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Flat band systems are currently under intense investigation in quantummaterials, optical lattices, and
metamaterials. These efforts are motivated by potential realization of strongly correlated phenomena
enabled by frustration-induced flat band dispersions; identification of candidate platforms plays an
important role in these efforts. Here,wedevelop ahigh-throughputmaterials search for bulk crystalline
flat bands by automated construction of uniform-hopping near-neighbor tight-binding models. We
show that this approach capturesmany of the essential features relevant to identifying flat band lattice
motifs in candidate materials in a computationally inexpensive manner, and is of use to identify
systems for further detailed investigation as well as theoretical and metamaterials studies of model
systems. We apply this algorithm to 139,367 materials in the Materials Project database and identify
63,076 materials that host at least one flat band elemental sublattice. We further categorize these
candidate systems into at least 31,635 unique flat band crystal nets and identify candidates of interest
from both lattice and band structure perspectives. This work expands the number of known flat band
lattices that exist in physically realizable crystal structures and classifies themajority of these systems
by the underlying lattice, providing additional insights for familiar (e.g., kagome, pyrochlore, Lieb, and
dice) as well as previously unknown motifs.

Flat band systemshave recently received significant attentionasplatforms to
realize exotic quantum states. Theoretically, the non-dispersive nature of
these infinitely massive flat bands may enable electronic correlation effects,
including ferromagnetism, high-temperature fractional quantum Hall
physics, topological and/or high-temperature superconductivity, and exci-
tonic insulating behavior1–7. The field of flat band physics has been recently
invigorated by the experimental identification of flat electronic bands in 2D
moiré heterostructures8–13, bulk quantum materials14,15, circuit QED
systems16, optical lattices17, and photonic crystals18. Understanding the
potential breadth of flat band platforms is thus a topic of significant interest.

Flat band-hosting crystal lattices were proposed over 30 years ago,
exemplified by models for the kagome, Lieb, pyrochlore, and dice
lattices2,18–22 and the Penrose tiling23. Despite the apparent simplifications—
e.g., being of nearest-neighbor, single orbital and isotropic nature—takenby
these theoretical models, their relevance in describing electronic structures
of real materials is supported by a growing number of experimental
studies14,15,24–31 and density functional theory (DFT) driven material
searches32. This suggests that a simple tight-binding approach can provide

key guidance for identifying additional flat band systems, even in the pre-
sence of other atomic species, spin-orbit coupling, orbital degrees of free-
dom, and interaction effects not taken into account at the tight-binding
level. More recent theoretical efforts have expanded flat band models to
more exotic lattices such as the diamond-octagon33 and the Creutz34–36, and
introduced general models by which flat band lattices can be systematically
generated such as via the line or split graph constructions37–41. In contrast to
these broadened efforts, experimental realization in crystalline systems has
been relatively scarce and has focused on the kagome prototype (e.g., refs.
14,24–31). There is therefore an opportunity to expand flat band studies
with the identification of candidates for other latticemotifs, especially those
that can be found in realistic material structures.

Here, we develop a high-throughput approach to identify flat band
systems by building simple (i.e., nearest-neighbor, single orbital, uniform
hopping) tight-binding models on candidates drawn from the Materials
Project (MP). Motivated by the experimental observations of elementally
derived flat bands in recent flat band studies14,26, we then identify each
elemental sublattice that hosts a non-trivial flat band originating from
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destructive interference of compact localized eigenstates (CLS) (Here, a
trivial flat band is defined as one which is caused by a component of the
lattice which is isolated from other components and does not contain any
hopping paths to infinite distance)42. As the bandstructure of a uniform
hoppingmodel relies only upon the connectivity of the underlying periodic
graph (the “crystal net”), we are able to categorize the majority of these
systems by employing a crystal net isomorphism testing algorithm (Systre)43

that generates a unique canonical key for each distinct crystal net. The
remaining are grouped by invariant quantities of the sublattice graph and
bandstructure (see methods section B and Supplementary Note 2). This
allows us to identify the common flat band latticemotifs present in theMP,
and to identify certain elements, spacegroups, and chemical structures that
host candidates of a given flat band lattice, providing a broad set of flat band
lattices for theoretical and experimental study. Note that when using this
database to search formaterials that are likely tohostflat bands coming from
the identified motif, further filtering based on chemical analysis and com-
putational modeling is necessary, as only when the local site and orbital
symmetriesmaintain the frustration of the s-orbitalmodelwill thisflat band
persist. Such an approach has proven successful in identifying flat band
systems experimentally reported—see refs. 14,15,26 and Supplementary
Note 7 and Supplementary Figs. 4–9.

