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Generative adversarial network (GAN) enabled Statistically
equivalent virtual microstructures (SEVM) for modeling cold
spray formed bimodal polycrystals
Brayan Murgas 1, Joshua Stickel1 and Somnath Ghosh 2✉

Image-based micromechanical models, necessary for the development of structure-property-response relations, are far from
mature for complex microstructures with multi-modal distributions of morphological and crystallographic features, such as those
occurring with cold spray-formed (CSF) aluminum alloys. These materials have a bimodal polycrystalline microstructure composed
of recrystallized ultra-fine grains (UFGs) and deformed coarse grains (CGs) within prior particles. A prime reason is the lack of robust
approaches for generating statistically equivalent virtual microstructures (SEVM) capturing the statistics of characteristic
morphological and crystallographic features, such as grain size, crystallographic orientations, and misorientations. This paper
introduces an approach, strategically integrating Generative Adversarial Network-based approaches for producing bimodal CSF
AA7050 alloy microstructures, with the synthetic microstructure builder Dream3D for packing prior particles with CGs having
statistically equivalent morphological and crystallographic descriptors to electron backscatter diffraction (EBSD) maps. An efficient
finite element (FE) simulation approach is developed for the SEVMs to generate local and overall response functions through the
creation of sub-volume elements (SVEs).
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INTRODUCTION
The recent times have witnessed unprecedented growth in
materials engineering, enabled by major advances in manufactur-
ing technologies like 3D printing, as well as modern methods of
materials modeling and design. These advancements are creating
avenues for material design to reach new heights in performance
and life-related properties that would have been previously
unachievable. Robust microstructure-informed hierarchical
mechanistic modeling for structure-property-response relations
is at the core of these developments. The models enable material
designers to utilize the full potential of these materials by
predicting important deformation and extreme behavior char-
acteristics like fracture and fatigue response.
Image-based micromechanical models rely on the creation of

3D virtual microstructures, mostly through synthetic image
reconstruction from 3D experimental data on sample microstruc-
tural volumes. Such experimental data may be extracted from
electron backscatter diffraction (EBSD) and scanning electron
microscopy (SEM) images of serially sectioned samples1,2, or from
computed tomography (CT)3. Deterministic models of the micro-
structure, developed from limited experimental data4, are not
necessarily representative of the statistical distributions, essential
for effective micromechanical modeling. A more compelling
approach is to create virtual microstructures that have statistical
equivalence to experimentally observed distributions and correla-
tions of morphological and crystallographic descriptors. These
statistically equivalent virtual microstructures (SEVM)5–8 must
capture the statistics of characteristic variables, such as grain or
inclusion shape and size, crystallographic orientations, misorienta-
tions and their correlations9,10. The statistically equivalent RVE
(SERVE) has been introduced in5–7,11,12, as the smallest SEVM with
optimally convergent statistical functions of microstructural

descriptors to the experimental measurements of the microstruc-
ture for efficient micromechanical simulations. The SERVE is
further classified as microstructure-based SERVE (M-SERVE) for
convergent statistics of morphological and crystallographic
descriptor functions and as property-based SERVE (P-SERVE) for
convergent target material response functions or properties in5,7,8.
A variety of models and tools have been developed in the

Integrated Computational Materials Engineering field for generat-
ing image-based virtual material microstructures. These include
the Dream3D software9,10,13, Neper14, MicroStructPy15, Kanapy16,
MicroLib17, among others. Using Voronoi tesselation18, Laguerre-
Voronoi tessellation19, sphere packing20–23, Markov random field
algorithms24, cellular automata25, dilation-erosion26 or spatial
correlations functions27–29, these tools generate SEVMs by
selectively matching data from experimental microstructures.
While these tools have been typically effective for microstructures
with a unimodal distribution of heterogeneities, e.g., grains and
particles, they tend to struggle when regenerating microstructures
with multi-modal distributions of morphological and crystal-
lographic features. For example, it is difficult to generate
polycrystalline microstructures containing dispersed precipitates
with correlated precipitate-grain boundary configurations8, or
localized grain clusters having distinct characteristics from the rest
of the microstructure, with acceptable fidelity30.
In practice, however, many of the emerging new materials

exhibit significant microstructural complexities, e.g., in the form of
multimodal grain size distributions as a consequence of their
processing routes, such as deformation followed by heat
treatments like annealing31, severe plastic deformation32, sinter-
ing33 and cold spray forming34, schematically depicted in Fig. 1a.
Figure 1b, c show EBSD maps of a cold spray-formed (CSF)
microstructure of the aluminum alloy AA7050 with a bimodal
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grain size distribution. Cold spray forming is a solid-state coating
deposition technique, in which deposition layers are formed by
the collision and subsequent bonding of particle-substrate and
particle-particle interactions. Particle impact results in

deformation-induced recrystallization in the CSF layers34, which
leads to a bimodal polycrystalline microstructure composed of
recrystallized ultra-fine grains (UFGs) and deformed coarse grains
(CGs) within the prior particles. This is shown in Fig. 1b, c for two

Fig. 1 Schematic of the cold-spray forming process and associated material microstructures. a Schematic diagram of the cold spray
forming process, (b) low-resolution inverse pole figure (IPF) of the Z-orientation map in the XY plane showing standard triangle colors for the
orientation maps, (c) low-resolution IPF of the Z-orientation map in the YZ plane, (d) high-resolution band contrast map of the boxed region in
(c) with grain boundaries of ultra-fine grains (UFGs) and coarse grains (CGs) colored in black and red (grain boundaries delineated by an
assigned misorientation angle), (e) histogram of number fraction and (f) histogram of area fraction of the equivalent grain diameter indicating
multimodal grain size distribution.
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orthogonal planes, It shows deformed CGs in prior particles that
are interjected into substrates containing UFGs. The bimodal grain
size has been associated with higher yield strength and ductility35.
While a grain size threshold can be used to separate CGs and
UFGs, the kernel-averaged misorientation (KAM)36,37 is a more
effective means of this separation for bimodal microstructures.
Figure 1d shows zones and grain boundaries of UFGs (in red) and
CGs (in black) using grain size and KAM thresholds. Image-based
microstructural modeling of these materials with multimodal
distributions is a highly challenging enterprise.
Figure 1e, f show histograms of the number and area fractions

of the grain size, generated from the 2D EBSD maps of the
polycrystalline microstructure in Fig. 1b. The size of the α− th
grain in the ensemble with an area sα is represented in the
histogram by an equivalent grain diameter dα ¼ 2

ffiffiffiffiffiffiffiffiffi
sα=π

p
. Each bin

in the histogram spans a grain size of 0.5 μm. The number and
area fractions in the histogram for the i− th bin containing ni

grains are respectively computed as:

nif ¼
ni

NG
and sif ¼

Pni

α¼1 s
α

S
(1)

where NG is the total number of grains in the EBSD map with a
total area S. The area fraction distribution of the grain size in Fig. 1f
indicates a multi-modal distribution that deviates considerably
from the log-normal distribution typically used in synthetic
microstructure generators like Dream.3D13.
Computational studies involving bimodal microstructures are

