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Incorporating long-range electrostatics in
neural network potentials via variational
charge equilibration from shortsighted
ingredients

Check for updates

Yusuf Shaidu 1,2,3 , Franco Pellegrini3, Emine Küçükbenli3,4 , Ruggero Lot3 &
Stefano de Gironcoli 3,5

Wepresent a newapproach to constructmachine-learned interatomic potentials including long-range
electrostatic interactions based on a charge equilibration scheme. This new approach can accurately
describe the potential energy surface of systems with ionic and covalent interactions as well as
systems with multiple charge states. Moreover, it can either be regressed against known atomic
charge decompositions or trained without charge targets, without compromising the accuracy of
energy and forces. We benchmark our approach against other state-of-the-art models and prove it to
have equivalent performances on a set of simple reference systems while being less computationally
expensive. Finally, we demonstrate the accuracy of our approach on complex systems: solid and
liquid state sodium chloride. We attain accuracy in energy and forces better than the model based on
local descriptors and show that our electrostatic approach can capture the density functional theory
tail of the potential energy surface of the isolatedNa-Cl dimer, which the local descriptor-basedmodel
fails to describe.

Most modern machine-learned interatomic potentials exploit the idea
of nearsightedness of interatomic interactions, i.e., they assume that
the contribution of an atom to the total energy depends mostly on its
local chemical environment, while the influence of atoms that are far
away is negligibly small. Following this idea, Behler and Parrinello1

proposed in 2007 the decomposition of the total energy of an
extended system into atomic contributions, each computed from a
descriptor of the local chemical environment. In that work, the
atomic energy was modeled using neural networks (NN), but the
same idea can also be combined with kernel regression to construct,
for example, Gaussian Approximation Potentials 2. Numerous high-
accuracy machine-learned interatomic potentials have been devel-
oped based on local descriptors and have been shown to be trans-
ferable enough to successfully capture the energetics of systems
beyond the conditions they were trained on refs. 2–10, including
ionic systems such as sodium chloride in solid and liquid phases11.

Despite these successes, it is known that these short-range models are
limited by design, and as the non-local interactions such as electrostatics or
van der Waals (vdW) effects become more significant in a system, the
applicability of a short-range model becomes questionable. For van der
Waals effects, one strategy is to include them via ad hoc corrections7,
namely, first subtracting this contribution from the reference total energy,
then using the remainder as the target of the machine learning training of a
short-range potential, and then adding back the long-range contribution to
predict the total energy. This approach is suitable if the reference energy is
already obtained with an ad hoc description of the vdW effects, as in the
Grimme-D212 approach. This range separation scheme has been proposed
to account for the long-rangepart of the electrostatic interactions in a similar
way: in refs. 13,14 a two-part neural network interatomic potential was
constructed for the water dimer. One neural network was trained to predict
the local atomic charge on each atom, and its parameters were optimized to
reproduce ab initio charges obtained from the Hirshfeld decomposition
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scheme15. Using the chargespredictedby thismodel, the electrostatic energy
was computed and subtracted from the total energy. A second network, a
short-rangedmodel, was then tasked to learn the remainder. One limitation
of this approach is its inability to capture global charge redistribution as
atomic charges are only given as functions of the local environment
descriptors.

An alternative approach to include long-range electrostatics in NN
potentials (NNPs) is the charge equilibration scheme (CENT) proposed by
Ghasemi et al.16. In CENT, the total energy is written as the sum of atomic
contributions plus a Hartree energy of Gaussian charge distributions cen-
tered at ionic positions. A neural network is used to predict atomic elec-
tronegativity whose inputs are atomic descriptors. The atomic charges are
obtained through a charge equilibration scheme17 where total energy is
minimized with respect to atomic charges subject to charge neutrality. This,
by construction, results in coupled linear equations for atomic charges, and
allows to capture of non-local charge redistribution. It also allows for a
seamless way to conserve the total charge (see Results Section for a more
detailed description). The CENT scheme has been successfully applied to
construct NNPs for ionic systems16,18,19. However, it is not expected to work
well for systems with competing covalent and ionic interactions, as the
functional form chosen for the total energy lacks any description of covalent
bonding.

A combination of the CENT scheme and the standard local atomic
energy approach has been proposed independently by Ko et al.20 and
Jacobson et al.21. In both 4G-HDNNP (fourth generation high-dimensional
neural network potential)20 andQRNN (charge recursive neural network)21,
the total energy is obtained in two steps, requiring the construction of two
separateNNmodels: one for the atomic electronegativities and the other for
the atomic energies. The predictions of the first model are used for charge
equilibration, and optimized against the reference atomic charges. The
resulting charges are then used to compute the Coulomb energies, and
supplied to the second NN in addition to the local environments, to predict
the remainder of the total energy (see Results Section formore details). This
approach is shown to accurately predict the energy and forces of systems
with competing covalent and ionic interactions. However, it comes at the
cost of training and evaluating two separate NNs, and computing forces
require the solution of a second linear system.

Several other approaches to include electrostatics in machine learning
interatomic potentials have been proposed22–26; we review here the main
ones. PhysNet22 is amessage-passing high-dimensional neural network that
predicts energy and atomic charges to incorporate electrostatics; it requires
only total charge as input but it misses a non-local charge redistribution
other than the average. CENT223 introduces a short-range term that is
independent of the atomic charge and retains the general functional formof
CENT for the long-range description while proposing a new trial electro-
static potential energy, which however requires a post-processing of the
density functional theory (DFT) self-consistent chargedensity in addition to
the decomposition of the total charge density into nuclear and electronic
densities. kQeq24 implements the CENT model with the electronegativity
predicted using a kernel model and uses dipole moments as a target rather
than atomic charges used in 4G-HDNNP. The long-distance equivariant
(LODE)25 framework is a kernelmodel that implements a long-range kernel
symmetrized for long-distance equivariance. Another approach for incor-
poration of electrostatics in NNP is based on the position of maximally
localized Wannier functions26,27. Self-consistent determination of long-
range electrostatics in neural network potentials (SCFNN)26, for example,
incorporates electrostatics in neural network potentials via two modules,
each consisting of two networks: one for short range and the other for long
range. While the first module uses the position of the maximally localized
Wannier function centers to predict electronic response, the secondmodule
predicts nuclear forces, requiring a total of four neural networks.

