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Artificial intelligence (AI) is shifting the paradigm of two-phase heat transfer research. Recent
innovations in AI and machine learning uniquely offer the potential for collecting new types of
physically meaningful features that have not been addressed in the past, for making their insights
available to other domains, and for solving for physical quantities based on first principles for phase-
change thermofluidic systems. This reviewoutlines core ideas of current AI technologies connected to
thermal energy science to illustrate how they can be used to push the limit of our knowledge
boundaries about boiling and condensation phenomena. AI technologies for meta-analysis, data
extraction, and data stream analysis are described with their potential challenges, opportunities, and
alternative approaches. Finally, we offer outlooks and perspectives regarding physics-centered
machine learning, sustainable cyberinfrastructures, and multidisciplinary efforts that will help foster
the growing trend of AI for phase-change heat and mass transfer.

Understanding phase-change heat transfer is important to numerous appli-
cations related to the advancement of energy conversion and thermal man-
agement systems. In particular, liquid-vapor phase-change processes
continuously garner the interest of thermal scientists due to their ability to
transfer large amounts of energy effectively1. Central to these processes is the
nucleation of the dispersed phase (i.e., bubbles and droplets for boiling or
condensation processes), where the continuous phases are liquid and vapor,
respectively. The bubble or droplet dynamics can be manipulated by mod-
ulating experimental designs, including surface properties, structures, and
materials, to push the limit of heat transfer performances2. Historically,
bubble and droplet dynamics have been studied through the combination of
nucleation theory3–5, thermodynamics6–9, and phenomenological
correlations10. Yet despite phase-change heat transfer’s century-long history,
fully understanding its mechanistic relationships by linking experimental
factors, complex nucleation statistics, and thermal performance remains an
elusive challenge.Aprimary reason for this obscurity canbeattributed todata
inconsistency caused by a wide variety of operating conditions and experi-
mental protocols along withmeasurement uncertainties11. Another reason is
the difficulty in quantifying boiling and condensation behaviors because of
their highly dynamic, complex, and high-dimensional nature12,13. Further
difficulties arise in themanagement and curation of data streams, which have
high implications for predicting and forecasting multi-phase flow patterns.
The key concepts in phase-change heat transfer are listed in Box 1.

In the era of big data, transforming large quantities of data into useful
knowledge plays an increasingly important role across various engineer-
ing disciplines. Artificial intelligence (AI), a term coined by John
McCarthy in 1955, was defined by him as “the science and engineering of
making intelligent machines.” It has emerged as a dominant force for
performing data-to-knowledge conversion and presents an attractive
complement to traditional computational science. AI technologies
simulate human intelligence processes through machines, particularly
computer systems. Current AI technologies primarily fall in the category
of “narrow” AI, which refers to an AI that can outperform humans on a
particular task14. Machine learning (ML) is a subfield of AI where
machines can learn without explicitly being programmed15. Neural net-
works trained using statistical methods make inferences from data that
can lead to decision-making.Deep learning (DL), a class ofML inspired by
our brain’s neural network, can learn multi-level representations of data
hierarchically16.Whilemost existingAI solutions are still considered black
boxes, the scope of ML and DL transcends mere nonlinear regression.
Notably, artificial neural networks (ANNs) are now able to discover new
material17,18, help model path- and history-dependent problems19, inver-
sely designmaterial structures20, and discover hidden physics from data21,
as Box 2 describes the key concepts in AI and ML. Box 3 describes key
concepts of digital inference that have seen great progress with advance-
ments in AI and ML.
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Overview
Within the phase-change heat transfer community, the plethora of
recent AI-based approaches has motivated heat transfer researchers to
explore their capabilities to advance fundamental nucleation sciences
under a new paradigm (Fig. 1). Despite its potential, adaptations or
discussions of AI technique have traditionally been slow in this field,
which makes this untapped disruptive technology even more attractive.
Figure 2 summarizes the number of publications on AI and two-phase
heat transfer research areas. According to the results, the publications for
pure AI or two-phase heat transfer (approximately 100 K) outweigh
those from AI-integrated two-phase heat transfer research (i.e., AI +
phase-change) categories by several orders ofmagnitude (approximately
100). While this ratio suggests that AI-integrated two-phase heat
transfer research is relatively new, it also implies that this subfield is
growing at a rate that exceeds that of both individual fields. Indeed, with
the ongoing AI “gold rush” taking place in this field, the time is ripe to
carefully review recent publications. To this end, the current article
addresses the pressing need for a thorough review, explaining the core
ideas of AI technologies, the innate challenges involved with phase-
change processes and limited use of AI in the past (Fig. 1a), current
implementation status and challenges (Fig. 1b), and future outlooks for
two-phase heat transfer research (Fig. 1c). The article builds on prior
reviews that introduced the intersection of AI and heat transfer in either
a broad sense22, or for different applications facing disparate challenges
than those of boiling and condensation heat transfer23–27. The critical
review and summary will provide valuable insights into the imple-
mentation of AI for liquid-vapor phase-change heat transfer studies,

with the goal to provide the thermal science community with a roadmap
for future research.

State-of-the-art AI technologies for phase-change heat transfer
The article first discusses current AI technologies available in the heat
transfer community (Fig. 1b) categorized based on how they target major
and relevant two-phase heat transfer problems existing today. AI technol-
ogies are broadly divided into three categories, namelymeta-analysis, phy-
sical feature extraction, and data stream analysis.