rather limited in the literature30,38,39. In most of these studies, the
microstructure has been restricted to 2D, and the coarse grains are
represented using simplified geometric constructs. A 2D bimodal
microstructure, consisting of smaller equiaxed and large grain, has
been generated in30 using the Neper software14 and a bimodal
Laguerre-Voronoi tessellation method18. Larger grains (CGs)
belonging to bimodal microstructures in38 have been represented
as circles in a continuum matrix representing the smaller UFGs
that are modeled using continuum plasticity. In39, the CGs have
been represented by 2D ellipses that are modeled using
continuum plasticity, whereas the UFGs have been represented
using 2D Voronoi tessellation and modeled by crystal plasticity.
For many emerging novel materials, the geometry of the CG
domain is non-trivial, and simplified geometric models for multi-
modal regions are likely to ignore some of the important features
that are of consequence to the overall behavior and life.
Machine learning-based virtual microstructure generators are

showing considerable promise in recent years, e.g., in40–45.
Generative Adversarial Networks (GANs)46,47, which incorporate a
deep learning architecture consisting of two neural networks
competing against each other in a zero-sum game framework, are
emerging as popular generative tools in this operation. GANs are a
powerful class of neural networks for unsupervised learning that
generate new, synthetic data resembling known data distribution.
They have been used to generate topologically complex binary
and three-phase microstructures in40,41,43–45,48. In43, the authors
have compared the results of a microstructural model of a three-
phase solid oxide fuel cell electrode, generated by GANs with
those generated by the Dream3D software. Their studies have
concluded that GANs are able to create more realistic three-phase
microstructures in terms of visual resemblance, statistics, and
topological properties. While their potential is well recognized, the
application and effectiveness of GANs for creating multi-domain
materials, such as polycrystals, remain to be determined. A GAN-
based computational tool SliceGAN has been recently developed
in41 for generating 3D microstructures from 2D data in binary,
three-phase, or polycrystalline microstructures. While SliceGAN is
able to generate high-fidelity binary and three-phase microstruc-
tures, the quality diminishes drastically for polycrystalline micro-
structures with poor grain boundary identification.

The present paper develops a methodology for robust 3D
SEVMs and micromechanical models of complex multi-modal
microstructures that are difficult to construct by either the
conventional synthetic microstructure builders like Dream3D13

or the machine learning-based methods e.g., SliceGAN41. While
the synthetic builders have traditionally captured microstructural
information like grain size distributions, volume fractions, aspect
ratio distributions, misorientation angle distributions, these
quantities alone are not sufficient for characterizing the inherent
complexities of multi-modal microstructures. GANs, on the other
hand, provide a rapid sampling of high-dimensional and
intractable density functions without specifying an apriori
distribution function that can miss some important characteristics
of the microstructure. For example, they do not accurately
represent the morphological shapes and sizes of CGs and UFGs
for the EBSD scans of Fig. 1b, c. This approach harnesses the
advantages of Dream3D and GANs-based methods and couples
them to overcome their individual shortcomings. Furthermore, the
paper also introduces an effective multiscale method for utilizing
the resulting SEVMs in micromechanical analysis for
microstructure-property relations.
The present study is focused on models for a CSF Aluminum

alloy AA7050 with a bimodal grain size distribution in the form of
CGs and UFGs. While computational studies on CSF have typically
focused on the particle deposition process49–52, very little has
been done on modeling deformation leading to fatigue life in CSF
materials with complex microstructures. Such studies are essential
for comprehending the effect of processing on the material
behavior53. A primary reason for this paucity is the difficulties
encountered in generating 3D SEVMs and SERVEs for analyzing
the complex bimodal microstructures, such as in Fig. 1. The large
size discrepancy between the CGs and UFGs necessitates a
multiscale modeling approach for computational efficiency. In this
approach, the CG domains are explicitly represented as poly-
crystalline ensembles, whereas the UFGs are represented as a
homogenized domain whose response is obtained by upscaling
the high-resolution microstructural UFG behavior. Correspond-
ingly, it is important to separate these domains in the construction
of microstructural SEVMs.
This paper is organized as follows. The Results section shows

the results of a methodology for generating 3D SEVMs of bimodal
CSF microstructure. The method combines the SliceGAN code for
generating the UFG and CG domains with the Dream3D code for
packing the CG domain with grains matching the experimental
morphological and crystallographic data. A Finite Element (FE)
simulation strategy is subsequently developed for the mechanical
response of the overall SEVM from the ensemble average of a
range of statistical volume elements (SVEs) created from the
parent SEVM. The Discussion section summarizes the importance
of the methods developed. The Methods section discusses the
specifics of the material and processing conditions, steps for
coupling SliceGAN and Dream3D in the creation of the SEVMs, as
well as the fundamentals of GANs along with modifications in the
SliceGan code.

RESULTS
A robust methodology is proposed in this paper to reconstruct 3D
SEVMs of the CSF AA7050 alloy for modeling topologically
complex 3D bimodal microstructures. This is followed by its
implementation for simulating the mechanical response. The
SEVMs are generated using a strategic combination of a GAN-
based SliceGAN code41 and a conventional synthetic microstruc-
ture generator software Dream3D13. The material and processing
condition specifics are discussed in the Methods section. The
SEVM reconstruction methodology requires at least two orthogo-
nal EBSD maps for input information on the bimodal domain
morphology and an additional high-resolution map that provides
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high-quality statistical information on grain morphology and
crystallography. The following sections detail the reconstruction
and simulation process.

Characteristics of experimentally acquired EBSD images of the
microstructure
Microstructures are analyzed using an Oxford Instruments EBSD
system, attached to a JEOL 7000 field emission SEM. The EBSD
images are treated using the MTEX toolbox in a Matlab
environment54 and the acquired low-resolution EBSD maps in
the XY and YZ planes are shown in Fig. 1b, c respectively. Each of
these EBSD maps is scanned with a step size of 0.5 μm and has a
size of 0.15 mm× 0.15 mm. Figure 1d corresponds to a
50 μm× 50 μm high-resolution EBSD map, scanned with a step
size of 0.166 μm. The low-resolution EBSD maps are assumed to
provide a statistically significant sample size of prior particles for
the reconstruction of prior particle morphology, while the high-
resolution map provides the necessary morphological and
crystallographic information on the UFGs and CGs.
The impact during the cold spray (CS) deposition process

produces a geometry change from roughly spherical particles to
lune-like or imbricated prior particles in55. During impact,
deformation-induced recrystallization takes place and results in
microstructures with a bimodal grain size distribution. Figure 1b, c
depict the characteristics of a CSF microstructure in the XY and YZ
planes, impacted in the Z direction. The black zones in the EBSD
maps correspond to a large number of recrystallized, UFGs. As
seen in the XY and YZ plane EBSD maps respectively in Fig. 1b, c,
the UFG domain generally envelops the prior particles in a
complex 3D network. In the XY plane, the initial spherical
geometry of the particles is preserved, while the YZ plane map
shows evidence of significant deformation with impact, resulting
in a deviation from the spherical shape. The CGs within the prior
particles do not recrystallize but deform with the parent particle as
a whole.
The deformed CGs can be differentiated from the recrystallized

UFGs in the EBSD maps by using measures like the Kernel Average
Misorientation (KAM) and the Grain Average KAM (GAKAM)36,37, in
addition to the grain size distribution. The KAM measures, which
are based on the lattice misorientation in the grain interior
induced by deformation, are found to be ideal for the CS-formed
microstructures. KAMi represents the average misorientation angle
θij between a point i and its neighbor j, (j= 1⋯ n) within the same
grain g. The GAKAMg is a property for a grain g that is calculated as

the average KAMi over i= N points within the grain, expressed as:

KAMi ¼ 1
n

Xn
j¼1

θij; and GAKAMg ¼ 1
N

XN
i¼1

1
n

Xn
j¼1

θij (2)

The KAM and GAKAM vary with the geometrically necessary
dislocations56 and are effective in differentiating the recrystallized
UFGs from the CGs, which have a higher KAM value. Figure 2a, b
respectively show the GAKAM map and the GAKAM histogram of
the EBSD map in Fig. 1b. There is a direct correlation between the
low values of GAKAM colored in blue in Fig. 2a and the zones
around the prior particles in Fig. 1b. The GAKAM distribution
exhibits a clear threshold between the two types of grain
populations, where the peak around 0 degrees corresponds to
the UFGs and the remaining parts of the histogram correspond to
CGs.