In this work, we propose an alternative approach that requires the
solution of a single linear system and the training and evaluation of only one
NN. To do this, we use the total energy for charge equilibration like in the
CENT approach, but we retain the higher expressiveness of 4G-HDNNP

through learned atomic energy terms. As detailed in Results Section, our
method can be seen as a second-order Taylor expansion (in the charge
variable) of generic machine-learned energy, depending on local environ-
ments and charges. By adopting this approximation we are able to replace a
computationally challenging self-consistent optimization that would arise
from the first derivative of the short-range energy term with respect to
atomic charges, with a single NN predicting all the expansion coefficients.
The neural network architecture proposed in this work enables the pre-
diction of the environment-dependent expansion coefficients without a
significant increase in the number of parameters of the model. Moreover,
the model is highly flexible due to its variational nature and because all
expansion coefficients are constructed to be functions of the atomic che-
mical environments. Thanks to this flexibility, the model can accurately
describe electrostatic interactions in ionic, covalent, and mixed ionic-
covalent systems. More importantly, this accuracy is reached without
requiring reference atomic charges, nor any complicated approach for
computing the derivative of energywith respect to atomic positions. Finally,
multiple targets canbeused fornetworkoptimization:whilewe can train the
NN to minimize the error on total energy, forces, and reference atomic
charges, the procedure is equally well-defined in the absence of charge
targets. Besides allowing training in situations where atomic charges are not
available, this additional degree of freedom can lead to the discovery of
different charge decompositions, leading to similar or even better force and
energy predictions, as we show in the results section.

Results
Existingapproaches to includingelectrostatics inneural network
potentials
In this section, we introduce the problem by summarizing the common
aspects of the existing approaches. We consider the task of predicting the
total energyEtot of a systemofN atoms at positionsRi, and relative distances,
Rij = ∣Rij∣ = ∣Rj−Ri∣. We assume that a charge qi can be attributed to each
atom i, by enforcing the constraint,∑iqi =Q, whereQ is the total charge of
the system. In this work, Gi is used to describe a generic descriptor of the
environment around atom i, containing information about the neighboring
atomic species and their relative positions, and it is an input for the NN.

A common idea of CENT16, 4G-HDNNP20, and the present approach
is the division of the energy into a short range and Coulomb terms:

Etot ¼ ESR þ ECoul: ð1Þ

The first term has a different expression in each approach but generally
depends on the atomic positions {Ri} and charges {qi}. The second term is
the Coulomb energy defined in terms of the total charge density ρ(r) as:

ECoul ¼
1
2

e2

4πϵ0

Z
ρðrÞρðr0Þ
jr� r0j d

3rd3r0: ð2Þ

Considering ρ(r) to be the sum of atomic contributions normally
distributed around each atom with a fixed spread controlled by αi

ρiðrÞ ¼
qi

α3i π
3
2

exp � jr� Rij2
α2i

� �
; ð3Þ

the Coulomb energy can be written as ECoul ¼ 1
4πϵ0

P
i<jVijqiqj with

Vij ¼
erf ðγijRijÞ

Rij
; ð4Þ

where γij ¼ ðα2i þ α2j Þ�1=2.
The other common step in all the approaches is charge equilibration,

i.e., the computation of the atomic charges through the minimization of an
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energy term of the form

EQeq ¼
X
i

χiqi þ
1
2
Jiq

2
i

� �
þ ECoul; ð5Þ

with some learned parameters, χi, representing electronegativities, and some
fixed parameters, Ji, representing atomic hardnesses. Including the con-
straint of total charge conservation∑iqi =Q through a Lagrangemultiplier,
the N+ 1 equations system can be solved to obtain the equilibrium atomic
charges.

Here, we refer to all contributions other than the Hartree energy
defined in Eq. (2) as “short range” as they only depend on local atomic
charges. While we use this notation for the sake of simplicity, it has to be
noted that, since our charges are obtained froma global charge equilibration
process, as discussed later, this term is also dependent, although indirectly,
on non-local information.

In the original CENT approach, following the energy decomposition
scheme introduced in Eq. (1), the short-range energy is defined as
ESR ¼Pi E

0
i þ χiðGiÞqi þ 1

2 Jiq
2
i

� �
, where only the susceptibilities, χi are

environment dependent, whileE0
i and Ji arefixed quantities for each species.

While this allows the energy tobe computedwith a singleNNevaluationper
atom and the solution of aN+ 1-dimensional system, it lacks the flexibility
to capture non-ionic interactions.

In the 4G-HDNNP scheme20 the problem is split into two stages: a first
network predicts electronegativities from the local descriptors, to be used
only in Eq. (5) for charge equilibration. These charges are then used in
combination with the local atomic descriptors as inputs for a second net-
work that produces atomic energy contributions, summing to the total
short-range energy ESR =∑iEi(Gi, qi). This means that, in contrast with
CENT, the charge is equilibrated with respect to a fictitious energy, and the
targets of this first network must be some precomputed local charges, e.g.,
the Hirshfeld atomic charges. The second network has the advantage of
improving the expressiveness of the local potential, however, this comes at
the cost of two separate NN evaluations per atom. Moreover, computing
forces in this scheme require thederivatives of the chargeswith respect to the
positions, which can be obtained by solving another linear system.

Our approach to including electrostatics in neural network
potentials
In the most general approach, we can write the short-range energy for each
atom as the output of anNNdepending on both the local environment and
charge ESR =∑iEi(Gi, qi), and then equilibrate the charges on the resulting
total energy. This equilibration however requires the solution of a system of
equations containing the derivatives of the NN with respect to the input, a
complex optimization problem that could be solved self-consistently but
would greatly increase the cost of this approach. To avoid this complication,
we propose a simplified functional form in the charge variable, a second-
order Taylor expansion around q = 0 local charge state:

ESR ¼
X
i

Eð0Þ
i ðGiÞ þ Eð1Þ

i ðGiÞ þ χ0i

� �
qi þ

1
2

Eð2Þ
i ðGiÞ þ J0i

� �
q2i

� 	
; ð6Þ

where all the EðαÞ
i are obtained from an NN depending on local environ-

ments, while χ0i and J
0
i arefixed offsets for each speciesmeant to simplify the

training process. In this sense, our approach is an extension of CENTwhere
all terms are learnable, thus increasing the potential expressiveness of the
model. At the same time, the advantage with respect to 4G-HDNNP is that
the three environment-dependent terms are independent, which can be
exploited bymaking them three different outputs of the sameNN. This way
we can obtain the parameters in a single pass, and have a single network to
optimize. Once these environment-independent parameters are obtained,
the derivatives of the energy with respect to the charges can be computed
and the equilibrium charges are solutions of the system of equations:

P
j

Eð2Þ
i ðGiÞ þ J0i

� �
δij þ Vij

h i
qjþ

þEð1Þ
i ðGiÞ þ χ0i þ λ ¼ 0;

ð7Þ

where δij is theKronecker delta and λ is theLagrangemultiplier needed tofix
the total charge∑iqi =Q.