Meta-analysis
Meta-analysis on multiple datasets is generally conducted to provide a
holistic description of phase-change heat transfer by either corroborating
consistent datasets or revisiting conflicting datasets, usually in the form of
tabular data28. This is important because both experimental and computa-
tional data collection in this field is expensive and requires significant
upfront investment. Additionally, various combinations of experimental
factors—including the material, thickness, surface roughness or structures,
and surface/working fluid wettability—exert significant influence on the
datasets29.Moreover, the cumulative data available today have high variance
and is hypersensitive towards various operating conditions30, mounting
protocols31, characterization procedures32, and the personnel’s experience
level. Once meta-datasets are collected, data dimensionality is orders of
magnitude larger, making it challenging to understand. To address these
challenges, a recent movement in the thermal science field seeks to exploit
available scientific advances through machine learning-assisted meta-ana-
lysis (Fig. 3).

Box 1 | Key concepts in phase-change heat transfer

The boiling and condensation heat transfer performances are typically
evaluated by measuring the heat flux in relation to temperature differ-
ences between the target surface (i.e., wall) and bulk liquid (i.e., super-
heat). We summarize important concepts for phase-change heat
transfer below:

Heat transfer curve. The heat transfer curve showcases the tem-
perature difference between the surface Ts and the bulk fluid (usually at
saturation temperature Tsat) and the corresponding heat flux (i.e., the rate
of heat transferred per unit projected surface area), where the tempera-
ture differences are called the superheat and subcooling for boiling or
condensation, respectively. Both boiling and condensation exhibit con-
vection, nucleation-dominated, transition, and film-dominated regimes.
The nucleation-dominated regime is commonly referred to as nucleate
boiling and dropwise condensation regimes in literature and naturally lies
at the heart of nucleation statistics-based research.

Onset of nucleation. The onset of nucleation (ON), also known as the
nucleation incipience, is the point at which the dispersed phase first
appears at the heat transfer surface.

Heat transfer coefficient. The heat transfer coefficient (HTC) is the
proportionality constant between the heat flux and the temperature dif-
ferenceor the slopeof theheat transfer curve.AhigherHTC indicates that
a greater amount of thermal energy can be transferred (i.e., absorbed or
released) at a given temperature difference. In other words, the HTC
quantifies the heat transfer efficiency of the phase-change process, and
thereforeaprimary research thrust for thermal engineers is to increase the
slope of the heat transfer curve. Because the HTC is intrinsically tethered
to trade-offs between the desire for bubble or droplet nucleation and the
necessity of removing them from the target surface, understanding the
nucleation dynamics becomes an imperative factor to modulate the heat
transfer curve29.

Critical heat flux. When plotting the heat transfer curve, the heat flux
increases with increasing superheat or subcooling until a critical point.
The corresponding heat flux to the critical point is defined as the critical
heat flux (CHF), beyond which the HTC decreases sharply, and filmwise
boiling or condensation modes develop29. Since film-dominated regimes
show larger thermal resistance and less effective heat transfer perfor-
mance, research has focused on strategies to remove bubbles or dro-
plets from the surface before film-dominated regimes begin to
dominate2,29,107.
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Box 2 | Key concepts in AI andmachine learning

Understanding AI for phase-change heat transfer requires familiarity with
current technologies and their concepts. Below is a short overview of
core terminologies in the broadest possible sense, without emphasis on
mathematical detail.

Artificial neural networks (ANNs) are at the heart of deep learning
algorithms. They are a hierarchical organization of neurons in layers
containing an input layer, one or more hidden layers, and an output layer.
The number of layers is the depth of the network. In practice, shallow
ANNs may not be sufficiently expressive and have limited learnability108.
Deepneural networks (DNNs), on theother hand, can learnmorecomplex
patterns at various levels of abstraction and are better at
generalization109. ANNs are represented by a spectrum of different
architectures.

Multilayer perceptron. A perceptron is the simplest form of an ANN
binary classifier developed in the 1950s110. While a single-layer percep-
tron consists of only the input units and an output layer, a multilayer
perceptron (MLP) contains one or more layers (i.e., hidden layers)
between the input and output to learn more complex, nonlinear
functions110.

Convolutional neural networks (CNNs) are a type of ANNs showing
remarkable success in the detection, segmentation, and recognition of
objects and regions in images34. CNNs typically comprise of convolu-
tional layers for extracting feature maps, pooling layers to aggregate
features, and fully connected layers for high-level reasoning prior to
making predictions at the output layer109,111.

Recurrent neural networks (RNNs) are a class of ANNs that uses
sequential or time series data. It includes a recurrent hidden state whose
activation at each time depends on that of the previous time109. Hence,

RNNs are capable of capturing and storing long-dependence relation-
ships, which has led to their common use for temporal problems109.

Supervised learning is a machine learning methodology where a
model is trained using labeled data (meaning data that is annotated with
correct answers or labels)109. The training dataset plays a vital role for
supervised learning algorithms to effectively learn. It is also worth noting
that while supervised learning is currently the dominant learning para-
digm in machine learning, it is not representative of human and animal
learning112.

Unsupervised learning, in contrast to supervised learning, focuses
on discovering underlying patterns in unlabeled datasets34. Although
unsupervised learningmodels learn from rawdatawithout anypredefined
labels or target outputs, there is often a need for larger training data to
yield desired results as complex phenomena can often be challenging to
decode without domain expertise or prior knowledge.

Transfer learning is the adapting of a pre-trained model for a wide
range of downstream tasks, using minimal additional data for each new
task113. For example, leveraging feature representations from models
already trained on large datasets such as ImageNet114 and Common
Objects in Context (COCO) datasets115, have become a central part of
models116.

Box 3 | Key concepts of digital inference

Digital inference has assisted thermal engineers over the last several
decades. With the advancement of DL models for CV, researchers can
now extract nucleation features with unprecedented resolutions.