Generating 3D SEVM of complex bimodal AA7050
microstructures
The generation of 3D SEVM from orthogonal 2D EBSD maps of
complex bimodal microstructures in Fig. 1b, c is based on the
statistics of physically relevant microstructural features. The large
size disparity between the CGs and UFGs necessitates a multiscale
modeling approach, in which, the CG domains are explicitly
represented as polycrystalline ensembles, whereas the UFGs are
represented as homogenized domains whose response is
obtained by upscaling the high-resolution microstructural beha-
vior. Correspondingly, it is important to separate these domains in
the construction of microstructural SEVMs as well as their
simulations.

Challenges with conventional synthetic builders. The creation of
3D SEVMs from 2D EBSD maps of these bimodal microstructures,
using commonly used synthetic generation software like
Dream3D13 and SliceGAN41, are faced with various difficulties.
The first corresponds to the inappropriate representation of the
domains occupied by the UFGs due to the resolution differential
between CG and UFG domains. Often this results in a fixed width
UFG region between CG grains as seen in Fig. 3a. A second
difficulty arises with the representation of anisotropy in the CG
morphology in the prior particles shown in the EBSD scans of
Fig. 1b, c.
Figure 3 shows a SEVM of the CSF microstructure in Fig. 1,

generated using the Dream3D software13. Major steps in the
Dream3D generation include (i) separating the UFG and CG
domains, (ii) identifying prior particles containing the CG domain

Fig. 2 Grain-averaged kernel-averaged misorientation characteristics. a GAKAM map of the XY plane, and (b) GAKAM distribution (see
Eq. (2)) weighted by surface.
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in the EBSD map using a 2D watershed algorithm, (iii) packing
prior particles in the SEVM domain from consideration of
morphological characteristics, (iv) evaluating morphological and
crystallographic characteristics of the CGs, and (v) packing CGs
within the prior particles delineated in step (iii). The resulting
SEVM in Fig. 3 has a number of discrepancies. First, the shape of
prior particles in the CG domain is much more regular in
comparison with those seen in the real microstructure of Fig. 1.
Second, the representation of the UFG domain has a nearly
constant width of approximately 2.625 μm, which is not char-
acteristic of the real UFG domain. Furthermore, the morphological
anisotropy of the Dream3D-generated grains, delineated by the
histogram of aspect ratios in two orthogonal planes, is quite
different from that for the EBSD maps. The aspect ratio in the
paper is defined in terms of the ratio of the maximum to minimum
principal axis length of an equivalent ellipse (in 2D) and ellipsoid
(in 3D).
Next, the quality of GAN-generated CSF SEVMs using the

SliceGAN software41 is investigated. The original SliceGAN code
in41 is modified to receive multiple inputs in the form of Euler
angles, quaternions, grain IDs, and grain sizes. Quaternions are
used as inputs to the microstructure generation process for the
microstructure shown in Fig. 10, whereas Euler Angles are used for
post-processing. In addition to being non-singular, quaternions
also showed a better image quality in trial simulations. The direct
output from SliceGAN, using Quaternions, does not generate a
well-defined microstructure and grains are difficult to distinguish.

The post-processing steps necessary to obtain a distinct transition
between grains and generate Fig. 4 are specified in the Methods:
Section IV. Figure 4 compares the crystallographic and morpho-
logical characteristics of virtual microstructures generated by the
SliceGAN software with data from EBSD maps. While the virtual
UFG and CG domains generated by SliceGAN are slightly more
representative of the real microstructure, the grains are generally
equiaxed and larger than those observed in the EBSD maps.
Furthermore, the generated texture is dissimilar to that seen in the
EBSD maps. The misorientation angle shows two peaks, but the
fraction of the peaks is incorrect. The crystallographic data can be
improved through a sampling of the orientation from the
experimental data and the misfit can be reduced using different
grain size thresholds, and variations in the watershed filter.
Moreover, the morphological data can be corrected through the
improvement of the artificial network (AN) used in the GAN model
by utilizing the difference shown in Fig. 10f and the statistical data
from Fig. 4 as metrics in a hyper-parameter optimization
algorithm.

Integration of GANs in SliceGAN and the synthetic builder Dream3D
for creating SEVMs. From the above study, it is evident that the
Dream3D software is capable of packing grains conforming to the
experimental statistics in EBSD maps, while GANs are capable of
producing good binary or three-phase microstructures. Conse-
quently, their complementary advantages may be strategically
integrated using the GANs-based approaches in SliceGAN41 and

Fig. 3 3D SEVM created using Dream3D. a Dream3D-generated SEVM of cold spray formed AA7050 alloy, showing prior particles with
packed CGs, and the UFG domain with thick black particle boundary regions, and (b) comparison of histograms showing the frequency of the
aspect ratio of the prior particles from two orthogonal sections of the EBSD scans and the Dream3D image. The aspect ratio in this figure is
measured as the ratio of the maximum to minimum principal axis length of an equivalent ellipse for the prior particles containing coarse
grains (CGs).
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the synthetic microstructure builder Dream3D13 to create the
complex bimodal microstructures of the CSF alloy AA7050. The
overall generation methodology is detailed in the Methods:
Section II and Fig. 8.
Figure 5a shows a SEVM containing 24924 coarse grains in the

prior particles, that is reconstructed by the integrated SliceGan-
Dream3D toolkit. The figure illustrates details of the prior particle
morphology with the included grain crystallography at different
locations in the SEVM. The crystallographic orientations are
assigned to the grains of the SEVM by sampling from the
experimental EBSD data to yield statistical equivalence to the
microstructural texture. The grain-to-grain misorientation angle
distribution is augmented by introducing a crystallographic
orientation swapping algorithm. Figure 5b, c compare the SEVM
texture (pole figures), misorientation angle distribution, grain size
distribution, and grain aspect ratio distribution with those from
the EBSD maps. The texture, misorientation, and equivalent
diameter generally show very good agreement. The aspect ratio
distribution in Fig. 5e, however, shows a difference with the SEVM
distribution peaking at a higher aspect ratio.

FE simulation strategy of the SEVMs for mechanical response. The
large size of the SEVM containing a high number of particles with
included CGs makes direct FE analysis using crystal plasticity FEM,
computationally prohibitive. To overcome this limitation, the
SEVM can be divided into smaller volume elements for direct FE
analysis to be performed over each volume element. Subse-
quently, the overall mechanical response of each volume element
can be averaged to obtain the overall SEVM response. For the
viability of such analysis in terms of overall accuracy and reduced
computational time, it is important to determine the number of

sub-volume elements that should be considered.
Two convergence tests are performed to assess this number.

