per-
forms best, while the shaded portion of each purple bar represents the improvement
realized by aggregating the predictions of both models.
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Fig. 3 | Feature importance in XRD and PDF analysis. Class activation maps
(CAMs) are shown for the models trained on XRD patterns as compared to virtual
PDFs. a Calculated XRD pattern (solid blue line) for rutile TiO2 and its associated
CAM (shaded blue curve). b Virtual PDF (solid red line) for rutile TiO2 and its
associated CAM (shaded red curve).
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during training due to the use of regularization (e.g., batch normalization
and dropout) to avoid overfitting.

To further demonstrate the advantages of using virtual PDFs when
examining minor Bragg peaks, we created a dataset of partially disordered
LiTiO2 compounds where such minor features must be inspected to dis-
tinguish between the different states of order. The dataset contains eleven
crystalline phases that share the same composition (LiTiO2) and structural
framework (rocksalt), with the only difference being the distribution of their
site occupancies. These range from an ordered configuration (space group
P4=mmm), where Li and Ti strictly occupy the 2a and 2d sites, to a dis-
ordered configuration (space group Fm�3m) where Li and Ti are distributed
evenly among both sites (Fig. 4a). The site occupancies in each of the eleven
structures were determined using a linear interpolation between the fully
ordered and disordered configurations. These modified occupancies alter
the intensities of several minor Bragg peaks while leaving the largest peaks
unchanged (Fig. 4b). Consequently, the dataset provides a useful test case to
determine which model can most effectively assess the intensities of minor
Bragg peaks to distinguish between materials with similar XRD patterns.

Because themodels assessed in theprevious sectionwerenot trainedon
any disordered versions of LiTiO2 (Supplementary Fig. 2), we trained two
newmodels on data from the eleven LiTiO2 structures which possess varied
Li/Ti ordering. These structures were used to simulate 2200 XRD patterns
and an equivalent number of virtual PDFs, each augmented with pertur-
bations corresponding to various experimental artifacts (“Methods” sec-
tion). The patterns and PDFs were divided using a 60/20/20 split for
training, validation, and testing.Theperformanceof eachmodel is evaluated
by computing the error of its predictions in terms of % order:

Prediction error ¼ 2 Li2apred � Li2aactual

� �
× 100% ð2Þ

Where Li2apred and Li
2a
actual represent the predicted and actual occupancy of Li

on the 2a site, respectively. Figure 4c shows the distribution of prediction
errors fromeachCNNwhen applied to its test set. These distributions reveal
that the PDF-trainedmodel performs well on the LiTiO2 dataset, providing
an average prediction error of only 9%, which is substantially lower than the
18% error provided by the XRD-trained model.

The improved accuracy provided by using virtual PDFs can be
understood by visualizing their changes with respect to different site
occupancies. In Fig. 4d, we plot the PDFs calculated from LiTiO2 through a
Fourier transform of its XRD patterns with varied site order (Fig. 4b). This
plot reveals that the shape and intensity of each feature in thePDF is strongly
dependent on the distribution of site occupancies in LiTiO2. The CNN can
accuratelymodel this relationship as the corresponding changes affectmany
high-intensity features that contribute significantly to the model’s classifi-
cation (see Fig. 3 for CAM analysis). In contrast, the XRD patterns corre-
sponding to varied site occupanciesdifferonly in their low-intensity features
(Fig. 4b), which are more difficult to assess when using CNNs. These
findings confirm the benefits of using virtual PDFs to better distinguish
between materials with similar XRD patterns.

Handling experimental artifacts
Experimentally measured XRD patterns often deviate from their calculated
reference patterns owing to the presence of various artifacts including lattice
strain, crystallographic texture, small particle size, measurement noise, and
diffuse background signal. To determine which model is more robust
against each of these experimental artifacts, we generated 2800 XRD pat-
terns and an equivalent number of virtual PDFs from 28 different com-
pounds in the Li-La-Zr-O chemical space. These patterns and PDFs were
separated from the data used formodel training. Each sample contains only
one phase and is categorized by the experimental artifact it contains. The
magnitude of each artifact was set beyond the limits used during model
training to determine how well the CNNs could handle out-of-distribution
data. Further details on the simulation of these artifacts are provided in the
Methods. After training two models in the Li-La-Zr-O space, one on
simulatedXRDpatterns and another onvirtual PDFs,we applied each to the
categorized samples. Table 1 lists the artifacts that were considered and the
F1-scores resulting from the predictions of each model on the affected
patterns.