Results
Search overview
The algorithm employed here is outlined in Fig. 1. For each material in the
MP (e.g., Bi2Rh3S2 in Fig. 1a), we consider each individual elemental sub-
lattice within the crystal structure (Fig. 1c–e). For the shortest nearest-
neighbor (NN) distance dNN between any two atoms of this species in this
structure, we identify all pairs of atoms in this sublattice less than or equal to
amultiple χof dNN apart (depicted in Fig. 1b).Next, we build a tight-binding

model with uniform self-energy and one orbital at each atomic site in the
sublattice with hopping energy t > 0 between all site pairs 〈i,j〉 such that the
site pair distance dij < χdNN (Fig. 1f–h):

H ¼ �t
X

hi;ji
cyi cj þ cyj ci

� �
: ð1Þ

ci (c
y
i ) is the fermion creation (annihilation) operator at site i. We further

define dNNN as the shortest atomic distance greater than χdNN (the shortest
bond not included in the tight-binding model).

A search of 468,378 individual elemental sublattices from 139,367
materials in the MP for near-neighbor isotropic uniform hopping tight-
binding flat bands was performed. The calculation was performed for χ
cutoffs of 1.02, 1.05, 1.1, 1.2, and 1.4 (the statistics reported throughout this
work include results of all listed choices of χ). 63,076 uniquematerial entries
were found to contain at least one non-trivially localizedflat band across the
entire 3D brillouin zone in at least one of their elemental sublattices for at
least one value of χ. Some materials contain multiple decoupled lattice
components (a component is defined as a connected subgraph that is not
part of any larger connected subgraph) or multiple flat band lattices among
different elemental sublattices in the samematerial; in total 108,341flat band
models were found within elemental sublattices. 15,288 unique flat band
crystal nets were identified with Systre43, while 68,710 components evaded
classification in Systre due to barycentric node collisions (see methods).
Applying lattice invariant based classification schemes identifies at least
16,347 additional crystal net groups, yielding at least 31,635uniqueflat band
crystal nets.
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Fig. 1 | Flowchart of the tight-binding flat band search algorithm. a Structure of
candidate Bi2Rh3S2 (spacegroup C2/m, lattice parameters a = 11.49 Å, b = 8.42 Å,
c = 8.13 Å, α = 90°, β = 133.45°, and γ = 90°). bNearest-neighbor (NN) distance dNN,
the bond length cutoff χdNN, the longest distance included as a bond dNN;max, and the
shortest distance excluded as a next-nearest-neighbor (NNN) bond dNNN. c–hTheBi
lattice of Bi2Rh3S2 supports no flat bands (c, f), while the S contains only trivially
localized molecular flat bands (e, h). The Rh sublattice contains a non-trivial or
frustrated

two-dimensional flat band lattice with a doubly degenerate flat band at energy E = 2t
for hopping twhich supports two distinct CLSs, the square kagome (or “squagome”)
lattice, identified as “dha” in the reticular chemistry structure resource63 (d, g). i The
squagome represented in high symmetry form, and j identified based on its Systre
classification key. The unit cell of the squagome is shownwith a black outline, and the
two unique CLSs are shown with black and white lattice sites, indicating alternating
signs of the wavefunction on each site (all other sites being zero).
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Observed flat band motifs and abundances
In Table 1, we list in descending order the abundances of materials hosting
the tenmost commonflat band lattices (themost common lattices and their
tight-binding bandstructure are shown in Figs. 2 and 3, respectively, with
additional common lattices shown in the Supplementary Fig. 2 and dis-
cussed in SupplementaryNote 5). The kagome lattice is themost commonly
identified lattice, found in 5329 materials (Figs. 2a, 3a). Second is the pyr-
ochlore lattice with 3700materials (Figs. 2b, 3b). The one-dimensional stub
lattice is third with 3669 (Figs. 2c, 3c), followed by the “diamond chain”4