In the first set of tests, the microstructure-based statistical
volume elements (M-SVE) are based on the convergence of
morphological and crystallographic characteristics. Figure 6a–c
plot the mean grain size, grain aspect ratio, and misorientation
angle as a function of the number of M-SVEs sampled. During
sampling of the SVEs from the SEVM, their boundaries can
intersect a large number of grains. A special technique that
averages SVE statistics with and without intersected grains is
implemented for these plots. The red dashed line corresponds
to the average value of the microstructural descriptor function
for the entire SEVM in Fig. 5a. Convergence with respect to the
red line, within a tolerance, estimates the minimum number of
M-SVEs required for micromechanical analysis to make property
assessment. The equivalent diameter reaches convergence for
approximately 10 M-SVEs with a maximum error of 5.8% in
Fig. 6a. The aspect ratio converges with a maximum error of
4.5% for approximately 30 SVEs in Fig. 6b. In Fig. 6c, the
misorientation angle reaches convergence with a maximum
error of 1.9% in approximately 20 SVEs. The oscillatory behavior
of the misorientation angle convergence is a consequence of
the bimodal distribution seen in Fig. 5c.
The second test corresponds to the convergence of property-

based statistical volume elements (P-SVE) with respect to a chosen
property or response function. The property is determined from
micro-mechanical analysis of the SVEs. Each SVE shown in Fig. 7a, b,
contains both CGs and UFGs in their domain that are modeled by
two different constitutive models. The CG domain is modeled using a
crystal plasticity (CP) constitutive model developed in8, while the UFG
domain is modeled using an upscaled constitutive model (UCM)

Fig. 4 3D SEVM created using SliceGAN. a Inverse pole figure (IPF) Z of the virtual microstructure created using SliceGAN, (b) comparison of
pole figures of the EBSD data and synthetic microstructures, and comparison of (c) misorientation angle, (d) grain size, and (e) aspect ratio
distribution of the virtual and EBSD microstructures.

B. Murgas et al.

6

npj Computational Materials (2024)    32 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



accounting for anisotropy, length-scale dependent flow stresses,
tension-compression asymmetry, strain-rate dependency, and cyclic
hardening under reversed loading conditions discussed in57.
Parameters in the UCM, used for modeling the continuum UFG
domain, are calibrated from CP finite element (CPFE) simulations of
UFG SERVEs. In Fig. 6d the convergence in the SVE yield stress is
shown through a plot as a function of the number of P-SVEs
sampled. The plot has an oscillatory behavior for a lower number of
samples but reaches convergence for approximately 40 samples. The
M-SVE and P-SVE convergence analysis shows that around 40 SVE
samples are necessary to capture the properties of the SEVM
presented in Fig. 6d. This number of samples also ensures that the
complexity in the geometry of the microstructure is statistically well-
represented.
Figure 7a, b show two different P-SVEs v-1 and v-2 with different

morphological and crystallographic (Euler angles) characteristics that
are simulated under uniaxial tension loading along three orthogonal
axis X, Y, and Z respectively. The simulations are conducted for a
constant strain rate of _ε ¼ 0:001s�1 with constrained rigid body
modes. The SVE v-1 consists of 301 CGs in three clusters, whereas the
SVE v-2 consists of 264 CGs in one dominant cluster. Figure 7a, b
show the contour plots of the Cauchy stress components σxx for
loading in the X direction and σzz for loading in the Z-direction
respectively corresponding to a true strain of ~ 1.1 × 10−2. Significant
stress concentration is observed at the interfaces of particles and CG-
UFG domains. The true stress-strain plot for the two SVEs under
different loading directions is depicted in Fig. 7c. The difference in
local stress concentrations is reflected in the volume-averaged stress-
strain response with different yield stresses and hardening slopes.

DISCUSSIONS
As discussed in the introduction, material properties, especially
extreme properties like fatigue life and ductility, are very sensitive
to the local morphological and crystallographic manifestations of
the material microstructure. Experimental studies of fatigue life in
CSF Al alloys58 have observed that cracks initiate in the prior
particle substructure, corresponding to the CG grain boundaries.
Furthermore, the cracks that initiate at the CG boundaries have a
stronger influence on failure than notches in the specimen.
Studies in53 have observed that cracks nucleate near the surface
from particle-particle bonding defects, and subsequently evolve in
the CG domain along the particle boundaries. It is evident that the
prior particle boundaries and the CG microstructure are major
determinants of crack evolution in CSF alloys. This underscores the
importance of developing high-fidelity SEVMs capturing geome-
trical anisotropies of the CG-UFG boundary and the CG micro-
structure, along with their implementation in a simulation tool for
determining local mechanical response. Evolving local variables
like stresses and plastic strain that affect the local mechanical
behavior and crack evolution leading to fatigue or ductile failure59

are strongly affected by these morphological and crystallographic
features that are not easily captured by conventional synthetic
microstructure builders. The integrated SliceGAN-Dream3D toolkit,
developed in this work, is a robust enabler in this regard with the
ability to capture the local characteristics that lead to localized
extreme behavior. This methodology uses the best attributes of
the GAN-based microstructure generator SliceGAN and the grain-
packing algorithm using the Dream3D code. SliceGAN learns the
main characteristics of the binary microstructure and can generate

Fig. 5 3D SEVM created using the integrated SliceGAN-Dream3D platform. a Integrated SliceGAN-Dream3D generated SEVM of the CSF
AA7050 alloy containing CG and UFG domains from data in the orthogonal EBSD maps (Two prior particles with the included CG morphology
and crystallography are shown in details); Comparison of the (b) texture (pole figures), (c) misorientation angle distribution, (d) grain size
distribution, and (e) aspect ratio distribution, of the SEVM and EBSD data.
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different microstructures, resulting in a rich microstructure
database that can be generated to study the heterogeneity of
CSF microstructures. Dream3D, on the other hand, can readily fit
the grain distributions and crystallographic texture in the
microstructure. It is important to emphasize that three EBSD
maps are necessary for the creation of the binary SEVM in 3D.
However, the current model can be modified to incorporate 3D
EBSD data as input using one discriminator with a 3D convolu-
tional neural network instead of three separate discriminators for
each plane.
While in this work, the GAN-based microstructure creation has

been combined with the statistical aspects of synthetic micro-
structure builders, in principle it is possible to execute the entire
process within a GAN framework. However, this would require a
large amount of data from multiple EBSD maps for training the
GAN models, which can be a significant bottleneck with respect to
current data acquisition techniques. In reality, the amount of EBSD
data can be rather limited for a given material under a specific
processing condition. To overcome these issues, aspects of the
GAN model can be enhanced to obtain the morphology and
crystallography of complex polycrystalline microstructures. First, it
is possible to modify images before passing them to the
discriminator using a dataset augmentation technique. This step
helps the model to modify and interpret every image differently.
Another important aspect of GANs is the computation of the loss
function. It has been shown that the gradient penalty term in
Eq. (5) has limitations with respect to convergence, and
regularization terms can be implemented to improve convergence
and limit over-fitting60. Finally, the GANs can be modified to use
EBSD data for different material pedigrees under different
processing conditions, with supervised learning using the proces-
sing conditions as additional inputs in the GANs model. Beyond
the GANs, diffusion models and variational auto-encoders (VAE)

are both strong candidates for the microstructure generation
process of polycrystalline microstructures61,62. However, a few
potential shortcomings have thus far kept them from being
applied to this class of problems. For example, the diffusion
models do not have a good sampling speed, while the VAEs have
typically demonstrated less quality than either the GANs or
diffusion models. However, there is a good potential for these
models to be coupled with the GANs for a more robust framework,
which can be developed in the near future.

METHODS
Material and manufacturing process
The chemical composition of AA7050 alloy, comprising the prior
particle and substrate material, is given in Table 1. The cold spray
deposition process is performed using a Gen II system from VRC
Metal Systems with deposition parameters given in Table 2.
Subsequently, the coating is removed from the substrate and
machined to eliminate wrought material for the subsequent
mechanical tests. Samples are then prepared for EBSD character-
ization by mechanical polishing followed by fine polishing.