Only for one experimental artifact does the model trained on XRD
patterns outperform its PDF-trained counterpart in a significant way: shifts
in peak position that results from lattice strain. An F1-score of 0.917 is
achievedwhen using XRD patterns, in comparison to a score of 0.869 when
using virtual PDFs. Lattice strain modifies both XRD patterns and PDFs
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Fig. 4 | Predicting site occupancies with XRD and PDF analysis. a Unit cells for
LiTiO2 shownwith varied degrees of order, controlled by the occupancies of Li/Ti on
the 2a and 2d sites. bXRDpatterns calculated from these structures, where theminor
Bragg peak intensities (purple) correlate with the degree of order. c Density of
prediction errors obtained from CNNs trained on XRD patterns and virtual PDFs,

defined as the % difference between the predicted and actual occupancies on the 2a
site (Eq. 2). Positive prediction errors represent an overestimation of Li/Ti ordering
while negative errors represent an underestimation. dVirtual PDFs calculated from
the XRD patterns through a Fourier transform.
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similarly by shifting features along the x-axis (Supplementary Fig. 3a).
However, we suspect that the model trained on PDFs is more impacted by
these changes as it equally weighs all features, ranging from low to high r,
with equal importance (Fig. 3b). In contrast, the XRD-trained model pri-
marily focuses on the largest Bragg peaks, as demonstrated in the previous
section (Fig. 3a). Such peaks are typically found at low 2θ values, which are
less influenced by lattice strain. As a result, the model trained on XRD
patterns is less affected by shifts originating from lattice strain.

In caseswhere the Bragg peak intensities are altered by crystallographic
texture, both models perform comparably, yielding F1-scores of 0.963 and
0.962 when trained on XRD patterns and virtual PDFs, respectively. It
appears that texture has a similar effect on each representation, leading to
changes in the magnitude of its features while preserving their positions
(Supplementary Fig. 3b). Such changes have minimal influence on the
performance of each model. Indeed, previous work has shown that CNNs
trained on diffraction patterns tend to be influencedmuchmore strongly by
the positions of the input features (2θ) rather than their intensities5,19.

For the remaining three artifacts we considered – peak broadening,
measurement noise, and diffuse background signal – the model trained
on virtual PDFs performs significantly better than the model trained on
XRD patterns. As reported in Table 1, the F1-scores that result from
using PDFs are on average 0.049 higher than those obtained from XRD
patterns when altered by one of these three artifacts, which corresponds
to a 46% reduction in the model’s error rate. To understand these
improvements, we illustrate in Fig. 5 the impact of each artifact on the

XRD pattern and virtual PDF from a sample compound, Li2TiO3. All
three artifacts are found to have less influence on the PDF as compared to
the XRD pattern.

Peak broadening (Fig. 5a) causes several peaks to overlap in the XRD
pattern, complicating its analysis, whereas it only leads to minor changes in
the magnitude of features in the PDF. Its peaks and troughs become more
(less) pronounced at low (high) r values in the PDF, but their shapes gen-
erally remain unchanged. Measurement noise (Fig. 5b) in XRD has little
effect on the virtual PDF throughout the range of values where it is plotted
here (1Å ≤ r ≤ 40Å).Though, changes to thePDFbecomemoreprominent
when it is generated using data from higher 2θ in the corresponding XRD
pattern (Supplementary Fig. 4). These changes are particularly noticeable at
very high values of r (> 100Å), where features have lowmagnitude and are
heavily influenced by noise in the XRD pattern (Supplementary Fig. 5). As
such, we restricted all virtual PDFs to r ≤ 40Å when training the models
described in this work (“Methods” section). Features within this range are
affected by diffuse background signal in XRD (Fig. 5c), but any such
alterations are restricted to low values of r (<5Å) while the remainder of the
spectrum appears unchanged.

Because thePDF representation leads to improvedmodel performance
when dealing with three out of the five experimental artifacts considered
here, it also provides better results than XRDwhen used to analyze samples
that simultaneously contain all five artifacts. As shown in the final row of
Table 1, the PDF-trainedmodel produces an F1-score of 0.813when applied
to these samples with mixed artifacts. In contrast, the XRD-trained model
yields a lowerF1-score of only 0.781whenapplied to the same set of samples.
While both scores are lower than those obtained on samples containing just
one artifact, they show that eachmodel performs reasonablywell evenwhen
dealing with realistic samples that are affected by multiple artifacts at once.
Further improvements can also be achieved by combining the predictions
fromeach individualmodel into a confidence-weighted sum; doing so yields
a higher F1-score of 0.862.