The final energy can thus be obtained after a single network evaluation
per atomand amatrix inversion.Due to theflexibility ofEð2Þ

i ðGiÞ, thematrix
may be singular, especially at the beginning of the training. Although this is
in part regularized by J0i , we have also implemented an algorithm that
ensures that the diagonal term, Eð2Þ

i ðGiÞ þ J0i , is greater than the negative of

Fig. 1 | Workflow of our approach for a system of N atoms. For each atom i with
Cartesian coordinateRi, its descriptor,Gi is constructed and serves as the input to the
atomic NN. Each atomic network produces three atomic quantities, Eð0Þ

i , Eð1Þ
i and

Eð2Þ
i . These outputs are then used to compute the atomic charges via the charge

equilibration scheme of Eq. (7). The short-range energy contributionESR can then be
obtained from Eq. (6), and the Coulomb energy ECoul can be computed from the
atomic charges. Their sum represents the prediction for the total energy.
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the minimum eigenvalue of the matrix in the training dataset, hence
ensuring that the matrix remains positive and definite.

The evaluation of forces is also simplified due to the variational char-
acteristics of the model. For the short-range contribution, the derivative of
the network with respect to the atomic positions becomes:

FSRi ¼ �
X
j;μ;α

∂EðαÞ
j

∂Gjμ
qαj

∂Gjμ

∂Ri
; ð8Þ

where j runs over atoms, α over the network outputs, and μ over the ele-
ments of the environment vectors.Toobtain the total forces,we thenneed to
add the Coulomb component FCouli ¼PjFijqiqj with

Fij ¼
erf ðγikRijÞ

R3
ij

�
2γijffiffiffi
2

p
R2
ij

expð�γ2ijR
2
ijÞ

 !
Rij ð9Þ

The complete workflow of this approach is summarized in Fig. 1. We
train the NN through the PANNA package8,28, employing the modified
atom-centered symmetry functions1,3,8 as implemented there.

The loss function used for training the network is the sum of three
contributions, coming from target energy, force, and charge terms. The
ground truth reference charges may be obtained from Hirshfeld or other
equally valid decomposition schemes. In addition to these terms, we add an
optional L2 regularization term to reduce the spread of the model weights
and biases. The total loss function is then:

L ¼ LE þ γqLq þ γFLF þ γRLR; ð10Þ

and each loss term is described as:

LEðWÞ ¼ P
c2batch

Eref
c � Etot;cðWÞ� �2

LqðWÞ ¼ P
c2batch

1
Nc

PNc

i¼1
qrefi � qiðWÞ� �2

LFðWÞ ¼ P
c2batch

1
3Nc

PNc

i¼1
∣Frefi � FiðWÞ∣2

LRðWÞ ¼ jWj2
2 :

8>>>>>>>>>><
>>>>>>>>>>:

ð11Þ

where the γs are prefactors that modify the relative weights of each loss
component, c runs over all the examples in a trainingmini-batch, and i over
theNc atoms in that example. The predictions dependonW, the vector of all
the weight parameters of the network.

In particular, we note that the scheme presented here is still well-
defined when setting γq = 0, i.e., when completely ignoring the reference
information on the charge decomposition. In the following section, we
present example cases where doing so does not degrade the predictive
performance of the method.

In the following, we test the accuracy of our approach in describing
long-range electrostatic energy and forces indifferent systems.We startwith
the four emblematic cases proposed in ref. 20: a carbon chain with different
terminations, a metallic silver trimer, small sodium chloride clusters, and a
gold dimer on a MgO (001) surface. The training dataset including atomic
information, energy, forces, and Hirshfeld charges15 is taken from ref. 20.
For all systems, we train long-range NNPs with and without considering
atomic charge information in the loss function, and in bothcases,we impose
charge neutrality. We compare these two potentials with our trained short-
rangemodel as well as 4G-HDNNPresults and short-rangemodel (referred
to as 2G) as reported in ref. 20

In addition, we benchmark our approach on solid and liquid sodium
chloride configurations, recently generated to study the properties ofmolten
salt at elevated temperatures and pressures11. Furthermore, we present the
test of the performance of our proposed approach on Li adsorption on a

graphene system. This system has been studied for Li-ion battery
applications29–40. For these examples, only the total charge is imposed during
training.

Benchmarking: carbon chain
Here, we discuss the benchmark of our approach to the carbon chain. The
two benchmark systems are as follows: 1) C10H2, a neutral linear chain of
carbons withH-terminated ends (see Fig. 2a). 2) C10H

þ
3 , which is generated

by adding an extraHatom to one endof the chain and removing an electron
(see Fig. 2b), resulting in a system with a total charge of+1. The additional
hydrogen perturbs its local environment and causes a global charge redis-
tribution. Further details about the dataset are presented in the Methods
section IV.

Table 1 shows the root mean square error (RMSE) in charge, energy,
and force on training and validation sets. When the long-range model is
trained on the Hirshfeld target, we obtain an RMSE on the validation set of
1.167meV per atom and 78.98meVÅ−1 for energy and forces, respectively,
which are comparable to the ones obtained with 4G-HDNNP. Remarkably,
lowerRMSE is obtained for energy and forces when the long-rangemodel is
not regressed against Hirshfeld charges (γq = 0). The distribution of atomic
charges and thedeviation fromtheHirshfeld chargedecomposition15, in this
case, depends on the initial conditions and canbe tunedvia the parameters χ
and J. However, the accuracy of the model is independent of the choice of

Fig. 2 | Crystal structures of example systems. a Linear carbon chain clusters C10H2

with total charge 0 and b a protonated carbon chain, C10H
þ
3 with a total charge

of+ 1. c Linear chain silver cluster with a net charge of− 1, Ag�3 d triangular silver
cluster with a+ 1 total charge, Agþ3 . Charged sodium chloride cluster with+ 1 net
charge eNa8Cl

þ
8 fNa9Cl

þ
8 . Periodic structures of MgO (001) surface doped with Au

dimers (g) undoped MgO surface and Au dimer adsorbed in the non-wetting
configuration (h) doped MgO surface and Au dimer adsorbed in the wetting
configuration.
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these parameters and the resulting charge decomposition (see Supple-
mentary Table 2).