Steps for generating SEVMs using a combination of SliceGAN
and Dream3D
The generation of 3D SEVMs from orthogonal 2D EBSD maps in
Fig. 1b, c accounts for physically relevant microstructural feature
statistics, including grain size and grain aspect ratio distributions,
texture, grain misorientation angle distributions, as well as the
area fraction of the CG domain. The generation process entails
three major steps as shown in Fig. 8.
Step 1: Separating the UFG and CG domains: The first step in

constructing SEVMs of CSF microstructures entails the separation

Fig. 6 Convergence plots of microstructural descriptors and properties for estimating microstructure and property-based statistical
volume elements (M-SVE and P-SVE) taken from the SEVM created using the integrated SliceGAN-Dream3D platform. M-SVE convergence
with respect to (a) misorientation angle, (b) equivalent diameter, and (c) aspect ratio, and (d) P-SVE convergence with respect to yield stress.
The red dashed lines show the average value of the given microstructural characteristic/property for all grains in the SEVM, and the blue
points correspond to the averaged property value over N SVEs.
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of the two categories of grains, viz. the recrystallized UFGs and the
prior particle CGs. The two orthogonal EBSD maps in Fig. 1b, c are
considered for providing the input microstructural data source.
The UFGs and CGs have different dislocation densities, and hence
the KAM data can be used to distinguish between the two groups
of grains63,64. Figure 9a–d show the results of operations in step 1
to generate a binary microstructure from a given EBSD map.
An initial separation of the UFG and CG is obtained by choosing

a GAKAM threshold of 0.056°. Fig. 9a shows the UFG (in blue) and
CG (in red) domains created by using only the GAKAM threshold.
As recrystallization leads to much smaller grains, a grain size
threshold criterion, in addition to the GAKAM threshold, is enacted
to refine the result in Fig. 9a. Figure 9b shows the resulting UFG
and CG domains created using both the GAKAM and a cluster size
criteria obtained via a Gaussian blur filter to remove small, isolated
clusters of CGs identified by GAKAM. Figure 9c, d show the final
UFG and CG domains of the two orientation maps shown in
Fig. 1b, c respectively after an additional erode/dilate operation is

performed. The two domains have different geometrical features
in the XY plane in Fig. 9c and the YZ plane in Fig. 9d. In the XY
plane, the CGs preserve the initial circular geometry of the
particles, while in the YZ plane, the CGs have elongated and
imbricated geometries resulting from the deformation of particles
during the impact.
Step 2: Generating binary 3D SEVMs from 2D data using a

generative adversarial network (GAN): The second step in creating
the SEVM is the generation of a 3D binary microstructure from the
orthogonal 2D binary microstructures shown in Fig. 9c, d. For this
operation, the GAN code SliceGAN41 is used to create 3D data
from orthogonal 2D images. To accomplish this, SliceGAN
combines a 3D generator and 3 separate 2D discriminators, one
for each orthogonal direction. After generating a 3D microstruc-
ture, a slicing step is activated in the 3 mutually orthogonal
directions to compare the statistics from the 3D volume to those
from the 2D training images, as shown in Fig. 8. SliceGAN has two
major advantages, viz. (i) the training data is reduced to a single
2D representative image for isotropic microstructures, and (ii) the
method can be extended to anisotropic microstructures if three
different image scans are provided as input. This is important for
applications in which limited data is available to create virtual
instantiations of the microstructure.
From visual identification, it is assumed that the YZ and XZ

planes of the EBSD maps have similar statistics and can be
represented by a single data set. Consequently, only two EBSD-
based images are used to generate the 3D binary microstructure,
viz. (i) the XY plane in Fig. 9c and (ii) the YZ plane in Fig. 9d with
similar assumed statistics for the XZ plane. Figure 9e shows the 3D
binary microstructure generated by SliceGAN, where the CG
domain is colored in red and the UFG domain is colored in blue.
While the results from SliceGAN represent the two phases well, the
grain morphology is altered due to the truncation of grain data
beyond the UFG-CG domain boundary, when applied directly as a
mask in the Dream3D software. Consequently, an improvement of
the mask is developed to better retain the morphological statistics
of the grains after packing with better conformity to the area
fractions of the EBSD data. First, the entire cubic volume is packed

Fig. 7 Results of simulations of two different P-SVEs containing 301 and 262 CGs respectively subjected to tension loading in three
orthogonal axis X, Y, and Z. a, b P-SVEs v-1 and v-2 respectively show the crystallographic orientations of the CGs (Left), Cauchy stress
component σxx for the loading in the X direction (Center), and Cauchy stress component σzz for loading in the Z-direction (Right), (c) True
stress-strain plot for the two P-SVEs under different loading directions. Simulations are performed with an applied strain rate of _ε ¼ 0:001s�1.

Table 1. Chemical composition of the CSF AA7050 alloy (weight
percent).

Elem.
Wgt%

Al Zr Si Fe Cu Mn Mg Cr Zn Ti Other

Min 87.3 0.08 - - 2.0 - 1.9 - 5.7 - -

Max 90.3 0.15 0.12 0.15 2.6 0.1 2.6 0.04 6.7 0.06 0.15

Table 2. Information on the cold spray forming process parameters.

Carrier Gas Pressure Temperature Powder Feed
Velocity

Gun velocity

Helium 3.45MPa 450 °C 8.2 gmin−1 200mm s−1

Stand-off
Distance

Nozzle
Length

Nozzle Throat
Diameter

Nozzle Exit
Diameter

15mm 150mm 2mm 4mm -
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with grains, having equivalent statistical distributions of morpho-
logical features, using Dream3D. To accomplish this, the volume
fraction vfrac of each grain intersected by the 3D mask from
SilceGAN is defined using a relation:

vfrac ¼ vG
T
vmask

vG
; (3)

where vG is the volume of the grain and vmask the volume of the
mask. If vfrac falls below a given threshold, i.e., vfrac ≤ vfth, the entire
grain is omitted from the mask. Otherwise, the grain is retained.
Figure 9f shows the improved mask using a volume fraction
threshold of vfth= 0.1. Using these steps, the important character-
istics of the 3D microstructure obtained by SliceGAN are
preserved. Furthermore, the area fractions AUFG

ATotal
are closer to the

EBSD, as shown in the statistics of Fig. 9.
The 3D binary microstructure generated using SliceGAN is

visually similar to the geometry of the 2D binary microstructure
generated in step 1, as shown in Fig. 9c, d. Figure 9g shows the
area fraction of the CGs (red domain). For the area fraction
distributions, 2D slices are sampled from the synthetic 3D
microstructure in each orthogonal direction, and compared with
data from corresponding EBSD windows of the same dimensions
as the 3D slices. It is evident that the masking technique improves

the area fraction of the domains in the three orthogonal
directions. In the supplementary document, Supplementary Fig. 1
shows details from particles inside the SEVM shown in Fig. 5a, and
Supplementary Fig. 2 depicts slices from orthogonal sections of
the improved binary microstructure in Fig. 9f at different locations.
The images confirm that the principal characteristics of the
experimental data are reproduced, and the topological complexity
of both the UFG and CG domains is well captured.
Step 3: Generating the 3D SEVM by grain packing using Dream3D:

The third step entails coarse grain packing in the prior particles
such that the morphological and crystallographic characteristics of
the EBSD data are conserved. Dream3D13 is employed to match
the EBSD morphological distributions, e.g., grain size and aspect
ratio distributions of CGs in the prior particles. Figure 5a shows the
reconstructed microstructure with 24924 coarse grains. Crystal-
lographic orientations are assigned to the grains of the virtual
microstructure by sampling from the experimental EBSD data,
thus conforming to the microstructural texture as shown in Fig.
5b. The misorientation angle distribution is also improved by
using a crystallographic orientation swapping algorithm, in which
the orientations of two or more grains are swapped and the
difference in the misorientation angle distributions between the
newly instantiated SEVM and EBSD maps are compared using

Fig. 8 Sequence of steps for constructing a SEVM of a complex bimodal microstructure. CNN and DNN stand for Convolutional and
Deconvolutional Neural Networks, respectively.
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Kolmogorov-Smirnov (KS) test to analyze the goodness-of-fit with
respect to the experimental data65. The KS test quantifies the
maximum difference in the cumulative distribution functions of
the virtual and experimental data sets. If the KS value of the new
SEVM misorientation angle distribution is lower than the KS value
before the swapping, the new orientations are accepted. This
process is repeated up to a certain tolerance where the KS value
converges.
It is evident that the final SEVM characteristics have good

agreement with the morphological and crystallographic data in
the EBSD maps. The pole figures of the SEVM, shown in Fig. 5b, are
close to the experimental pole figures. The misorientation angle
distribution, a crucial determinant of fatigue crack evolution, is
also improved with the swapping algorithm as shown in Fig. 5c.
Step 3 takes around 20min to pack the grains and perform the

grain swapping algorithm to fit the misorientation angle distribu-
tion on 24 CPUs Intel Xenon Gold Cascade Lake.

SliceGAN: a generative adversarial network (GAN) model
The GAN used in this work, along with its architecture and
parameters, is based on the model in41. The binary microstructure
in Fig. 9c, d is used as input for characterizing the UFG and CG
domains in the SEVM, while the microstructure shown in Fig. 4a is
used to delineate the orientation distribution in the form of Euler
angles. The training run for the binary microstructure in Fig. 9e is
performed on 1 GPU Nvidia A100, running for a period of 2 h.
Once the model has been trained, new microstructures with
different stochastic characteristics can be generated in less than
one minute. Examples of different microstructures created by this
process are shown in Supplementary Fig. 3.

Fig. 9 Constructing the 3D binary microstructure of the CSF Al alloy. Result of operations in step 1 (Separating the UFG and CG domains)
towards creating SEVMS containing UFGs (blue) and CGs (red) using: (a) GAKAM threshold, (b) both GAKAM and grains size threshold, and a
dilation/erosion operation to avoid the UFGs inside the CGs for the (c) XY plane and (d) YZ plane; 3D binary microstructure obtained in step 2
(Generating binary 3D SEVMs) directly from (e) SliceGAN and (f) after using the improved mask with a volume fraction threshold; (g)
Comparing area fractions (AUFGATotal

) of the EBSD data and orthogonal slices of the 3D mask by just using SliceGAN, and from SliceGAN with
improved masking.
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The GAN implements two tasks, viz. a generator for learning
to generate plausible data, and a discriminator for learning to
distinguish the generator’s fake data from real data. As
illustrated in Fig. 8, the discriminator is composed of five
convolution layers, while the generator is composed of five
transposed convolution layers and one softmax layer. The
original SiliceGAN code is modified to handle more than 1 input
in the form of txt or hd5f files. The hd5f files are used to bridge
SliceGAN and Dream3D. The generated 3D microstructure is
sectioned along three orthogonal planes and compared to the
corresponding experimental data. Hence, every plane has its
own loss function. The Wasserstein loss function66 is used in
this work. In the Wasserstein GANs (WGANs) with gradient
penalty, the Generator G and Discriminator D play a zero-sum
game. The WGAN objective function is defined as:

min
G

max
D

E f s � Pf
½Dðf sÞ� �E r � Pr

½DðrÞ�
n o

(4)

where Pr and Pf are the real and fake data distributions
respectively, and D() is the discriminator function computed on
the real data subset r and the fake slice of the generated 3D
microstructure fs. E½DðXÞ� is the expectation of D(X) given a
random variable X. In SliceGAN41, an additional gradient penalty
term proposed in67, is considered for the calculation of the
discriminator loss function as:

LD ¼ min
G

max
D

fE f s � Pf
½Dðf sÞ� �E r � Pr

½DðrÞ� þ λE k � Pk
½ðk∇kDðkÞk2 � 1Þ2�g

(5)

where λ is the penalty coefficient, k= ε fs+ (1− ε)r with ε= [0, 1]
being randomly sampled, and ∇k is the Laplacian with gradients
represented in the coordinates k. Additionally, the generator loss

function is defined in a more simplified way as:

LG ¼ �min
G

max
D

E x � Pg
½Dðf sÞ� (6)

Post-processing steps for generating 3D SEVMs using
quaternions as inputs to the SliceGAN software
Quaternions are used as inputs to the SliceGAN code to avoid the
singularities from Euler angles. The conversion from quaternions
to Euler angles is performed using MTEX54. MTEX operations are
performed in quaternions, and hence the utilization of quater-
nions is implicit. Euler angles are however chosen for visualization
and post-processing purposes. The MTEX software accounts for
crystal symmetry and specimen symmetry. In the quaternion
representation of orientation space, an orientation is represented
with a unit quaternion as:

q ¼ ðq0;qÞ ¼ q0; q1; q2; q3f g with the constraint ðq0Þ2 þ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2 ¼ 1

(7)

Here q0 and q= (q1, q2, q3) represent the scalar and vector parts of
the quaternion respectively. Euler angles are a more classical
parameterization of the grain orientations. The final orientation is
defined by three rotations O(n, ω) around the axis n by the angle
ω. The Bunge convention defines three rotations O(z, φ1), O(x, ϕ)
and O(z, φ2), where φ1, ϕ and φ2 are the Euler angles. The
conversion of quaternions to Euler angles is performed using the
following equation:

φ1

ϕ

φ2

8><
>:

9>=
>;

¼
atan2ðq3; q0Þ � atan2ðq1; q2Þ þ π=2

2 atan2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ q23

p Þ
atan2ðq3; q0Þ þ atan2ðq1; q2Þ þ 3π=2

8><
>:

9>=
>;
; (8)

Fig. 10 Post-processing steps of the Euler angles obtained using the SliceGAN code. (a) Euler angle component ϕ1 directly obtained from
SliceGAN, (b) voxel size and gradient denoising, (c) average Euler angle from step (b) within each watershed basin, (d) sum of gradients of
each Euler angle component, (e) gradients from step (d) after contrast and Gaussian blur, and (f) difference between denoised Euler angles
from step (b) and watershed basin average Euler angles from step (c).
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where atan2 is the four-quadrant inverse tangent. An additional
modulo operation of is performed for the Euler angles φ1 and φ2

with a divisor of 2π.
The orientations generated by SliceGAN don’t allow to identify

grains. Figure 10a, showing the Euler angle component ϕ1 from
the SliceGAN results, depicts a considerable amount of noise. Two
steps are required to get a distinguishable microstructure: a
minimum grain size threshold shown in Fig. 10b, and a watershed
filter shown in Fig. 10c. The watershed filter uses the gradients of
the Euler angles, which are computed through Sobel operators68.
Figure 10d shows the sum of the gradients of each Euler angle
component SGE ¼ P3

i¼1 Gϕi , where G is the magnitude of the
gradient computed as G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gx þ Gy þ Gz
p

with Gx= Sx*ϕi, Gy=
Sy*ϕi, and Gz= Sz*ϕi being the derivatives in the three orthogonal
directions. Sx, Sy, and Sz are the kernels weighting functions in the
Sobel operator, ϕi are the components of the Euler angles, and * is
a convolutional operator. SGE values close to 1 correspond to
grain boundaries. The gradient field is processed using a contrast
filter and a Gaussian blur filter, as shown in Fig. 10e. The difference
between the denoised SliceGAN output and the average Euler
angle within each watershed basin is shown in Fig. 10f.