Computer vision. Computer vision is a field of study that focuses on
enabling computers to infer meaningful information from images and
videos.

Image classification. The origin of digital image inference can be
traced back to automated image classification approaches, where pre-
dictionsdescribing the imageor a list of classesof objects in an imageare
provided based on their classification scores117.

Object detection and localization. While image classification by
itself has merits and practicality, the features that it uses have limited
capability to provide physically meaningful descriptors for nucleation
processes. Thenext incremental step fromcoarse to fine image inference
is object detection and localization, the taskof determiningwhereobjects
(i.e., bubbles and droplets) are located in a given image (object locali-
zation) and which category each object belongs to (object
classification)118. At this stage, valuable information such as the rough
size, distribution, and spatial coordinates of the nuclei can be collected in
the form of bounding boxes or centroids.

Semantic segmentation. Semantic segmentation allows for more
detailed spatial analysis (e.g., void fraction) by labeling every pixel
according to its class119.

Instance segmentation. Progressing for finer inference leads to
instance segmentation, which provides separate labels for each object
belonging to the same object class.

Object tracking. Object tracking for collecting high-fidelity spatio-
temporal nucleation statistics is a hierarchical process that has important
implications for better understanding mechanistic two-phase nucleation
principles. At the lower end of the hierarchy, spatial features such as the
two-phase demography (i.e., size, location, distribution) or void fraction
provide foundational information describing how bubbles or droplets
nucleate, coalesce, and depart. At the higher end of the hierarchy, the
extracted features are linked to time, rendering features (i.e., growth rate,
nucleation interaction type, departure frequency, departure size, rising
velocity) that canexpress the surfaceactivitywithmuchmore context.
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Data-driven hypothesis approach. ML models can be efficient by
assisting professionals to make holistic data-driven hypothesis develop-
ment by learning big data. ML-assisted meta-analysis can play a role in
learning knowledge from data and extracting data from knowledge, as
described in Fig. 3. The first step introduces building hypotheses based on
accumulated datasets to answer scientific questions in phase-change heat

transfer (Fig. 3a). After two-phase experiments are designed and per-
formed (Fig. 3b), the experimental factors (tabular data) (Fig. 3c) are then
used to train neural networks to find the relations between the experi-
mental factors and their output (heat transfer performance) (Fig. 3d),
thus helping researchers inform their understanding and decisions
with data.

Fig. 1 | Artificial intelligence (AI) in liquid-vapor phase-change heat transfer. AI
technologies offer diverse opportunities for scientific advances in phase change heat
transfer. In this review, (a) the current challenges of phase-change phenomena are
discussed along with (b) AI technologies categorized from an objective-based

studies, followed by (c) their outlooks and future perspectives. The tiers are
chronologically ordered to reflect the past, present, and future implementation
progress of AI within this field.
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Unlike traditional theory-driven approaches, which rely on the
knowledge of the underlying mechanisms of the observed phenomena,
data-driven approaches can uncover statistical relationships and patterns
solely from data even without explicit knowledge of the underlying physics
ormathematical functions. This characteristic enablesMLmodels achieving
high-accuracypredictions tobe trained in amatter of hours compared to the
extensive period and resources required to develop new heat transfer the-
ories. However, data-driven approaches typically require larger diverse
datasets for generalization, the size of which depends on the specific pro-
blem, and lack the interpretability offered by theory-driven approaches.

Regression models. Most ML-based meta-analysis models utilize
regression analysis to link experimental factors with non-dimensional
numbers or global heat transfer quantities such as CHF, HTC, or pressure
drop over the entire system (Supplementary Table 1). The generic feed-
forward ANN architecture, also known as a multi-layer perceptron
(MLP)33, and random forest (RF) methods have been the most popular33,
probably because they are some of the most well-understood techniques in
literature today. Both ANNs (orMLPs) and RF are exceptional atmodeling
complex nonlinear relationships, with the general idea of approaching
problems by deconstructing them into smaller simpler units. ANNs are
organized into layers of interconnected nodes, in which “weights” are
assigned to represent the value of information assigned to an individual
node34. Similarly, RFs statistically identify important features, create mul-
tiple randomly chosen weak decision trees, and collect their votes to make

the final electoral decision. To handle complexity and overfitting issues,
ANNs can adjust hyperparameters such as the number of hidden layers and
units, regularization techniques, and learning rates, whereas RFs can
modulate the number of trees, the maximal size or depth of the single tree,
and sampling rate35. ANNs typically have more flexibility in their archi-
tecture designs, while RFs, although less explainable than conventional
decision trees36, are reported to possess potentially better interpretability
than the so-called black-box predictions of typical ANNs35. In general, no
singleMLmodelworks the best across all problems, and therefore it is good
practice to compare the performance of different techniques or create a
hybrid model that combines multiple feature types37. OtherML algorithms
that have previously been investigated include the support vector machines
(SVMs)33, boosting algorithms33,38, cascade feedforward (CF) networks38,
radial basis function (RDF)38, adaptive neuro-fuzzy inference system
(ANFIS)39, deep belief networks (DBNs)40, convolutional neural networks
(CNNs)41, and physics-informed neural networks (PINNs)42,43.

Challenges and opportunities. The training data for meta-analysis
models are often inadequate or sporadic, which can pose a great challenge
for developing robust ML models. The training data from experiments
that exist today are sparse due to the prohibitive cost of acquiring more
experimental data points, especially considering the difficulties asso-
ciated with replicating most nm – μm scale bottom-up fabricated
surfaces2. On the other hand, training data from simulation models are
relatively denser, but are limited to extremely simple cases. Recent studies

Fig. 3 | Holistic data-driven workflow. The cycle
consists of a data-driven hypothesis, followed by
b two-phase experiments. cExperimental factors are
then collected to build d artificial neural networks
for meta-regression analysis.