Next, we examine the charge distributions for the DFT-optimized
geometries. In Fig. 3a, b, we depict the charge distribution on the DFT-
optimized structures of C10H2 and C10H

þ
3 systems, respectively, comparing

the results obtained when using or neglecting the Hirshfeld charges as a
target. For the C10H2 configuration (see Fig. 3a), both models capture the
symmetric nature of the charge distribution around the center of the linear
chain. A sign difference can be seen in the secondC atoms from either edge,
to which the two models assign charges with opposite signs. We note that
the model regressed against charges should have similar charges to the
Hirshfeld ones, which it was trained to reproduce. In the case of C10H

þ
3 (see

Fig. 3b), similar charges are assigned to atoms on the unprotonated edge.
Negligibly small negative charges are assigned to the two hydrogens on the
protonated edge by the model not trained on reference charges while the
model trained on charges assigned larger positive charges. The difference in
charge distribution does not influence the accuracy of energy and forces.

Benchmarking: silver clusters
We now consider an Ag cluster system. The training configurations consist
of triangular and linear Ag trimers with +1 and –1 total charges, respec-
tively. Representative structures for the linear and triangular configurations
are shown in Fig. 2c, d, respectively.

Due to the size of the systems, a typical cutoff radius, usually chosen
between 5–10Å to describe atomic chemical environments contains all the
interactions of the central atom with every other atom in the systems.
However, the dependence of the energetically favorable geometry on the
total charge of the system makes it an ill-posed problem for machine
learning models that are built solely from atom-centered symmetry func-
tions based on atomic coordinates. Indeed, as demonstrated in ref. 20, the
4G-HDNNPmodel was able to accurately reproduce the energy and forces
of these systems, while the 2G model yields a very large root mean square
error in both energy and forces. Here, we show that our proposed approach
can accurately reproduce the DFT potential energy surface of the systems
evenwhen local charge information is not trainedon.More interestingly, we
attain a lowerRMSE in energy, forces, andHirshfeld charges (whenused as a
target) than 4G-HDNNP.

Table 2 shows theRMSEoncharges, energy, and forces obtained in this
work and compared with 2G- and 4G-HDNNP results. The accuracy
attainedwith our short-rangemodel is comparable to those of 2G-HDNNP.
As shown in the table, the RMSEs on energy and forces are lower than those
obtained with 4G-HDNNP. Similarly, when trained on Hirshfeld charges

we obtain a smaller RMSE on charges than the 4G-HDNNP. The RMSE on
energy and forces are similar whether trained or not trained on charges. In
the case where the Hirshfeld charges are not used as a target (γq = 0), an
RMSE of 0.07 e is observed. This deviation of the atomic charge from
Hirshfeld is not surprising since there is nouniqueness in thedecomposition
of the total charge density into atomic contributions, hence the decom-
position obtained by our model is as valid as the Hirshfeld DFT atomic
charges, provided that physical observables such as energy and forces are
accurately predicted.

To shed light on the origin of the RMSE in charges when atomic
charge information is not used, we examine the charge distribution on
the lowest energy structure in the training dataset for each charge state.
In Fig. 3c, d, we compare the atomic charges predicted with our long-
range models with the Hirshfeld charges results. As can be seen, when
regressed against Hirshfeld charges (γq > 0), excellent agreement is
observed for both linear and triangular clusters. When the long-range
model is not trained on Hirshfeld charges (γq = 0), we obtain a charge
distribution that is identical to the Hirshfeld charges for the triangular
cluster with a total charge of+ 1 but a different charge distribution is
found for the linear cluster with total charge of− 1. The NNP-Hirshfeld
charge distribution agreement observed for the+ 1 charge state is a
consequence of the atomic arrangement of the system: all atoms have an
equivalent chemical environment, hence there is a unique distribution of
charges to atoms, compatible with a total charge of+ 1. On the other
hand, for the case of the linear system of charge− 1, several distributions
are possible, with the only constraint being that the atoms at the edges
with similar chemical environments have similar magnitude of charges.
Here, we obtain− 0.331 e for the two atoms at the edges and− 0.338 e
for the central atom compared to the Hirshfeld charges of− 0.404 e
and− 0.192 e, respectively.

Finally, we investigate the accuracy of our NNP models in describing
the potential energy surface along a reaction coordinate such that a trans-
formation from the triangular cluster into a linear one can bemonitored. In
particular, we use the angle between atoms 1, 2, and 3 as the reaction
coordinate, denoted as θ132. In Fig. 4a, we depict the relative energy at each
charge state as a function of θ132. Both long-rangemodels, γq = 0 and γq > 0,
are identical in the relevant region of the reaction coordinates and correctly
describe the two energywells. The equilibriumposition for the systemwith a
total charge of+ 1 is predicted to be at π/3 while that with a total charge
of− 1 is atπ. The short-rangemodel fails to capture the expected trends as it
cannot distinguish between the two systems around the coexistence region
between the Agþ3 and Ag�3 .

Table 1 | Training and validation RMSE for carbon chains

Model Charge Energy Force
(me) (meV/atom) (meV/Å)

SR

train - 1.48 117

test - 1.47 117

LR

γq > 0 train 10.3 1.17 78

test 10.4 1.17 79

γq = 0 train 93.3 1.15 72

test 93.6 1.15 73

2G train - 1.58 131

test - 1.62 130

4G train 5.8 1.21 78

test 6.6 1.19 78

SR represents a short-range model which has the same functional form as 2G in ref. 20 and the LR
represents our long-range model with γq > 0 representing the LR model trained with charges and
γq = 0 is trained without target charges.