lattice, a 1Dchainof alternating oneor two sites,with 2557 (Figs. 2d and3d).
Following this are the Lieb lattice with 1976 (Figs. 2e, 3e), the fluorite CaF2
lattice (with both theCa and F sites occupied by the same species) with 1330
(Figs. 2f, 3f), a diamond chain lattice with a transverse bond here referred to
as the “Kite” latticewith 1,291 (Figs. 2g, 3g), the tetrahedron chainwith 1131
(Figs. 2h, 3h), a honeycomb with an additional orbital connected to
one vertex,whichwe refer to here as the “StubHoneycomb”with 1049 (Figs.
2i, 3i), and the hyperkagome44 lattice which is the edge net of the SrSi2
lattice45 has 930 (Figs. 2j, 3j).

InTable 2,weprovide the abundances of elementalflatband sublattices
being hosted by s, p, d, or f block elements on 1-, 2-, or 3-dimensional
networks. In termsof composition,most identifiedflat band lattices are built
of p block elements, followed by the d block, s block, and f block (see also
Supplementary Figure 1 and SupplementaryNote 4). This is likely biased by
the contents of the database itself (e.g., Li is both the secondmost abundant
element in the MP and the flat band catalog here, see Supplementary
Figure 1 and Supplementary Note 4). It is also of interest to explore the role
of chemical bonding in flat band formation; i.e., if covalent bonds may be
more likely to form the relatively non-close-packed flat band lattices
depicted in Fig. 2 than a metallic element—for example, oxygen makes up
only 14.8% of elemental sublattices in the MP, but forms 37.5% of all flat
band sublattices found here. We also observe a relatively uniform dis-
tribution of one-dimensional, two-dimensional, and three-dimensional flat
band lattices. Only 20.8% of results contain a flat band with the most
restrictive choice χ = 1.02. All search results are available in a supplemental
data sheet (see Supplementary Note 3).

Identifying flat band material families
Analysis of the identified flat band lattice materials reveals connections
between several of these networks in terms of dimensionality and the
character of the CLS. For example, many flat band networks arise from a
similar interference mechanism as the kagome net: a ring with an even
number of sites with each nearest-neighbor of the ring hopping to two
adjacent sites within the ring. In Fig. 4, we show the relationship between

various 1D, 2D, and 3D flat band lattice materials that fit this description.
Starting with the XY5 (CaCu5-type) structure (Fig. 4b) of AA stacked bi-
connected kagome layers, replacement of one or both connecting Y atoms
with Z atoms yields the mono-connected (XY4Z, Fig. 4c) and disconnected
(XY3Z2, Fig. 4d) kagome flat band lattices, respectively. Further substitution
of Y for Z to XY2.5Z2.5 results in a 1D kagome ladder flat band lattice (Fig.
4h).ConvertingZ toX inXY4Z to obtainXY2, different stackings (with slight
distortiononX sites) produce the theABC stacked (MgCu2-type,C15) cubic
laves phase pyrochloreflat band lattice (Fig. 4f) and theAB stacked (MgZn2-
type, C14) “znz” hexagonal laves phase flat band lattice (Fig. 4g). Shifting,
substituting, and splitting sites in the XY3Z2 structure can result in the XY
(CoSn-type) kagome flat band lattice (Fig. 4e), or the XY6Z6 (MgFe6Ge6-
type) kagome flat band lattice (Fig. 4i). This can be considered a kagome
“family” of systems: all can be thought of as distinct ways of connecting
kagome lattices while maintaining destructive interference of the hopping
around the hexagonal ring. As such, the CLS’s of all lattices in Fig. 4 will
consist of orbitals with alternating signs around the hexagonal ring. Further
exploration of other motifs cataloged in the present search may provide
insights into other flat band material families and how flat band changes
across those classes.