Fig. 2 | Artificial intelligence and phase-change research publication trend.
Graphs in (a and b) show the number of publications on AI and boiling/con-
densation research acquired from topic searches in Scopus on April 12, 2022, from
years 2010 to 2021. The data underAI categories are obtained fromkeywords such as
artificial intelligence, machine learning, or deep learning. The data for phase-change
categories are found using keywords such as boiling or condensation. The data for

phase-change studies involving AI (i.e., AI + phase-change) are obtained from the
combination of the above two searches. In 2021, the number of publications on AI-
based two-phase research increases by 365% compared to 2018 but still only
occupies 0.8% of boiling and condensation research. The survey underlines the need
for further studies that integrate AI into two-phase heat transfer research.
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have suggested that adding physics into the learning process and devel-
oping surrogateMLmodels can address these issues by efficiently training
ML models with limited training resources44,45.

First, breakthroughs in physics-informed machine learning (e.g.,
PINNs) have demonstrated that data from both measurements and simu-
lations, and the underlying laws of physics can be integrated into the loss
function of the neural network, thereby providing strong theoretical con-
straints to prevent models from generating unreasonable predictions. This
not only allows models to train with less data than is typical for over-
parameterized DL models by narrowing the search space, but also enables
themto estimate values that extendbeyond the traineddata scope.Although
amajor challenge remains in the search anddevelopmentofphysicalmodels
that best represent the increased volume, velocity, and variety of available
data, other communities suggest that PINNs can succeed21,46, even for such
ill-conditioned problems, in caseswhere othermodels cannot. This suggests
new researchopportunities formeta-analysis implementations in thephase-
change heat transfer community.

Second, developing surrogate ML models that sensibly augment the
training data to generate diverse problem instances can improve themodel’s
generalizability even with minimal training data. A surrogate model is a
trained emulator that learns to approximate solutions through known
input-output behaviors when an outcome of interest cannot be easily
measured or computed. Therefore, filling in the gaps of these scattered data
pointswill allow themodels to learnhigher-dimensional insights that can be
extended to unexplored study regimes.

Physical feature extraction
Beyond the meta-data analysis, it is imperative to extract physically
meaningful features from visual data. Digital inference and extraction of

datasets have the potential to enhance our understanding of new physics
within large datasets by enabling a full description about two-phase physics.
One area of particular interest is the quantification of nucleation behaviors
during two-phase processes, which has been a focus since the pioneering
work of Nukiyama and Schmidt47,48.While visualizing nucleation behaviors
has naturally become an inseparable part of phase-change studies49–54, the
sheer complexity and volume of bubble and droplet activities (Fig. 4a and c)
make quantifying these activities a daunting challenge. In this regard, AI-
assisted CV can be effective at performing image analysis tasks with high-
level accuracy but with far greater bandwidth12,13,55. Most noticeable
advances come from characterizing two-phase nucleation features with the
basis ofmodernCVtasks fromCNNmodels built fordigital image inference
tasks (Box 3).

Overview of nucleation statistics and heat and mass transfer. Con-
current with the advances in AI and CV has been an increasing demand to
support a stronger connection between bubble and droplet statistics and
thermal performances. For example, a significant portion of extant bubble
dynamics studies only reports low- tomoderate-heatflux regimes, leaving an
extensive range of high-heat flux regimes unexplored during pool boiling
(Fig. 4b; Supplementary Table 4). Similarly, droplet nucleation statistics are
also highly indicative of hidden condensation heat and mass transport
mechanics. However, only a handful of studies have attempted to extract
spatio-temporal instances (STI) that are essential for decryptingheat transfer
analysis. According to a brief literature review of 56 recent studies reporting
droplet dynamics from 2015 (Fig. 4d; Supplementary Table 5), the vast
majority report only spatial features or spatio-temporal group-based (STG)
analysis, where relatively simple traditional CV algorithms or manual labor
are still favored (Fig. 4d). In addition, only 11% of the reviewed studies

Fig. 4 | Overview of nucleation dynamics during phase-change processes.
Quantifying the nucleation dynamics is crucial to better understand two-phase
phenomena because they can explain the heat transfer performance of a and b
| boiling and c andd | condensation. Literature review of b | pool boiling reveals that a
significant portion of the heat transfer curve is understudied in terms of bubble
dynamics. The only studies that have been able to investigate nucleation dynamics
across a relatively wide heat flux range are ones that utilize bottom-to-top infrared
(IR) imaging techniques, in which the translation from bottom IR bubble statistics to

actual bubble morphologies are not well understood. Literature review of d |
condensation shows that 86% studies either excluded heat transfer characterizations
(50%) or measured heat and mass transfer in a decoupled manner, independent of
droplet statistics. Only 11% of the reviewed studies demonstrated fully coupled heat
and mass transfer analysis based on droplet statistics, where 4 of the 6 coupled
analysis studies were done manually. The references that have helped form the
conclusions in this figure for pool boiling and condensation are provided in
Supplementary Table 4 and Supplementary Table 5, respectively.
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demonstrate heat and mass transfer analysis coupled with droplet statistics,
further underlining the need for a stronger connection between the two
approaches (Fig. 4d inset).