Table 2 | Training and validation RMSE for silver trimers

Model Charge Energy Force
(me) (meV/atom) (meV/Å)

SR

train - 320.3 1438

test - 303.1 1463

LR

γq > 0 train 2.3 0.9 20

test 2.2 0.8 20

γq = 0 train 73.5 0.8 19

test 72.9 0.8 19

2G train - 355.0 1803

test - 352.0 1812

4G train 10.6 1.3 32

test 10.0 1.3 32

The RMSE on charge, energy, and force for the silver trimers. SR represents the short-range model
whose functional form is the same as 2G. For the long-range model, γq > 0 represents the model
trained using target charges, and γq = 0 without reference charges.
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Benchmarking: sodium chloride clusters
In this section, we test our model on sodium chloride clusters and compare
its accuracy to that achieved by 4G-HDNNP. The systems considered here
consist ofNa8Cl

þ
8 (8Naatomsand8Cl atoms) andNa9Cl

þ
8 (9Naatomsand

8 Cl atoms) each having a total charge of+ 1. A representation of these
configurations is depicted in Fig. 2e, f.

The accuracy of the 4G-HDNNP was evaluated against the DFT
potential energy surface as theNaatom ismovedalong thepath indicatedby
the black arrow in Fig. 2f. The potential energy surface has two distinct
minima along the path shown by the arrow for the two configurations. The
4G-HDNNP was demonstrated to accurately reproduce the DFT potential
energy surfaceswhile the short range failed to distinguish these twominima.
Here, we show that our approach not only gives lower RMSE in energy and
forces than 4G-HDNNP both with and without regressing the model
against Hirshfeld charges but also accurately reproduces the DFT potential

energy surfaces in a similar manner to the 4G-HDNNP with about two
times fewer parameters.

In Table 3, we show the RMSE in charges, energy, and forces for both
short-range and long-range models and compare them with 2G- and 4G-
HDNNP results. Our long-range and short-range models attain similar
RMSE in energy to the results in ref. 20. Instead, we obtain lower RMSE in
forces than 4G-HDNNP with our long-range models trained with and
without charges.

To examine the performance of our approach on the potential energy
surface of these systems, we compute the energy and force acting on the Na
atom, indicated by 1 in Fig. 2f, when moving along the arrow. Figure 4b, c
show the energy of the systems and force on theNaatomprojected along the
direction shown by the arrow in Fig. 2f. The DFT results are obtained from
Fig. 7 of ref. 20. For the short-rangemodel, we obtain similar trends to those
reported in ref. 20, where the position of the minimum for Na8Cl

þ
8 and

Fig. 3 | Comparison of charge distribution between long-range model trained
and not trained on reference charges on DFT-optimized structures of carbon
chains systems. a C10H2 and b C10H

þ
3 . predicted atomic charges on the lowest

energy structures in the training dataset of silver clusters systems, cAg�3 , and dAg
þ
3

compared with DFT values obtained with Hirshfeld decomposition.
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Na9Cl
þ
8 are the same but separated by constant energy. Our long-range

model accurately reproduces the DFT energyminima for both Na9Cl
þ
8 and

Na8Cl
þ
8 with andwithout regressing against reference charges. Similarly, the

forces on the Na atom computed with our long-range models are indis-
tinguishable from the DFT results. We note that all energies in Fig. 4b, c are
referenced to the average minimum energy predicted by our long-range
models of the respective systems, while the DFT energy curves are refer-
enced to DFT energy minima.

Benchmarking: gold dimer on MgO(001) surface
Here, we test ourmodel on a periodic system: a gold dimer (Au2) supported
on a MgO(001) surface20. The dataset presented in ref. 20 consists of two
configurations of Au dimer on the MgO(001) surface: the “wetting” con-
figuration, inwhich the atoms of theAudimer lie at a similar distance above
two surface Mg atoms, and the “non-wetting” one, in which one Au atom
binds to a surface Oxygen and the other Au atom is farther from the surface
Oxygen. The relative stability of thewetting andnon-wetting configurations

Table 3 | Training and validation RMSE for NaCl clusters

Model Charge Energy Force
(me) (meV/atom) (meV/Å)

SR

train - 1.6 48

test - 1.6 48

LR

γq > 0 train 13.0 0.4 19

test 13.4 0.4 19

γq = 0 train 153.0 0.4 19

test 154.8 0.4 19

2G train - 1.7 58

test - 1.7 57

4G train 15.9 0.5 32

test 15.8 0.5 33

The RMSE in charge, energy, and force obtained with the short-range (SR) model with the same
functional form as 2G and the long-range (LR) model which can be compared to the 4G model. For
the LR model, γq > 0 represents the model trained with atomic charge reference, and γq = 0 without
charge target. The RMSE presented for 2G and 4G are obtained from ref. 20.

Table 4 | Training and validation RMSE for Au dimer on
MgO(001)

Model Charge Energy Force
(me) (meV/atom) (meV/Å)

SR

train - 2.3 125

test - 2.3 135

LR

γq > 0 train 64.5 0.2 44

test 65.8 0.2 52

γq = 0 train 475.1 0.2 39

test 482.4 0.2 43

2G train - 2.3 155

test - 2.3 153

4G train 5.6 0.2 81

test 5.7 0.2 66

The RMSE in charge, energy, and force was obtained with the short-range (SR) model, long-range
(LR) model trained with reference charge target (γq > 0) and without charge references (γq = 0). The
RMSE reported for 2G and 4G are obtained from ref. 20.

Fig. 4 | Comparison of energy and forces between NNPs and DFT. a Potential
energy surface along θ132 for Ag

þ
3 and Ag�3 . For each charge state, energy is referenced

to the atomic energies. The short-range model predicts the same energy for Agþ3 and
Ag�3 . Energy and force on Na atom along the arrow shown in Fig. 2f: b the energy as a
function of thedistance betweenNa atom1 and 2. cprojected force onNaatom1 in the
direction of the arrow shown, as a function of the distance between Na atom 1 and 2.
OurNNP energies are in reference to the average of theminimum energy predicted by

the two long-range models. Potential energy surface of Au cluster supported on
MgO(001) surface:d energy versusAu-Obond length of our long-rangemodel. e Force
on theAu cluster projected along the perpendicular direction as a function of the bond
length measured between the closest O atom to the cluster and the closest Au atom to
the surface. DFT forces are obtained from ref. 20. The closed squares indicate the
position of energy minima.
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is influenced by doping: when the MgO slab is doped with Al atoms, the
wetting geometry is more energetically favorable, while the non-wetting
geometry is preferredon the surfaceof the intrinsicMgO(001) surface.Here,
we compare the performance of our long-range approach to the 4G-
HDNNPmodel in describing the electronic structure of these systems.