Validation on experimental samples
As the models presented in this work are trained only on simulated data,
whether it beXRDpatternsor virtual PDFs, it is important to verify that they
maintain a high level of predictive accuracy when applied to data from
experimental measurements. To confirm that this is the case, we tested each
CNN on a set of 240 patterns obtained from experimentally prepared
samples. These samples consisted of various two-phase combinations of
eight compounds from the Li-La-Zr-O and Li-Ti-P-O chemistries. For each
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Fig. 5 | Experimental artifacts in XRD and PDF. Visualization of three experi-
mental artifacts on which CNNs perform better when trained on virtual PDFs as
opposed to XRD patterns. All the XRD patterns (left) and PDFs (right) shown here
are calculated from Li2TiO3. The artifacts include (a) peak broadening, (b)

measurement noise, and (c) diffuse background signal. The unperturbed patterns
(without artifacts) and PDFs are plotted as blue and red lines, respectively, while the
perturbed patterns (with artifacts) and PDFs are plotted as purple lines.

Table 1 | Comparison of the F1-scores achieved by models
trained on simulated XRD patterns and virtual PDFs

XRD PDF

Peak position shifts 0.917 0.869

Peak height changes 0.963 0.962

Peak broadening 0.935 0.967

Measurement noise 0.924 0.971

Diffuse background 0.835 0.902

All artifacts present 0.781 0.813

Results are categorized by the experimental artifact each dataset contains. The final row contains
results from samples that are simulated with all five experimental artifacts.
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combination we prepared ten unique samples, each containing progres-
sively larger amounts of the secondary phase. The weight fraction of the
secondary phase varied from 2 to 20%. Additional information regarding
these measurements can be found in previous work22.

For each chemistry, we trained one CNN on simulated XRD patterns
and another on virtual PDFs as described in the Methods. In contrast to
previous work22, where the performance of each model was measured only
by its ability to successfully detect the impurity phase in each sample, here
we evaluatemodel performance by computing the F1-score– ameasure that
accounts for both accuracy and precision (Eq. 1). The F1-scores resulting
from the predictions of each model on the dataset containing 240 experi-
mental samples are displayed in Fig. 6. These scores are plotted as a function
of the secondary phase’s weight fraction in each sample. Both models yield
comparably highF1-scores, ranging from0.73 to 0.88, with their predictions
becoming more accurate as the weight fraction of the secondary phase
increases. Notably, these F1-scores agree well with those obtained when
applying the same models to simulated patterns. As discussed in earlier
sections (Fig. 2), the XRD- and PDF-trained models yield F1-scores of 0.90
and 0.91, respectively, when applied to simulated data from two-phase
mixtures. The comparable F1-scores generated from both experimental and
simulated data highlight the models’ ability to extrapolate beyond their
training sets of simulated XRD patterns and PDFs.

We also combined the predictions of each model in a confidence-
weighted sum and evaluated the resulting F1-scores on the experimental
dataset containing 240 samples. As shown by the purple dots in Fig. 6, a
substantial improvement in accuracy is achieved by aggregating the pre-
dictions from both models. On average, the F1-scores provided by the
combined predictions are 0.041 higher than those obtained from the best-
performing standalone model trained on either XRD patterns or PDFs,
corresponding to a 38% reduction in the error rate. These findings
demonstrate that by combining distinct representations of input to the
CNNs, improved predictive power on experimental samples can be
achieved while requiring no changes to the measurements themselves.

Discussion
Our work shows the importance of representation when using ML to
interpret experimental data. By choosing an optimal representation of the
data, one can reduce model complexity and improve classification perfor-
mance. For the training ofMLmodels that can identifymaterials from their
XRD patterns, recent efforts have used a variety of representations that
describe these materials in reciprocal space4,5,19,22–24. Here we have demon-
strated that significantly improved accuracy in phase identification can be
achieved by also considering materials in real space, specifically by using
PDFs calculated through a Fourier transform of XRD patterns. Such PDFs
are called virtual as they require no changes to the experimental procedure,
simply being an alternative representation of the data obtained from typical
powder diffraction measurements. By training one model on simulated
XRD patterns and another on virtual PDFs, we have shown how one can
leverage the unique benefits of each input representation for the task of
phase identification.