Traditional computer vision. For a very long time, rudimentary image
processing algorithms have extracted basic nucleation features to
describe phase-change phenomena56–59. These traditional CV approaches
use relatively simple processing algorithms such as binarization,
denoising, flooding, and interactive separation of connected objects to
capture the most basic physical descriptors such as bubble or droplet size
and distribution57,60. While these approaches are quite useful and swift,
they still ultimately rely on handcrafted features that inevitably require
significant setting optimizations often under-reported in the
literature61,62. To address this issue, there have been efforts to develop
shape filters or reconstruction algorithms such as built-in circle finder
scripts or multi-step shape reconstruction procedures that specifically
exploit the circular shape of bubbles and droplets60,63–67. Yet, due to these
methods’ inherent imposition of rules, it has been difficult for traditional
CV models to adapt to image inventories from the broader research
community, with numerous studies reporting unstable predictions, even
with a slight change of lighting66,67.

Machine learning-assisted computer vision. Recent integrations of
DL models into CV have brought a paradigm shift in how researchers
perceive and utilize visual data to tackle difficult problems. DL models
“learn” salient features of the target object, thereby requiring less expert
analysis and parametric fine-turning, and possess superior flexibility in
adapting to custom datasets compared to traditional CV approaches68.
For the time being, studies implementing models with CNN backbones
have seen the most success due to their proficiency at handling image
data12,13,55,69.

For boiling, the ability to extract spatio-temporal bubble statistics has
proven direct implications for heat flux partitioning analysis (See Supple-
mentary Note 1), the process of understanding what heat transfer
mechanisms constitute the boiling heat flux at any given stage70–72, as well as
flow instability analysis73. However, extracting a sufficient amount of clas-
sical boiling features (i.e., departure diameter, nucleation site density,
departure frequency) from imaging data has been an inherently burden-
some and evasive task. The autonomous curation of high-quality bubble
statistics at the large scale has been shown to be achievable through DL-
assisted segmentation and tracking73,74, enabling the quantitative mapping
of bubble dynamics between different boiling surfaces at high resolutions12.

Condensation studies have shown that heat transfer can be effectively
quantified by collecting statistics of group of droplets or individual droplets
(See SupplementaryNote 2) and integrating themover the entire surface13,69.
A study on group-based droplet statistics has shown that the overall time-
averaged droplet shedding frequency can be used to calculate the heat
transfer rate by using Supplementary Equation 5 and 6, which ultimately
reduced the high (20 – 100%) measurement uncertainty of conventional
temperature and flow sensors less than 10%69. In another study, collecting
single-droplet-level statistics imposed with energy balance equation has
allowed for themapping of the evolving heat transfer of condensing surfaces
with extreme spatio- and temporal- resolutions of 300 nm and 200ms,
respectively13.

The recent demonstrations of statistics-driven heat transfer quantifi-
cations are particularly exciting because they enable the robust comparison
and de-coupling of the multi-dimensional relationship among nucleation
parameters, heat transfer performances, and structural design. In addition,
these techniques can be used to simultaneously compare the heat transfer
performances on a single surface with different structures or wettabilities69,
which not only minimizes time and labor resources but also essentially
eliminates uncertainties caused during separate experiment trials.

Fig. 5 | Summary of processing time versus extractable physics. The regime map
reveals a tradeoff between the processing time and the extent of physically mean-
ingful features extracted. A summary of 94 studies that reported bubble or droplet
dynamics is shown in red tones, where the color indicates the methods utilized to

extract nucleation features, and the circle size represents the number of studies
normalized by the total number of studies. Individual data stream analysis studies
are listed in Table Supplementary 6.
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A summary of studies that quantify boiling and condensation
nucleation behaviors from 2015–2022 are provided in Fig. 5 and Supple-
mentary Table 4–6.We define real-time prediction formodels that have the
capability of making predictions in live streams, quasi-real-time prediction
for models that require an interventional processing step, and extensive
prediction for models that report an undefined amount of time. The
extracted physics are categorized as spatial, STG, STI, and hidden, which
refers to the non-intuitive features of the hidden layers in ANNs.

Challenges and opportunities. DL-based nucleation feature extraction
models are still far from being widely adopted in the heat transfer
community, as evident in Fig. 5. The fact that despitemodern advances in
CV, manual analysis is still a highly favored method for quantifying
nucleation dynamics suggests that there exists a gap between thermal and
computer scientists. Therefore, further efforts should be considered to
make these ML-based quantification methods more efficient and user-
friendly by fine-tuning the models to be suitable for specific two-phase
conditions and improving training methodologies.

One challenge is about how two-dimensional image sequences can
accurately represent three-dimensional phenomena. This representation
often results in different subproblems specific to two-phase phenomena
such as occlusion (situations when an object fully or partially hides another
object of the same class from the optical viewpoint), cluster, and low reso-
lution. One method that researchers have investigated involves the refining
of initially predicted results through multi-step shape reconstruction
processes75–78. While initial object detection methods may vary (i.e.,
bounding box, regional proposal, image segmentation), the concept of
reconstructing the digital inference from initially rough object outlines to its
true shape remains the same75–78. However, these models are not pro-
grammed or trained to inherently recognize the occlusion phenomena
themselves and are therefore limited to weakly occluded instances.
Researchers soon realized that the model’s predictive capability can be
finetuned to specific problems by modulating the training dataset. By cus-
tomarily labeling droplets that were blurred by motion, researchers suc-
cessfully trained themodel to predict images captured at low framerates69. In
another study, a model was trained to accurately predict occluded droplets
by custom-labelingdroplets that formedunderneath largerdroplets79.Other
efforts include the use of synthetic datasets created from generative adver-
sarial networks (GAN)75, or simulations80. The rationale of using such
synthetic datasets to train is to carefully design a dataset with a controlled
amount of object occlusion, nucleation sites, object density, and size to
emphasize model learning for difficult scenarios. Hence, there must be a
continuous effort to explore various training sets to investigate what and
how the model learns, depending on the research objective.