Discussion
We have identified 108,161 sublattices hosting a structural motif that con-
tains a flat band at the s-orbital model level in the MP, comprised of more
than31,635unique lattices. These includemotifswith a variety ofpotentially
interesting bandstructure features, including isolated flat bands, linear and
quadratic intersections with the flat band (including singularity of the
wavefunction at intersection points46), and multiply degenerate flat bands.
These lattices are categorized to the extent possible with current graph
theory algorithms, allowing the identification of isomorphically equivalent
flat band lattices in a majority of search results. The present graph theory-
based approach enables further flexibility in the present search through its
ability to identify distorted lattices and categorize them by their most
symmetric forms. For example, as shown inFig. 5a,Al6B5O18 is identified to
contain a hidden distorted oxygen star lattice amongst many clusters of
oxygen atoms, the chromium sublattice of Cr3AgO8 can be considered a 3D
distorted dice lattice (Fig. 5b), and the Ba(Ag3O2)2 unit cell contains two
distorted Lieb lattices of silver (Fig. 5c). This provides a significantly more
general framework for classifying lattices than a purely geometric or
symmetry-based method.

Beyond this classification at a model level, the present search also aids
in identifying materials in different proximities to ideal models. A tight
grouping of bond lengths (dNN;max=dNN close to one) is more likely to
represent a relatively undistorted lattice, and a large ratio dNNN=dNN;max is
less likely to overlook relevant hopping pathways. The shortest bond
included, dNN, should also be small to ensure t is a dominant energy scale
(though it may be useful to relax this requirement in some systems, such as
metal-organic frameworks). The robustness of aflat band to the inclusion of
decreasing hopping strength with increasing bond length is another metric
of theflat bandmodel reliability.Onemight also seeksimplematerialswith a
minimal number of sites in the unit cell to minimize additional bands
(examples of complex unit cells are provided in Supplementary Fig. 3 and
discussed in SupplementaryNote 6). Combining these criteria, we provide a
curated list in the supplemental materials of 2759 systems with filtered
values of key parameters: materials with 16 or fewer atoms per unit cell,
dNN≤ 3.7Å, dNN;max=dNN ≤ 1:05, dNNN=dNN;max ≥ 1:35, and a negative
energy per atom in the MP calculation are included. These criteria are
designed to favor the appearance of robust flat bands in the material
bandstructure; specific examples from this curated list in which the DFT
manifests the tight-binding features are discussed in Supplementary Note 7
and shown in Supplementary Figs. 4–9. We emphasize that because the
results are not guaranteed to represent the ideal s-orbital model when
searching for flat band materials, this database is best used as an identifi-
cation tool to generate a constrained list upon which to build a more
sophisticated analysis.

Table 1 | Materials Statistics

Lattice No. Materials

All 139,367

Have F.B. 63,076

Curated 2759

Kagome 5329

Pyrochlore 3700

Stub 3669

Diamond Chain 2557

Lieb 1976

Fluorite 1330

Kite 1291

Tetrahedron Chain 1131

Stub Honeycomb 1049

Hyperkagome 930

Statistics for the number of materials containing the most common flat band lattices.
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Despite overlooking many effects that could render the flat band dis-
persive, the complete, unfiltered results may be of use to group materials
based on flat band motifs, enable further screening to find high quality flat
band materials, and identify additional models for theoretical and artificial
lattice investigations. For example, although this method does not include
higher orbital angular momentum orbitals, in some cases this isotropic
approximation is valid. For instance, in 2D lattices where crystal field
splitting separates the pz or dz2 orbitals from all other orbitals, the tight-
binding model retains the same symmetry as an s-orbital model and
therefore the model bandstructure remains the same. Effective s-orbital
models have also been used to describe the bandstructure of metal-organic
or covalent-organic frameworks where a cluster of atoms acts as one
effective s-orbital47,48. Further, in some cases, the local symmetries between
orbitals on adjacent sites retain the frustration conditions of the s-orbital

model (e.g., specific orbitals for the d-orbital kagome model, see Supple-
mentary Information in ref. 14).

In other cases, however, a higher orbital angular momentum basis
may be required to create flat bands, such as in the {px, py} honeycomb
model49. Beyond this, spin-orbit coupling (SOC) (relevant for topological
features), further neighbor and anisotropic hopping, interaction effects,
and orbitals on other sublattices are neglected (while orbitals on the
considered sublattice are given equal self-energies). Mitigation of each of
these can be pursued by appropriate elemental and structure filtering of
the search results, as discussed in Supplementary Note 7. The coexistence
of dispersive bandswith theflat bands can also affect the accessible physics
and should be considered when identifying flat band material candidates
(and can give rise to interesting behavior itself50,51). In the future, this flat
band search method could be extended to produce additional flat band