CNNs trained on virtual PDFs outperform those trained on XRD
patterns when applied to samples containing a single phase, primarily for
two reasons. First, PDFs contain many prominent features that are equally
weighed by the CNN,whereas XRDpatterns often contain a few prominent
peaks that disproportionally bias theCNN.This allows PDF-trainedmodels
to more effectively distinguish between similar phases that have substantial
peak overlap in XRD. For instance, our models could more precisely
determine the degree of Li/Ti order present in LiTiO2 when examining
virtual PDFs as opposed to XRD patterns. These patterns could in principle
be distinguished by assessing the intensity of several low-intensity Bragg
peaks in XRD, which grow larger with increased Li/Ti ordering in LiTiO2.
However, detecting such minor variations requires the CNN to learn very
highweights associated with the low-intensity peaks. This is discouraged by
our use of regularization to avoid overfitting the models during training. In
contrast, changes to the low-intensity peaks in XRD lead to variations in the
shapes of much larger features in virtual PDFs. As a result, the CNNs can
accurately detect these variations without requiring the use of dis-
proportionately large weights.

In addition to the improved detection of low-intensity peaks, trans-
forming XRD patterns into virtual PDFs reduces the impact of measure-
ment noise and diffuse background signal. While the Fourier transform
used to generate the PDF does not create or destroy any information
associated with the XRD pattern, it isolates much of the effects from high-
frequency signal (noise) and low-frequency signal (diffuse background) to
high and low values of r, respectively. As a result, the PDF-trained models
are more robust against these artifacts so long as an appropriate range of r
values is used. In our tests, the models performed best when trained on
virtual PDF data ranging from 1−40Å (Supplementary Fig. 6).

We further note the importance of choosing an optimal range of 2θ, or
more generally, the extent of reciprocal space (Q) that is used to generate the
virtual PDFs. When studying short-range order in disordered solutions or
nanomaterials, for example, it is often recommended to collect diffraction
data up to at least Q = 10 − 15Å−1 (beyond what is possible for Cu Kα

radiation). In contrast, our method is designed only for the analysis of
crystalline materials that possess long-range order, which can typically be
identified using much less of Q-space. For this task, we find that it is ben-
eficial to sample a limited range of 2θ (10� � 90�) which corresponds to a
smaller portion of Q-space (0.7 − 5.8Å−1) when using Cu Kα radiation.
Data collected at higher 2θ often contains broad peaks with low intensity,
causing them to blend in with the background noise that is commonly
present in experimental measurements. This leads to modifications of the
PDF throughout its entire range of r values (Supplementary Fig. 4), ulti-
mately reducing the accuracy of the corresponding models. We therefore
chose to use limited ranges of 2θ and r that led to optimal model perfor-
mance on our test data consisting of crystalline phases (Methods).

Despite their improved performance on single-phase samples, the
CNNs trained on virtual PDFs exhibit lower accuracy than XRD-trained
models when applied to multi-phase mixtures. This shortcoming can be
attributed to the diffuse characteristics of PDFs, which tends to create

XRD

Aggregate

PDF

Li-Ti-P-O
Li-La-Zr-O

F 1-s
co

re

Fig. 6 | Performance on experimental samples. Calculated F1-scores on experi-
mental patterns obtained from physical two-phase mixtures prepared using mate-
rials in the Li-La-Zr-O and Li-Ti-P-O chemical spaces. The F1-score is plotted as a
function of weight fraction for the secondary (impurity) phase in each mixture,
which ranges from 2 to 20%. Results are separated by the type of input data from
which the predictionsweremade (XRD,PDF, andAggregate). The shaded portion of
each plot represents the improvement given by aggregating the individual results.
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overlapping features when multiple phases are present in one sample.
The models trained on PDFs also underperform those trained on XRD
patterns when applied to samples affected by lattice strain, an artifact
that shifts the positions where peaks occur within each spectrum. Such
shifts appear similar in XRD patterns and PDFs, becoming more pro-
nounced at higher values of 2θ and r. Yet, the influence of these shifts on
model performance differs between each representation. In XRD pat-
terns, the peaks that are most affected by lattice strain (at high 2θ) also
tend to be low intensity, and as such, they have little effect on classifi-
cations made by the CNN. In contrast, PDFs contain many prominent
features at high values of r which have significant influence over the
CNN’s predictions. As a result, the models trained on PDFs show
reduced classification accuracy when these features are heavily affected
by lattice strain.