Data visualization
Data visualization was performed using Paraview69, MTEX54,
Matplotlib70 and Inkscape.

DATA AVAILABILITY
At this time the datasets generated and/or analyzed in the current study are not
available to be hosted in a publicly accessible repository.

CODE AVAILABILITY
At this time the codes are not available to be hosted in a publicly accessible
repository.

Received: 22 August 2023; Accepted: 26 January 2024;

REFERENCES
1. Groeber, M., Haley, B., Uchic, M., Dimiduk, D. & Ghosh, S. 3D reconstruction and

characterization of polycrystalline microstructures using a FIB-SEM system. Mater.
Charact. 57, 259–273 (2006).

2. Uchic, M. D. et al. Augmenting the 3D characterization capability of the dual
beam FIB SEM. Microsc. Microanal. 10, 1136–1137 (2004).

3. Turner, T. J. et al. Crystal plasticity model validation using combined high-energy
diffraction microscopy data for a Ti-7Al specimen. Metall. Mater. Trans. A 48,
627–647 (2017).

4. Bhandari, Y. et al. 3D polycrystalline microstructure reconstruction from FIB
generated serial sections for FE analysis. Comput. Mater. Sci. 41, 222–235 (2007).

5. Bagri, A. et al. Microstructure and property-based statistically equivalent repre-
sentative volume elements for polycrystalline Ni-based superalloys containing
annealing twins. Metall. Mater. Trans. A 49, 5727–5744 (2018).

6. Ghosh, S. & Groeber, M. A. Developing virtual microstructures and statistically
equivalent representative volume elements for polycrystalline materials. In
Handbook of Materials Modeling: Volume 1 Methods: Theory and Modeling,
(Springer Intl, 2020) 1631–1656.

7. Pinz, M. et al. Microstructure and property based statistically equivalent RVEs for
intragranular γ- γ’microstructures of ni-based superalloys. Acta Mater. 157,
245–258 (2018).

8. Tu, X., Shahba, A., Shen, J. & Ghosh, S. Microstructure and property based sta-
tistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int. J.
Plast. 115, 268–292 (2019).

9. Groeber, M., Ghosh, S., Uchic, M. D. & Dimiduk, D. M. A framework for automated
analysis and simulation of 3d polycrystalline microstructures. part 1: statistical
characterization. Acta Mater. 56, 1257–1273 (2008).

10. Groeber, M., Ghosh, S., Uchic, M. D. & Dimiduk, D. M. A framework for automated
analysis and simulation of 3d polycrystalline microstructures. Part 2: synthetic
structure generation. Acta Mater. 56, 1274–1287 (2008).

11. Swaminathan, S., Ghosh, S. & Pagano, N. Statistically equivalent representative
volume elements for unidirectional composite microstructures: Part I-without
damage. J. Compos. Mater. 40, 583–604 (2006).

12. Swaminathan, S. & Ghosh, S. Statistically equivalent representative volume ele-
ments for unidirectional composite microstructures: part II-with interfacial
debonding. J. Compos. Mater. 40, 605–621 (2006).

13. Groeber, M. A. & Jackson, M. A. Dream3D: a digital representation environment
for the analysis of microstructure in 3d. Integ. Mater. Manuf. Innov. 3, 56–72
(2014).

14. Quey, R. & Kasemer, M. The NEPER/FEPX project: free/open-source polycrystal
generation, deformation simulation, and post-processing. IOP Conf. Ser. Mater. Sci.
Eng. 1249, 012021 (2022).

15. Hart, K. A. & Rimoli, J. J. Microstructpy: a statistical microstructure mesh generator
in python. SoftwareX 12, 100595 (2020).

16. Prasad, M. R., Vajragupta, N. & Hartmaier, A. Kanapy: a python package for
generating complex synthetic polycrystalline microstructures. J. Open Source
Softw. 4, 1732 (2019).

17. Kench, S., Squires, I., Dahari, A. & Cooper, S. J. Microlib: a library of 3D microstructures
generated from 2D micrographs using SliceGAN. Sci. Data 9, 1–8 (2022).

18. Imai, H., Iri, M. & Murota, K. Voronoi diagram in the Laguerre geometry and its
applications. SIAM J. Comput. 14, 93–105 (1985).

19. Shamos, M. I. & Hoey, D. Closest-point problems. In 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975), 151–162 (IEEE, 1975).

20. Visscher, W. M. & Bolsterli, M. Random packing of equal and unequal spheres in
two and three dimensions. Nature 239, 504–507 (1972).

21. Bagi, K. A quasi-static numerical model for micro-level analysis of granular
assemblies. Mech. Mater. 16, 101–110 (1993).

22. Jodrey, W. & Tory, E. Computer simulation of isotropic, homogeneous, dense
random packing of equal spheres. Powder Technol. 30, 111–118 (1981).

23. Hitti, K. & Bernacki, M. Optimized dropping and rolling (ODR) method for packing
of poly-disperse spheres. Appl. Math. Model. 37, 5715–5722 (2013).

24. Acar, P. & Sundararaghavan, V. A Markov random field approach for modeling
spatio-temporal evolution of microstructures. Model. Simul. Mater. Sci. Eng. 24,
075005 (2016).

25. Boguń, K., Sitko, M., Mojżeszko, M. & Madej, Ł. Cellular automata-based compu-
tational library for development of digital material representation models of
heterogeneous microstructures. Arch. Civ. Mech. Eng. 21, 1–15 (2021).

26. Guo, E.-Y., Chawla, N., Jing, T., Torquato, S. & Jiao, Y. Accurate modeling and
reconstruction of three-dimensional percolating filamentary microstructures
from two-dimensional micrographs via dilation-erosion method. Mater. Charact.
89, 33–42 (2014).

27. Jiao, Y., Stillinger, F. & Torquato, S. Modeling heterogeneous materials via two-
point correlation functions: basic principles. Phys. Rev. E 76, 031110 (2007).

28. Tewari, A., Gokhale, A., Spowart, J. & Miracle, D. Quantitative characterization of
spatial clustering in three-dimensional microstructures using two-point correla-
tion functions. Acta Mater. 52, 307–319 (2004).

29. Hasanabadi, A., Baniassadi, M., Abrinia, K., Safdari, M. & Garmestani, H. Optimi-
zation of solid oxide fuel cell cathodes using two-point correlation functions.
Comput. Mater. Sci. 123, 268–276 (2016).

30. Flipon, B., Keller, C., Quey, R. & Barbe, F. A full-field crystal-plasticity analysis of
bimodal polycrystals. Int. J. Solids Struct. 184, 178–192 (2020).

31. Wu, H., Niu, G., Cao, J. & Yang, M. Annealing of strain-induced martensite to
obtain micro/nanometre grains in austenitic stainless. Mater. Sci. Technol. 33,
480–486 (2017).

32. Shekhar, S., Cai, J., Wang, J. & Shankar, M. Multimodal ultrafine grain size dis-
tributions from severe plastic deformation at high strain rates. Mater. Sci. Eng. A
527, 187–191 (2009).