Another challenge is centered upon data preparation. Due to the
intrinsically complex phenomena being studied, data labeling requires
experts. Most upcoming models use supervised learning, which requires
training datasets in the form of labeled images. The image labeling process,
called image annotation, can take up to several months tomanually prepare
a complete dataset for training and validation13. More often, the ground
truth for the labeling is subjective and involves human intervention,making
unanimous agreement among annotators impossible81. To combat such
discrepancies, researchers have proposed using cost-effective, human-in-
the-loop curations or semi-supervised learning that can alleviate annotation
labor and increase labeling consistency82,83. For example, a recent study
proposed amulti-step cycle of initial pretrainedmodel predictions, human-
aided error identification and correction, and retraining on an updated
dataset83. While training an initial model to start the loop remains an
ongoing challenge, abundant research opportunities exist developing in
fully autonomous labeling pipelines using deep generative models to con-
ditionally generate sequential visual scenes that mimic real states84–86, or
even label-free unsupervised learning-based nucleation feature extractors to
reduce time and labor involved in training and validating models.

Above all, the effort-to-reward ratio for exploring key features that
describe underlying boiling and condensation mechanisms significantly

favors researchers today. For example, features that connect nuclei inter-
actions and heat transfer have been rarely discussed in the literature but can
now be studied in depth with light algorithmic adjustments. Furthermore,
big data trends of long-term nuclei statistics can provide rational mechan-
istic insights but are yet to be reported. By adding a tracking module to an
object detection framework, researchers have proved that features with
substantially higher-order insights could be extracted from videos with
minimum modifications.

Data stream analysis
Another theme inAI research related to phase-change is to comprehend the
transient nature ofmeta-data or visual data during phase-change processes.
Given the strong yet complex correlation between “in-motion” data and
heat transfer performance, researchers have classified the multi-phase flow
patterns into various categories2,29. For example, the cyclic nucleation
behaviors that constitute the heat transfer curves (Box 1) have traditionally
been categorized into natural convection, nucleation-dominated, transition,
and film-dominated regimes29. Evolving flow patterns in flow boiling sys-
tems have been classified into liquid, bubbly, slug, annular, mist, and vapor
regimes87. Real-time data stream analysis using AI has the potential to
identify or predict nucleation phases and patterns, which can be applied in
smart boiling and condensation systems (Fig. 6a) for adaptive or predictive
decision-making.

Discrete models. It is important to identify transient and unstable two-
phase patterns into discrete class outputs, which is equivalent to the
traditional ML classification problem88. The successful identification of
patterns will help devices or systems operate under optimal conditions
depending on their specific requirements, as illustrated in Fig. 6. For
example, nucleate boiling in passive two-phase heat transfer devices, such
as heat pipes, is typically detrimental to the device’s performance due to
significant heat and mass transfer reduction caused by entrapped vapor
bubbles inside the wick89. By contrast, the creation of small and reple-
nishable droplets and bubbles is favorable to facilitating heat transfer in
high-power heat exchangers1. In these nucleation-favoring applications,
identifying the transition from the nucleation-dominated regime to the
film-dominated regime is crucial to maintain high heat transfer perfor-
mances as well as safe operating conditions1,2

Despite its significance, there have been only a few ML studies that
demonstrate these classification tasks (Fig. 6b). The classification can be
executed by using different types of data, ranging from signal patterns
collected from sensors to qualitative visual descriptions of gas and liquid
phasemorphologies90. Since visual descriptors are outwardlymore intuitive,
the majority of studies have utilized visualization-based ML classification
models (SupplementaryTable 6).Naturally, CNNmodels have beenheavily
adopted to stream classification problems, with many models exceeding
98% prediction accuracy55,91. One study showed that CNN models could
even deal with difficult visual cases, such as the transition from nucleate to
film boiling, which trained experts cannot distinguish with any reasonable
certainty55. It is worth noting that approaches that use structured data (i.e.,
non-imaging data) are also important, for they allow data stream classifi-
cationwhere visualizationmight be limitedor even inaccessible (e.g., in-tube
flows) but is rarely addressed92,93.

Continuous models. In addition to discrete outputs, ML can also be
employed to predict and forecast continuous outputs (Fig. 6c) using
regression analysis. Regression methods are proficient at determining
casual relations between independent and dependent variables and
therefore have major applications for numerical and visual time-series
forecasting (Fig. 6c; Supplementary Note 3)94. Both time-series fore-
casting methods utilize transient data streams to predict future outcome
trends (Fig. 6c), but visual forecasting approaches reconstruct the data
into visual scenes and are viewed to be more computationally expensive.

Continuous models are especially appealing for prediction and fore-
casting tasks because they can potentially be trained to encode the context of
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the two-phase phenomena, offering a great advantage over traditional
sensors and probes. The models often hypothesize that a DL model can be
trained to predict heat andmass transfer using secondary, higher-resolution
characterization methods, such as visualization as an input. This would
effectively allow the model to make more “physically-intuitive” or “scene-
incorporating” predictions. Recent studies have confirmed this hypothesis,
showing that vision-based models are highly sensitive to physically inter-
pretable features such as the number and size of bubbles91, and there are
strong correlations between collected bubble parameters and boiling heat
flux intensity55.