The unique strengths and weaknesses of models trained on XRD
patterns and virtual PDFs provide an opportunity to maximize the benefits
of each model while minimizing its drawbacks. We accomplish this by
aggregating the predictions from both models in a confidence-weighted
sum, which outperforms each standalone model on a variety of test cases
including both simulated and experimental data. The success of aggregation
largely stems from the ability of each model to assess its own level of
prediction confidence on new samples. This is done by using Monte Carlo
dropout, a technique that provides an estimate of model uncertainty by
running the trained neural network multiple times during inference, each
time with different neurons deactivated, creating a distribution of outputs
from which confidence can be inferred25. Further enabling the improved
accuracy realized by aggregation is the fact that eachmodel tends to succeed
or fail on different samples. As a result, the best-suited model can be
automatically determined by allocatingmoreweight to the one that exhibits
higher prediction confidence.

Our findings build upon previous benchmarks in ML where state-of-
the-art performance was achieved by combining distinct input repre-
sentations. For instance, IBM Watson surpassed previous Jeopardy!
champions by using algorithms that processed various representations of
the data – from keyword searches to semantic parsing – to determine the
most likely answer26. Similarly, DeepMind’s AlphaGomastered the game of
Goby combining neural networkswithMonteCarlo tree search algorithms,
each of which relied on a unique representation of the board’s layout27.
Related strides have beenmade inmaterials science and chemistry, with the
development ofmodels that can predict a compound’s property by learning
from different representations of its structure including atomic descriptors,
graph neural networks, and voxel-based images28–32. Our current work
shows that X-ray diffraction can also benefit fromdiverse representations of
measurement data, aligning with these recent advancements in AI andML.

A key benefit of our approach is that it requires no additional experi-
ments beyond traditionalXRDmeasurements, fromwhichvirtual PDFs can
be calculated through a Fourier transform. The reported improvements in
accuracy are therefore realized without any increase in experimental cost,
making these methods well-suited for use in high-throughput and auto-
mated workflows3. Beyond XRD, data augmentation based on a Fourier
transform may be broadly applicable to numerous characterization tech-
niques. For example, ML models trained to interpret images from electron
microscopy may benefit from being fed their diffraction patterns, obtained
via Fourier transform. Indeed, somework has been reported to this end33–35,
and our results further showcase the potential of ML to enable automated
characterization based on a variety of data formats.

Methods
Simulation of XRD and PDF data
To compute the XRD pattern for a given phase, we first determine the
positions (2θ) and heights (I) of its Bragg peaks using Pymatgen36. In this
work, all such values are calculated by assuming Cu Kα radiation. The
position andheight of eachpeak are used to set themean andmaximumof a
Gaussian profile, whose width is determined by the Scherrer equation. The
Gaussian profiles associated with all Bragg peaks for a given compound are

summed to produce a continuous pattern. Gaussian noise with a standard
deviation of 0.25% (relative to themaximumpeak height) is also added.We
sample 2θ = 10–90° (Q = 0.7− 5.8Å−1) for all patterns considered here,
which was found to provide maximal accuracy for the identification of
crystalline phases, though ourmethods are generally applicable to any range
of 2θ. To train a CNN for the classification of XRD patterns, we perform
data augmentation based on five experimental artifacts. First, the positions
of all Bragg peaks are modified to account for lattice strain in the corre-
sponding material, which we randomly sample to include changes in each
lattice parameter up to ± 3%. All such changes are constrained to preserve
the space group of the material. Second, peak intensities are varied by as
much ± 50% according to crystallographic texture along randomly selected
Miller indices. Third, peaks are broadened using the Scherrer equation to
mimic the effects of small particle size, including grain sizes between 5 and
30 nm. Fourth, impurity peaks are added at randomly selected positions
(2θ) with intensities as large as 50% of the maximum pattern intensity.
Based on these artifacts, we generate a total of 200 augmented patterns for
each phase that are then used for model training. Further details regarding
these augmentations can be found in previous work19. For the simulation of
test data used to evaluate ourmethod’s performance, we usedbroader limits
on the magnitude of each artifact. These include up to ± 5% changes in
lattice parameters, ± 70% changes in peak intensities, and particle sizes
ranging from 3 to 40 nm.