Table 4 shows the RMSE in charges, energy, and forces, com-
pared with those reported in ref. 20. With our long-range model,
irrespective of whether it is regressed against reference charges or
not, the RMSE in energy is similar to that reported for 4G-HDNNP.
Remarkably, our long-range models attain lower RMSE in forces than
4G-HDNNP. The RMSE in charges obtained is larger than that of the
4G-HDNNP even when regressed against reference atomic charges.
These results suggest that the Hirshfeld atomic charges as provided in
the reference dataset are not necessarily the charge density decom-
position that minimizes our long-range energy model.

Next, we compare the charge decomposition predictedwith ourmodel
to the Hirshfeld charges. In Supplementary Fig. 9, we depict the charge
distribution as obtained with our long-rangemodel. In all cases, the charges
predicted for O, Mg, and Al follow the trends of the Hirshfeld charges,
although the NNP predictions have wider spreads. Similarly, for the Au2
molecules in the non-wetting case, the double peak Hirshfeld charges
located in both negative and positive regions are captured. However, for the
wetting Au2 geometry, our long-range model predicts positive charges with
and without doping while the Hirshfeld charge decomposition assigns
positive charges for Au2 without doping and negative charges when the
system is doped. Previous DFT studies that use Bader decomposition
techniques to assign charges for these systems41,42 found that the Au2
molecule is negatively charged with and without doping, the main effect of
the doping being that the charge on Au2 becomes more negative upon
doping instead of the sign change observed with the Hirshfeld charge
decomposition here. We note that when the long-range model is not
regressed against reference charges, we observe negative charges for Au2
irrespective of doping for thewetting geometry (see Supplementary Fig. 10).

From this analysis, we conclude that our long-range model trained on
charges minimizes the total energy functional through an atomic charge
decompositiondifferent from the referenceHirshfeld charges.Wewill show
in the following that these deviations have no negative consequences on the
ability of our model to accurately describe the electronic structure of the
systems.

Next, we compute the energy difference between the wetting and non-
wetting geometry of the Au2 molecule with and without doping. In the
doped system, our long-range models with and without target charges
predict an energy difference of−50meV and−67meV, respectively,
comparable to− 41meV obtained with the 4G-HDNNP and in qualitative
agreement with DFT prediction of− 2.7 meV. For the undoped system, we
obtain the energy difference between wetting and non-wetting geometry as
931meV when our long-range model is trained with target charges and
924meV when target charges are not used. These values are in excellent
agreement with the DFT prediction of 929meV and similar to the result
obtainedwith 4G-HDNNPof 975meV.The short-rangemodel predicts the
same energy differences for doped and undoped systems, similar to the
results obtained with 2G-HDNNP20.

Finally, we report the performance of our approach in describing the
potential energy surface of theAu2molecule onMgO(001) surface. Fig. 4d, e
show, respectively, the energy and force onAu2 in thenon-wetting geometry
as a function of the distance between the closest surface O atom and Au2.
The energies obtained in this work are referenced to the average of the
minima predicted by the two long-rangemodels (i.e., models obtained with
and without training on charges). Our long-range models correctly predict
two distinct minima for the non-wetting geometry for doped and undoped
configurations and compare well with theDFTpredictions, while the short-
range model fails to distinguish the adsorption of Au2 on doped and
undoped MgO(001) systems except for a constant shift in energy. We then
compute the force onAu2 projected along the direction perpendicular to the
surface and compare itwithDFT results fromref. 20. This force is equivalent
to the derivative of the energy depicted in Fig. 4d. Both of our long-range

Fig. 5 | Charges distribution of liquid and solid states NaCl and potential energy
surface Na-Cl dimers. aAtomic charges. the peak around -0.5 e corresponds to the
charges for Cl and that around+0.5 e are forNa atoms. The potential energy ofNaCl
dimer as a function of atom separation. The comparison of DFT energies with

b long-range model and c short-range model. d, e, and f are the pressure-volume
plots at 1100, 1150, and 1200 K, respectively obtained with our long-range model
(LR), short-range model (SR), and the DFT results as reported in ref. 11. The solid
and dashed lines correspond to a fit to the Murnaghan equation of state.
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models accurately reproduce the DFT forces for doped and undoped sys-
tems. The short-range model gives the same force irrespective of doping.

Benchmarking: molten salt
We now benchmark our method on a dataset that was recently used to
construct a neural network potential for molten sodium chloride11 using a
short-range model. The dataset comprises a wide variety of chemical
structures spanning crystalline and high-temperature and pressure liquid
phases of sodium chloride. The dataset does not contain atomic charge
information, therefore, only the total charge of the system will be used to
train the model. There are ~112,000 configurations including NaCl dimer
configurations.

Here, we divide the dataset into 80:20 ratios for training and validation
of the performance of our long-rangemodel. As in the previous case, we use
a modified Behler-Parrinello descriptor to describe the local atomic envir-
onment up to a cutoff of 10 Bohr. Details of the parameters used to describe
atomic chemical environments are presented in Supplementary Note 3.

The RMSE on energy and forces obtained by the long-rangemodel are
0.990meV per atom and 30.22meVÅ−1, respectively. This is a significant
improvement over the short-range model that gives 1.349meV per atom
and 40.58meVÅ−1 for the energy and force RMSE, respectively. These
results imply the presence of an electrostatic component in the energy and
forces that are not well described by the short-rangemodel but are captured
by our long-range one, even without regressing against reference atomic
charges.

Next, we examine the charge distribution predicted by our long-range
model. Figure 5a shows the charge distribution predicted for the config-
urations in our validation set. The long-range model correctly assigned
positive charges around+0.5 e to theNaatoms andnegative chargesaround
–0.5 e to the Cl atoms. The distribution rather than a delta-like distribution,
expected for perfect crystalline NaCl systems, presents a substantial spread
in the predicted charges, due to the presence of amorphous and liquid
phases of NaCl in the test dataset, characterized by distorted octahedral
chemical environments.