Challenges and opportunities. Although the main keywords of data
stream analysis are “real-time” and “forecasting,” neither one of these
goals has been adequately met in the existing literature. A noticeable flaw
is the use of previously collected data streams instead of live-streaming
data. Therefore, future goals must shift the current paradigm of data
stream analysis to streaming data analysis, where models train on more
realistic data. The main keys to achieving this goal are to improve model
transferability, explore indicative features, and expedite prediction time.

The first key is to improve model transferability factoring in the diverse
boundary conditions that contribute to the complex and heterogeneous two-
phase behaviors. While data supports that models can predict accurately
settings familiar to the environments in which they were trained, studies
customarily mention the need for additional training datasets for new
boundary conditions55,91. Data augmentation or transfer learning techniques
can be leveraged to remediate this issue, but only to some extent because they
instigate the constant involvement of computer engineers to update the
model55,91. Considering the inevitability and necessity of building founda-
tionalmodels, it remains anopenquestion as towhether sufficient data canbe
collected and used to trainmodels that incorporate the full complexity of the
heterogeneous boiling andcondensationphenomenon in varying conditions.

Another method to improve ML models is to identify indicative fea-
tures that best represent the two-phase time-series problems. The features
can be identified by engineering new features or selecting a new set of
features95.As such, this process requires significant domain expertise in two-
phase heat transfer to understand new features that can capture complex
and nonlinear heat transfer performances during phase-change. Due to
these aspects, unraveling the enigmatic features that can realize real-time
prediction and forecasting is an ongoing challenge. For instance, a recent
study utilized dimensionally-reduced image data to forecast future bubble
morphologies based on a bidirectional LSTM network96. Images provide a
visual representation of nucleation dynamics, which ultimately reflect the
influenceof experimental factors on the system.Consequently, investigating
generalizable features that establish connections between nucleation pat-
terns and desired outputs, researchers can potentially achieve a deeper
understanding of nucleation phenomena and develop models that can be
applied across various experimental conditions, leading to broader and
more robust scientific insights. Future work should improve forecastingML
models by exploring a wide range of data types, including structured data
(i.e., numerical data, or categorical data; low-dimensional), unstructured
data (text, images, audio, video, or multi-modal; high-dimensional), and
their hybrids (i.e., multimodal deep learning).

Additionally, it is crucial to evaluate the features based on their pro-
cessing time, ensuring that they enable real-time prediction and forecasting.
Models that utilize structured data inputs have quicker prediction speeds
but at the expense of lower levels of physics. In contrast, models using
unstructured data can extract physically meaningful features but are time-
consuming, as showcased in Fig. 6. Typically, graphic datasets are highly
information-dense and therefore can easily be inundatedwith redundant or
irrelevant pixels (i.e., background data or noise), which requires additional
data processing steps to reduce the data dimensionality or filtering impor-
tant information only97. While dimensionality reduction methods (e.g.,

Fig. 6 | Data stream analysis.Understanding streaming data can be utilized to build
a smart two-phase systems that make real-time adaptations by receiving feedback
from systems using either discrete or continuous models. b On the one hand,
unstable and transient multi-phase flow patterns are classified into discrete outputs
when using discrete models. These classifications can offer instant feedback to

change device settings when differences in flow patterns are detected. c Continuous
models have implications for real-time predictions as well as time-series forecasting.
The models can use time-series texts or visual images to forecast a CHF event and
stops the system in real-time before the event occurs.
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principal component analysis, resolution scaling) partially address the
latency issues of vision-based models, they do so by sacrificing high-
frequency image features andby introducing additional preprocessing steps,
which have been underreported inmany cases. An alternative solution is to
selectively exploit only the important information.One recent study showed
that this could be done by using neuromorphic event cameras that emulate
the human retina, thereby only outputting “meaningful events” (i.e., pixels
that display changes in brightness)97,98. The fundamentally differentway that
event cameras encode visual scenes allows them to be proficient for appli-
cations with strong constraints on latency, power consumption, or
bandwidth99. In addition, the ability to remove unwanted, stationary
background noise potentially allows neuromorphic cameras to resist from
generalizability issues stemming from measurements across multiple labs
and institutes which may use different experimental setups. While the
practical employment of event cameras is vastly underexplored,models that
classified boiling regimes by using simulated event streams demonstrated a
300% increase in prediction speed compared to ML models reported else-
where. Along the same lines, other potential state-of-the-art DL models,
such as vision transformers and spiking neural networks, may find appli-
cations in this domain for real-time predictions and forecasting.

Outlook
The rapid growth of AI-based solutions has highlighted the potential ben-
efits for the heat transfer community. The impact of these technologies will
depend on the degree of active exploration by researchers into these exciting
advancements in computer science.Moreover, it should be emphasized that
the AI technologies discussed in this review are not independent attempts,
but rather, share a symbiotic relationship (Fig. 1c).Meta-regression analysis
allows for holistic decision-making tofindoptimal two-phase heat andmass
transfer performances. Physical feature extraction generates big data that
has not been available in thepast,which can advanceourunderstanding and
serve as the basis for newphysicalmodels. The knowledge gained from these
attempts is instilled into data stream analysis models to demonstrate
futuristic smart phase-change systems.

Future perspectives
Physics-centered machine learning. Quantifying the turbulent and
spontaneous characteristics of the multi-phase physics involved with
phase-change heat transfer processes with adequate quality that meets
the demands of modern research has always posed a great challenge to
researchers. Physical sensors or probes, which have been the gold stan-
dard for quantitative heat transfer characterizations so far, have limited
spatial resolutions due to their genetic size. Besides that, optical mea-
surement techniques such as infrared (IR) thermometry, fluorescence
thermometry, and particle image velocimetry are limited to small
domains and laboratory settings. On top of all this, there is no existing
tool that canmeasure fluid and vapor properties simultaneously, which is
crucial to understanding the underlying transport physics between the
two phases. Although high-fidelity two-phase simulations have evolved
over the past decades as an alternative solution to this problem, they are
computationally expensive and often intractable without large-scale
clusters or supercomputers.