For each XRD pattern computed following the methodology outlined
in the previous paragraph, a virtual PDF is also generated. Typically, PDFs
are obtained from the total scattering function via the following equation37:

S Qð Þ ¼ IcðQÞ
N bh i2 þ

bh i2 � b2
� �

bh i2
ð3Þ

Where IcðQÞ is the coherent scattering intensity,N is the number of distinct
elemental species in the sample, andb is the concentration-weighted average
of their scattering factors38. However, because themodels introduced in this
work are designed to handle new samples with unknown compositions, we
make a simplification when computing the virtual PDF:

S Qð Þ ¼ IcðQÞ ð4Þ

In this case, Ic Qð Þ is obtained by converting eachXRDpattern from 2θ
into Q-space and applying a rolling ball background subtraction algorithm
(from scikit-image)39 with a radius of 0.85Å−1 to remove the incoherent
scattering. A sine Fourier transform is then used to compute the virtual PDF
as follows7:

G rð Þ ¼ 2
π

Z Qmax

Qmin

Q S Qð Þ � 1½ � sin Qrð ÞdQ ð5Þ

Where r represents the distance in real space. For all PDFs generated in this
work, we sample r from 1 to 40Å. This range was optimized to produce
optimal accuracywhen trainingmodels for the classification of virtual PDFs
(Supplementary Fig. 6).

Convolutional neural networks
Two models were separately trained for the classification of XRD patterns
and virtual PDFs in each chemistry that we tested (Supplementary Table 1).
Both models share the same input size (4501 values), being equal to the
number of datapoints in each XRD pattern or virtual PDF. They also share
the same output size, which is set by the number of reference phases
included in the training set. Each neuron in the output layer represents a
distinct phase thatmay be output by the CNN at inference. The twomodels
have similar architectures that differ only in their convolution layers. The
model trainedonXRDpatterns contains six convolution layers, whereas the
PDF-trained model has only one convolution layer. In both cases, these
layers are followed by max pooling. The pooled feature vectors are fed to a
fully connected neural network in eachmodel, which contains 3 layers with
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50% dropout and batch normalization applied between them during
training.

Training is performedon the augmentedXRDpatterns or virtual PDFs
described in the previous section. An early stop is employed at 50 epochs to
avoid overfitting on the simulated data. We also use five-fold cross-vali-
dation to quantify themodel’s variability. All training and validation curves
for the models developed in this work are displayed in Supplementary Figs.
7–9.At inference,MonteCarlo dropout is used to generatepredictions from
these trained models while also providing a measure of their uncertainty25.
Eachmodel is applied 100 times to a given sample, each timewith 50% of its
neurons (in the fully connected layers) randomly excluded. Thephase that is
predicted most often from these forward passes is given as the final output,
and its associated confidence is defined as the fraction (%) of passes where it
was predicted.

The models developed in this work are designed to predict only one
phase at a time. To handle multi-phase mixtures, we use an algorithm that
iterates between the identification of constituent phases and the subtraction
of their associated diffraction peaks. Further details on this algorithm can be
found in previous work19. Because PDFs contain many diffuse and over-
lapping features, they are not well-suited for peak subtraction algorithms.
Therefore, when classifying multi-phase mixtures using the PDF-trained
model, we iteratively convert the data back and forth between 2θ and
Q-space. After classifying a virtual PDF using its associated model, the
spectrum is converted into anXRDpattern through a Fourier transform, on
which peak subtraction is performed. The subtracted XRD pattern is then
transformed back into a virtual PDF that represents the sample minus the
phase that has already been identified. Classification is again performed on
this PDF, and the process is repeated until all phases have been identified.

Given two sets of predicted phases and confidence measures – one set
fromXRD and another from PDF –we aggregate themusing a confidence-
weighted sum:

ciagg ¼
1
2

ciXRD þ ciPDF
� � ð6Þ

Where ciXRD and ciPDF represent the confidence associated with each phase
(index i) predicted by models trained on XRD patterns or virtual PDFs. In
cases where a phase is predicted by one model but not the other, its con-
fidence is set to zero for themodelwhere it was not predicted. Following this
aggregation, only phases with an average prediction confidence ≥ 40% are
included in the final prediction. This cutoff was chosen to give optimal
performance on the tests reported in this work (Supplementary Fig. 10).

Data availability
All data reported in this work is available at https://doi.org/10.6084/m9.
figshare.24043410.v1.

Code availability
All code developed in this work can be found at https://github.com/njszym/
XRD-AutoAnalyzer.
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