b – Pyrochlore SK-3

f – Fluorite SK-6 g – Kite LI-3 h – Tetra.
Chain LI-2

i – Stub Honeycomb SK-7 j – Hyperkagome SK-5

p – Kite
Chain LI-7

q – Creutz
Ladder LI-8

r – Skip
Creutz LI-10

s – Doubled
Honeycomb LI-9

t – Double Stub
(“Stubble”) LI-11

u – Butterfly
Chain LI-12

c – Stub SK-2 d – Diamond
Chain LI-1

n – 2D Vertex Sharing
Octahedra LI-6

l – Tetra.
Ladder LI-4

k – Hopscotch
LI-5

o – Dice SK-9m – Star SK-8

a – Kagome SK-1 e – Lieb SK-4

Fig. 2 | The twenty-onemost commonnon-trivial flat band lattices. a–u Lattices identified by the present search are sorted in descending order of occurrence. The unit cell
for each is shown with a solid black line. The lattice code of each lattice is indicated after the lattice name.
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models and more accurate results by including these effects. More
sophisticated search algorithms are also of significant interest; in parti-
cular, comparison with recent geometry- and DFT-based catalogs32,52,53

may provide additional insights for both theoretical models and

identification of experimental materials targets. The development of tools
to identify amaterial which realizes a complexmodel that is dependent on
detailed orbital texture is an outstanding challenge to the field and worthy
of significant future work.

Fig. 3 | Bandstructure and density of states for the most common lattices. Bandstructures follow the same panel ordering a–u as presented in Fig. 2. The energy E is
normalized by the hopping integral t. The right-hand sub-panels show the density of states (DOS).
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Alternative methods for screening tight-binding models for candidate
flat band systems could also be considered. Starting from ab initio density
functional theory calculations for amaterial, one canmanually construct an

effective Hamiltonian with maximally localized Wannier functions54

(though this is significantly more computationally intensive than the pre-
sent approach). Other methods attempting to construct a tight-binding
model database55 or generate tight-binding models from ab initio calcula-
tions can also be considered56–59. Finally, we propose that this general fra-
mework of high-throughput tight-binding and graph isomorphism analysis
can be applied to a broader range of materials searches, for example, in
searching for systems with symmetry-protected band nodes, nodal points,
or massless dispersions. The materials insight provided by those and the
present flat band focused investigations may provide a theoretical and
computational resource for identifying exotic phases in lattice systems and
an experimental resource for selection of synthesis targets in both artificial
lattice and material-based studies.

Methods
Identification of nontrivial flat bands
We eliminate components (subsets of atoms and bonds in the periodic
graph that do not connect via any hoppings to other components of the
graph) that are completely isolated within the lattice—i.e., clusters of con-
nected atoms that cannot hop infinitely far from any of the atoms in the
cluster, as exemplified by the S sublattice in Bi2Rh3S2 (Fig. 1h). As such a
completely localized component of a crystal net will have no momentum
dependent eigenvalues, this step identifies the number of “trivial’ flat bands
that will be present in the final bandstructure (those that would describe a

Table 2 | Sublattice Statistics

Property No. Sublattices

All 468,378

Have F.B. 108,161

Curated 2958

s block 15,021

p block 65,050

d block 24,868

f block 3222

1D 35,537

2D 36,692

3D 36,558

Systre compatible 60,913

Systre incompatible 47,248

Statistics for general properties of elemental sublattices identified to contain flat band models.

XY5 P6/mmm XY3Z2 P6/mmm

XY2.5Z2.5 Pmmm

XY4Z P6m2

XY2 P63/mmc

znz (C14 Laves) Kagome Ladder

SK-149

SK-17 LI-18

Biconnected Kagome

XY2 Fd3m

Pyrochlore (C15 Laves)
SK-3

fd3m

Pyrochlore

a b c d

hg if

A

B

C

SK-56
Monoconnected Kagome Kagome

SK-1

XY P6/mmme

Kagome
SK-1

XY6Z6 P6/mmm

Kagome
SK-1

3D 3D 2D 2D

1D3D3D 2DAA AA

AA AA AA AA

ABABC

ABC

Fig. 4 | Relations between flat band lattices in the kagome families. a The pyro-
chloreABC stacking of kagome lattices (interlayer sites not shown).bTheCaCu5 type
structure, showing the 3D flat bandY sublattice. cBy substituting oneY site from (b),
a different 3Dflat band lattice is obtained.d Substituting a secondY site creates the 2D
kagomeflat band lattice.h Substituting further toXY2.5Z2.5 creates a 1Dversion of the
kagome lattice, referred to here as the “kagome ladder.” e The XY kagome flat band
lattice can be generated from (d) by shifting the cornerX site and convertingZ sites to
X sites. i The XY6Z6 lattice is obtained from (d) by doubling the unit cell along the