Next, we discuss the performance of our long-range model in
describing the potential energy surfaces of isolatedNa-Cl, Na-Na, andCl-Cl
dimers. In Fig. 5b, c, we show the energy of these dimers as a function of
interatomic distances obtained with long-range and short-range models,

respectively. The DFT potential energy surfaces are well described by both
long-range and short-range models at short distances. However, as the
interatomic distances approach 5.3Å, the cutoff radius for the local atomic
descriptors, the short-range models fail to distinguish the total energy
between thedifferentdimers (seeFig. 5c).On theotherhand, our long-range
model predicts the expected trends beyond 5.3Å as shown in Fig. 5b. These
results demonstrate the ability of our long-range model to accurately
describe the physics of NaCl beyond the cutoff radius.

Furthermore, we investigate the accuracy of the long-range model on
the equation of state of liquid phase ofNaCl.WeperformanNVT (constant
number of atoms, volume, and temperature) molecular dynamics (MD) at
different volumes using a supercell containing 512 atoms and a timestep of
0.5 fs. The pressure-volume plots at 1100, 1150, and 1200 K are shown in
Fig. 5d–f, respectively. The errors estimated as the standard deviation of the
MD results are smaller than the open squares for the long-range and filled
circles for the short-rangemodel. TheDFT results reported in ref. 11 are also
shown as black diamonds with their associated errors. The results obtained
with short and long-range models are similar, suggesting a significant
screening of the electrostatic field generated by theNa andCl ions inmolten
salt, which is consistent with the properties of molten salt computed with a
shortmodel as reported in ref. 11.More interestingly, our short-rangemodel
developed with a maximum cutoff at 5.3Å yields the radial distribution
function of molten salt at 1150 K as accurate as DFT and our long-range
electrostatic model (see Supplementary Fig. 11), again strengthening the
observation that a local potentialmay be sufficient to describe the properties
of molten salt.

The equilibrium average volume per atom predicted by long-range at
1100, 1150, and 1200 K are 29.99, 30.40, and 30.85 Å3/atom, respectively,
while the short-range model gives 30.01, 30.44, and 30.90 Å3/atom, com-
pared to the DFT results of 29.3, 29.7, and 30.1Å3/atom. Our consistent
overestimation can be attributed to the simulation setup, considering the
large error in pressure associated with the DFT results. The bulk moduli
predicted by the long-range model are 4.89, 4.75, and 4.57 GPa at 1100,
1150, and 1200 K, respectively, while the short-range model predicts 4.85,
4.70 and 4.53 GPa at 1100, 1150, and 1200 K, respectively. The corre-
sponding bulk moduli obtained with DFT are 4.8, 4.2, and 4.3 GPa
respectively. Finally, the thermal expansion obtained with long range and
short-range models at 1150 K are 2.85 × 10−4 and 2.92 × 10−4 K−1,

Fig. 6 | Lithium adsorption on graphene.Adsorption energy, Eads of a isolated Li atoms and b Li dimers on graphene supercell. c Li diffusion on the graphene surface along
the energy path for Li to migrate between two hexagon centers as indicated in the insets.
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respectively, which are in agreement with the DFT prediction of
2.7 × 10−4 K−1 11. Although the effects of long-range electrostatics are seen to
be minimal, overall, the long-range model performs better than the short-
range model.

Benchmarking: lithium adsorption on graphene
In this section, we further demonstrate the importance of long-range elec-
trostatics on a system of general interest: Li on graphene, a prototypical
example of Li-C interactions, and a system of general interest for
rechargeable battery applications. Li interactions with graphene have been
extensively studied, mostly within DFT31,33–40, due to its being a potential
standalone alternative anode for lithium-ionbatteries (LIBs), and as amodel
to explain the high Li density observed in disordered, non-graphitic carbon
materials29,30. Recently, we have also studied the effect of temperature on Li
interaction with graphene using electrostatic energy-corrected cluster
expansion techniques32. In that work, we highlighted the importance of
incorporating an electrostatic term in the cluster expansion energy in order
to accurately describe the binding energy of Li, especially in the dilute limit.

The details about data generation, DFT calculations, and the neural
network parameters are in SupplementaryNote 3. The RMSEs in energy for
the short-range model on the training and validation set are 2.05 and
2.10meV per atom, respectively. The corresponding RMSEs in forces are
45.40 and 45.75meV Å−1 for the training and validation dataset. The
RMSEs in energy obtainedwith the long rangemodel are 1.57 and1.65meV
per atom for the training and validation set. The RMSEs in forces are 43.48
and 44.21meVÅ−1, respectively.

While the RMSEs alone might seem to indicate that the long-range
model is only slightly better than its short-range counterpart, we will now
show that the addition of long-range interaction is essential to capture some
physically relevant quantities. We will start by investigating the thermo-
dynamics of Li adsorption on graphene, considering the adsorption energy
as a function of Li concentration. This quantity is particularly important for
the study of Li occupation with grand canonical Monte Carlo. The
adsorption energy is defined as:

EadsðnÞ ¼
EðnLiþ grapheneÞ � Eðgraphene Þ � nEðLiÞ

n
; ð12Þ

where E(nLi+ graphene) is the total energy of a Li-graphene systemwith n
Li atoms, E(graphene) is the total energy of a bare graphene sheet and E(Li)
is the total energy per atom of Li metal in the bcc phase.

We consider the adsorption of single Li atoms and Li dimers on 2 × 2,
3 × 3, 4 × 4, 5 × 5, 6 × 6 and 7 × 7 supercells. Specifically, Li atoms are
adsorbed at the “hollow site" (i.e., the center of hexagons on the honeycomb
lattice), and a Li dimer corresponds to two Li atoms adsorbed on neigh-
boring hexagon centers. A single Li adsorbate on a 2 × 2 graphene supercell
corresponds to 1:8 Li:C ratio, while on a 7 × 7 supercell, the ratio Li:C
becomes 1:98. For the Li dimer adsorption, on a 2 × 2 graphene supercell,
the ratio of Li to C is 1:4 while on a 7 × 7 supercell, the ratio is 1:49.
Additionally, we compute the Li diffusion on the basal plane of graphene, a
quantity that measures the kinetic properties of Li. For both Li adsorption
energy and Li diffusion, we compare NNP predictions with the underlying
PBE-based DFT results.