The challenges associated with acquiring high-quality data might be
addressed by leveraging AI or ML models that combine data with domain
knowledge. Advances in ML models that incorporate known physics have
demonstrated great potential to achieve accurate and interpretable resultsby
satisfyingboth theobserveddata aswell as theunderlyingphysical laws100–104

.In the context of phase-change heat transfer, the physics that domain
experts can incorporate into ML models lies on such a wide spectrum,
ranging from basic continuity equations to instability laws, that there exists
abundant opportunities for researchers to explore integrating physics into
their ML frameworks. An example of such implementations could be
developing MLmodels that can use experimentally measured properties of
one phase (e.g., vapor or liquid) and predict the velocity, pressure, and
temperature fields of the other, which is the crux of many two-phase heat

transfer problems. In such examples, the physics-respecting properties of
ML models will allow domain experts to assess the model’s validity and
reliability in a more interpretable manner when it extrapolates beyond the
range of observed data. Therefore, we envision that the fusion of data-driven
models and domain expertise presents a promising avenue for accelerating
scientific discoveries by combining the advantages of both approaches.

Building cyberinfrastructures for two-phase heat transfer. Beyond
answering core science questions, it is imperative to develop an array of
cyberinfrastructure (CI) technologies (Fig. 1c), including open-source
and reusable data and scalable algorithms and software for long-term
sustainability. The envisioned CI ecosystem should be agile and inte-
grated to catalyze new transformative discoveries in heat transfer. This
necessitates sustained community collaboration and continuous
improvement at every stage.

Due to the nature of nonlinear, multi-dimensional, and multi-modal
features during phase-change processes, it is critical to collect various
datasets including meta-data, visual data, and transient data that cover
different boundary and operating conditions. Unfortunately, collecting all
dimensionsof thedata fromcomputational andexperimental efforts hasnot
been addressed in this area. Therefore, it is critical to initiate data clusters
following standard procedures discussed and defined by the community.
This will enable researchers to access major assets (data and developed ML
tools) that are stored in cloud environments and add their own to continue
the phase-change cluster development.

In addition, technologies are needed to ensure the safe sharing of data
since data owners take on risks when sharing their data with the research
community. For example, CryptoNets88 allows neural networks to operate
over encrypted data, ensuring that data remain confidential because
decryption keys are not needed in neural networks105. At the same time,
privacy methods must remain sufficiently explainable and transparent to
help researchers correct them and make them safe, efficient, and accurate.

With the growth of training data and the complexity of deep learning
models, scalable algorithmsand softwarebecomenecessities for solving large-
scale problems and resolving fine-scale physics. Training a neural network is
generally a time-consuming and challenging process, where the difficulty of
the training process scales as the network becomes larger and deeper.
Moreover, approaches that incorporate PDE-based soft regularization only
add to this difficulty by making the loss landscape even harder to optimize.
Accordingly, the benefits of the developed DL tools outweigh the high costs
and challenges associated with their training only if the resulting models are
generalizable and scalable.Apromising approach to improving the scalability
of trainedmodels inspired by curriculum learning is tofirst trainwith simpler
constraints and thencouplepre-trainedmodels usingdomaindecomposition
strategies to solve the target problem45. Another complementary approach is
to build foundationalmodels forMLmodels that embrace the “pre-train and
fine-tune” paradigm for science problems. This paradigm has been highly
successful in other domains and holds great promise in accelerating scientific
advancements, enhancing model performance, and facilitating the efficient
transfer of knowledge across related scientific domains. Building on this
progress, creating reusable foundational models to learn unsteady single-
phase physics in two-phase processes and coupling these models to make
predictions for multi-physics phenomena presents one promising future
direction for building a generalizable and sustainable CI.

Communicating across multiple disciplines. This review also eluci-
dates the important role that AI can play in transferring knowledge
between multiple disciplines, perhaps with emphasis on material and
thermofluidic sciences. The nucleation phenomena described in this
paper are highly dependent on surface properties (based on their struc-
tures and chemistry). Heat transfer performance can be enhanced using
nano- or micro-materials that have desired heat and mass transfer
properties. The comprehensive understanding about phase-change
physics opens new opportunities for materials scientists in the context
of materials design. In earlier studies, these processes were not efficient as
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scientists needed to search through a large range of materials and
architectures, but now they can leverage AI-based design tools. For
example, AI-assisted data mining toolkits like matminer have seen suc-
cess in thematerial sciences by aiding the development and testing of new
materials106.With access to new datasets, includingmetadata, visual data,
and transient data, a novel collaboration between the heat transfer and
materials science communities becomes feasible. We can formulate
topology optimization models, explore inverse design techniques, and
delve into the realm of multi-objective design as new dimensions in this
research. During this process, building an additional layer of commu-
nications with computer and data scientists becomes essential. Many of
the AI technologies discussed in this review are prototypes derived from
successful models developed by computer scientists. These models can
aid in the creation of task-specific new models for two-phase tasks. Data
scientists can help develop and optimize data architectures that efficiently
curate large data streams intomeaningful features and identify important
data features to address phase-change heat transfer. Successful studies
through this convergence will provide a holistic description of phase-
change heat transfer dynamics, enabling blueprints for next-generation
phase-change thermal management designs. These new designs will, in
turn, be translated to many applications, including energy conversion
devices, two-phase electronics cooling devices, and water-energy
surfaces.
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