c-axis and splitting oneX site into twoZ sites. gThe znz (C14 hexagonal Laves phase)
3D flat band lattice is created from (c) by changing to anAB stacking, substituting an
X for a Z, and distorting two X sites. f By altering to an ABC stacking, the cubic C15
Laves pyrochlore lattice can be realized in the XY2 system. The pyrochlore unit cell
depicted in (a) and (f) is rotated such that the c-axis is along the conventional [111]
direction to facilitate comparison amongst structures. Dimensionality is indicated in
the lower left of each panel. Stackingorder is indicated in the lower right of eachpanel.
The lattice code of each lattice is indicated in the lower center of each panel.
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lattice of decoupled molecular states). All remaining flat bands must then
admit a description via the construction of nontrivial CLS due to frustrated
hopping, e.g., the Rh sublattice in Bi2Rh3S2 in Fig. 1g (see Supplementary
Note 1).

Discarding sites in the lattice determined to be trivially localized, we
then calculate the eigenvalues of the remaining tight-binding Hamiltonian
on a 16 × 16 × 16 grid mesh of k points in the Brillouin zone. We bin the
eigenvalues with bins one-thousandth of the total range of the band-
structure. A flat band is identified for any energy bin that contains an
eigenvalue in that bin at every calculated k point. Thus, a band must be no
more dispersive than 0.1%of the total dispersionof the bandstructure across
the entire Brillouin zone. Such a search is presented here for χ = 1.02, 1.05,
1.1, 1.2, and 1.4 in order to capture lattices with a wide range of distortion
and connectivity. χ = 1.02was used as the lowest cutoff to allow for up to 2%
bond distortions to be considered identical, and to accommodate rounding
errors in the relaxed structure (χ = 1.4 was used as the largest cutoff to avoid
inclusion of bonds along the hypotenuse of three atoms in a right triangle).

Lattice classification
We attempt to categorize the identified lattices into groups of identical
crystal nets (e.g., all kagome lattices). As the band flatness in a tight-binding
model with uniform hopping originates from the topology of the periodic
graph that describes the connectivity of orbitals, lattices identified by this
search can be categorized by their crystal net isomorphisms. As such, a
highly distorted lattice (Fig. 1d) will have identical bandstructure with its
undistorted version (Fig. 1i), assuming the connectivity of the orbitals is the

same. To classify lattices, we use the method of barycentric placement
implemented by Systre43, which associates a Systre “key” unique to each
periodic graph, the ideal symmetry group of the graph, and its dimen-
sionality (Fig. 1j). The limitation of thismethod is that for ~40%of flat band
lattices, two or more vertices’ barycentric locations are identical which
prevents those lattices from being classified according to this scheme. For
these, we group lattices based on lattice invariants including the number of
atomic sites, the number and energies of theflat bands, and the approximate
range of the energy eigenstates (see Supplemental Note 2). Each unique flat
band lattice type identified in this work is assigned a lattice ID number
beginning with “LI-” or “SK-” for those classified by lattice invariant or
systre key, respectively. Following this prefix, a number is assigned based on
the frequency of occurrence of the lattice in descending order.

Code and databases used
Weobtain crystal structures fromtheMP42 (database versionMay13, 2021).
Structural analysis is performed with the pymatgen python library60,61.
Tight-binding models are calculated with the pythTB python library62.
Crystal net classification and analysis are performed with Systre43. Addi-
tional analysis is performed with standard python libraries, Numpy, and
Scipy. A curated list of classified results is included in the Supplemental
Materials.

Data availability
The search results and curated list are available as a supplementary data
sheet. See Supplementary Note 3 for more information.
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Code availability
Code used to generate tight-binding models and identify/classify flat bands
is available at https://github.com/pmneves7/Crystal-Net-Flat-Bands/
tree/main.
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