Figure 6a, b show the adsorption energy of single Li atoms and Li
dimers for several supercell sizes, corresponding to different Li concentra-
tions and varying minimum Li-Li distances. The DFT adsorption energy
decreases with increased supercell size (i.e., increasing Li-Li distances) for
both single Li and Li dimers adsorbates. Remarkably, the DFT trends are
excellently capturedbyour long rangemodel. The short-rangemodel fails to
reproduce the DFT adsorption energy, naturally saturating when the Li-Li
distance exceeds the cutoffwithwhich the descriptors are built. The inability
of the short-range model to describe the binding energy of Li interaction
with graphene, especially at low concentrations, makes it unsuitable to
accurately describe the thermodynamics of Li-graphene systems and, by
extension, Li-C systems. These results again point to the importance of

correctly accounting for long-range electrostatics to describe thermo-
dynamics in systems with significant electron transfer.

As a further example, in Fig. 6c, we show the relative energy
against reaction coordinates of Li diffusion in a 6 × 6 graphene
supercell along the high symmetry points, namely the center of a
hexagon (H), the top of a carbon atom (T), and the bridge between two
nearest neighbor C atoms (B). In this case, the Li height is fixed at
1.72 Å, the equilibrium height of Li adsorption at the H site. While the
short-range model underestimates the energy barrier, due to its
inability to capture interactions between periodic images of Li atoms,
the long range is almost indistinguishable from the DFT results. To
understand the implications of underestimating the activation bar-
riers, we compute the enhancement of the diffusion constant at 300 K,

as given by DðTÞ
D0

¼ �D ¼ exp � Ea
kBT

� �
. The estimated diffusion coeffi-

cients from H to B sites, �DH!B are 766, 650, and 1283 for DFT, long
range, and short range, respectively. This implies a slight under-
estimation of 15%with respect to DFT for the long-rangemodel, while
the short-range model overestimates the DFT value by 68%. Similarly,
the estimated diffusion coefficients from H to T sites, �DH!T are 9.4,
7.0, and 13.8 for DFT, long range, and short range, corresponding to a
47% overestimate for the short-range model, much worse than the
25% of the long-range model.

Discussion
In this work, we propose a new scheme to incorporate electrostatic inter-
actions in neural network interatomic potentials. The current scheme
decomposes the total energy functional into short-range and Coulomb
energies and consistently fixes the Coulomb energy from atomic charges
obtained from the minimization of the total energy. The ingredients that
enter the linear system which determines the atomic charges are obtained
from atomic neural networks. Unlike 4G-HDNNP, only a single network
potential for the atomic energy is required and the dependence of atomic
forces on the variation of atomic charges with respect to ionic displacement
is eliminated.

The approach introduced here is similar to the charge equilibration
neural network (CENT) in that the atomic charges are obtained from total
energy minimization with respect to the charges themselves. However, it is
as general as the 4G-HDNNP, as it is applicable to all chemical systems
including systems with competing covalent and ionic bonding, as well as
systems with multiple charge states.

We benchmark our model on six examples. In most cases, our long
range models perform as accurately as, or sometimes better than, the 4G-
HDNNP. We demonstrate that the accurate representation of DFT energy
and forces is independent of the details of the local charge distribution.
Therefore, even in the case where Hirshfeld atomic charges are not accu-
rately reproduced, the RMSEs in energy and forces are equivalent to or
better than the results obtained with 4G-HDNNP, and the potential energy
surfaces are in excellent agreement with DFT, even in cases that the short-
range model fails to describe.

Our model is easy to incorporate into the existing architecture and,
unlike the 4G-HDNNP, does not rely on the availability of any reference
atomic charges. Therefore, datasets generated to train models that are
derived from local environment descriptors are sufficient to describe
electrostatics.

Methods
Computational details
In ref. 20, a neural network architecture with 2 hidden layers of 15 nodes
each and a single-node output layer was used for both the short-range
atomic energies and electronegativities. In order to compare ourmodelwith
theirs, we adopt the sameNN architecture for the first four examples except
that for our long-range model, the output layer has 3 nodes rather than 1.
We reiterate that only one NN is evaluated to compute the total energy in
our approach while two NNs (one for electronegativity and one for the
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short-range energy term) need to be evaluated in the case of 4G-HDNNP
methods. For the last benchmark example, we used NN architecture with 2
hidden layers each of 64 nodes and either a single-node (for the short-range
model) or three-node (for our long-range model) output layer.

For the linear carbon systems, the training dataset20 was generated by
performing ab initiomolecular dynamics (MD) simulations for each system
at 300 K. For each system, ~5000MD trajectories were generated giving rise
to ~ 10,000 configurations. Similarly, for the silver trimers, the training
dataset is generated from ab initio MD simulations at 300 K as in the
previous example. In the case of the sodium chloride clusters, the training
dataset is generated from random displacement of atomic coordinates
according to Gaussian distribution with 0 mean and 0.05 Å standard
deviation.

In all cases, the atomic environments are described using the modified
Behler-Parrinello descriptors as presented in ref. 8,28. The size of the input
vectors for the carbon chain, silver cluster, NaCl cluster, and Ag dimer on
theMgO surface are respectively, 60, 12, 45, and 256 compared to 60, 12, 45,
and 151 used in ref. 20. The NNP for Li on the graphene problem is
constructed with environment descriptors of size 112. The specific para-
meters for each system are highlighted in the Supplementary Note 3.

The relative contributions of each term in the loss function Eq. (10) are
tuned with the coefficient γ also specified in each section (except for the
constant γR = 10−4). In particular, the case γq = 0 represents models that are
not regressed against reference charges.

In all cases, the hidden layers are activated with Gaussian functions
while the output layers are linear. While the choice of χ0 and J0 does not
influence the accuracy of the predicted energy and forces, the distribution of
the atomic charges can depend slightly on these parameters when themodel
is not regressed against reference atomic charges. Here, we discuss the
results obtainedwith χ0 and J0 as tabulated in Supplementary Table 1. These
parameters are computed from ionization potential and electron affinity
obtained from the Mendeleev package43.

Data availability
All data used for the benchmarking examples 1 to 5 can be found in ref. 20
and ref. 11, the data used, for example, 6 can be found in ref. 44.
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