33. Dirras, G., Gubicza, J., Ramtani, S., Bui, Q. & Szilágyi, T. Microstructure and
mechanical characteristics of bulk polycrystalline ni consolidated from blends of
powders with different particle size. Mater. Sci. Eng. A 527, 1206–1214 (2010).

34. Zou, Y. et al. Dynamic recrystallization in the particle/particle interfacial region of
cold-sprayed nickel coating: Electron backscatter diffraction characterization. Scr.
Mater. 61, 899–902 (2009).

35. Zhang, Z., Vajpai, S. K., Orlov, D. & Ameyama, K. Improvement of mechanical
properties in sus304l steel through the control of bimodal microstructure char-
acteristics. Mater. Sci. Eng., A 598, 106–113 (2014).

36. Lee, J.-W. et al. Correlations between two EBSD-based metrics Kernel Average
Misorientation and image quality on indicating dislocations of near-failure low
alloy steels induced by tensile and cyclic deformations. Mater. Today Commun.
27, 102445 (2021).

B. Murgas et al.

13

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2024)    32 



37. Chen, Y.-W. et al. Phase quantification in low carbon Nb-Mo bearing steel by
electron backscatter diffraction technique coupled with kernel average mis-
orientation. Mater. Charact. 139, 49–58 (2018).

38. Zhu, L. & Lu, J. Modelling the plastic deformation of nanostructured metals with
bimodal grain size distribution. Int. J. Plast. 30-31, 166–184 (2012).

39. Magee, A. C. & Ladani, L. Representation of a microstructure with bimodal grain
size distribution through crystal plasticity and cohesive interface modeling. Mech.
Mater. 82, 1–12 (2015).

40. Fokina, D., Muravleva, E., Ovchinnikov, G. & Oseledets, I. Microstructure synthesis
using style-based generative adversarial networks. Phys. Rev. E 101, 043308
(2020).

41. Kench, S. & Cooper, S. J. Generating three-dimensional structures from a two-
dimensional slice with generative adversarial network-based dimensionality
expansion. Nat. Mach. Intell. 3, 299–305 (2021).

42. Jung, J., Yoon, J. I., Park, H. K., Jo, H. & Kim, H. S. Microstructure design using
machine learning generated low dimensional and continuous design space.
Materialia 11, 100690 (2020).

43. Hsu, T. et al. Microstructure generation via generative adversarial network for
heterogeneous, topologically complex 3D materials. JOM 73, 90–102 (2021).

44. Lee, J.-W., Goo, N. H., Park, W. B., Pyo, M. & Sohn, K.-S. Virtual microstructure design for
steels using generative adversarial networks. Eng. Rep. 3, e12274 (2021).

45. Zhang, T., Ji, X. & Lu, F. 3d reconstruction of porous media by combining scaling
transformation and multi-scale discrimination using generative adversarial net-
works. J. Pet. Sci. Eng. 209, 109815 (2022).

46. Goodfellow, I. et al. Generative adversarial networks. Adv. Neural Inf. Process. Syst.
27, 299–305 (2014).

47. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144
(2020).

48. Fu, J., Xiao, D., Li, D. & Thomas, H. R. Stochastic reconstruction of 3D micro-
structures from 2D cross-sectional images using machine learning-based char-
acterization. Comput. Methods Appl. Mech. Eng. 390, 114532 (2022).

49. Assadi, H., Gärtner, F., Stoltenhoff, T. & Kreye, H. Bonding mechanism in cold gas
spraying. Acta Mater. 51, 4379–4394 (2003).

50. Bae, G., Xiong, Y., Kumar, S., Kang, K. & Lee, C. General aspects of interface
bonding in kinetic sprayed coatings. Acta Mater. 56, 4858–4868 (2008).

51. Ahmed, R. et al. On the role of deformation and cracking in the cold spray processing
of refractory ta powders onto ta or 4340 steel substrates: effects of topical oxide layers
and spray velocity. Metall. Mater. Trans. A 53, 3381–3391 (2022).

52. Weiller, S. & Delloro, F. A numerical study of pore formation mechanisms in
aluminium cold spray coatings. Addit. Manuf. 60, 103193 (2022).

53. Williamson, C., Webb, A., Brewer, L., Allison, P. & Jordon, J. Effect of powder heat
treatment on fatigue mechanisms of freestanding aa7075 cold spray deposits.
Int. J. Fatigue 167, 107256 (2023).

54. Bachmann, F., Hielscher, R. & Schaeben, H. Texture analysis with MTEX–free and
open source software toolbox. Solid State Phenom. 160, 63–68 (2010).

55. Gillibert, L., Peyrega, C., Jeulin, D., Guipont, V. & Jeandin, M. 3d multiscale seg-
mentation and morphological analysis of x-ray microtomography from cold-
sprayed coatings. J. Microsc. 248, 187–199 (2012).

56. Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. Orientation gradients and
geometrically necessary dislocations in ultrafine grained dual-phase steels stu-
died by 2d and 3d ebsd. Mater. Sci. Eng. A 527, 2738–2746 (2010).

57. Kotha, S., Ozturk, D. & Ghosh, S. Parametrically homogenized constitutive models
(phcms) from micromechanical crystal plasticity fe simulations, part i: Sensitivity
analysis and parameter identification for titanium alloys. Int. J. Plast. 120, 296–319
(2019).

58. Peng, D., Jones, R., Matthews, N. & CaTang, C. On the role of the interface on the
damage tolerance and durability of cold spray repairs to AA7075-T7351 alumi-
nium alloy wing skins. Appl. Surf. Sci. Adv. 3, 100044 (2021).

59. Pinz, M., Weber, G., Stinville, J. C., Pollock, T. & Ghosh, S. Data-driven Bayesian
model-based prediction of fatigue crack nucleation in Ni-based superalloys. NPJ
Comput. Mater. 8, 39 (2022).

60. Mescheder, L., Geiger, A. & Nowozin, S. Which training methods for GANs do
actually converge? In Int. Conf. Mach. Learn. (PMLR), 80, 3481–3490, (2018).

61. Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. Learning a probabilistic
latent space of object shapes via 3D generative-adversarial modeling. Adv. Neural
Inf. Process. Syst. 29 (2016).

62. Xiao, Z., Kreis, K. & Vahdat, A. Tackling the generative learning trilemma with
denoising diffusion GANs. Preprint at https://arxiv.org/abs/2112.07804 (2022).

63. Nicolay, A. et al. Discrimination of dynamically and post-dynamically recrys-
tallized grains based on ebsd data: application to inconel 718. J. Microsc. 273,
135–147 (2019).

64. Zouari, M., Logé, R. E. & Bozzolo, N. In situ characterization of inconel 718 post-
dynamic recrystallization within a scanning electron microscope. Metals 7, 476
(2017).

65. Massey Jr, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat.
Assoc. 46, 68–78 (1951).

66. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial networks.
In Proceedings of Machine Learning Research, International Conf. Machine Learning,
70, 214–223, (PMLR, 2017).

67. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved
training of Wasserstein GANs. Adv. Neural Inf. Proc. Syst. 30 (2017).

68. Kanopoulos, N., Vasanthavada, N. & Baker, R. L. Design of an image edge
detection filter using the Sobel operator. IEEE J. Solid-State Circuits 23, 358–367
(1988).

69. Ahrens, J., Geveci, B. & Law, C. Paraview: an end-user tool for large data visuali-
zation. Vis. Handb. 717, 50038–1 (2005).

70. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95
(2007).

ACKNOWLEDGEMENTS
This work has been sponsored by a grant from the Office of Naval Research Aero
Structures & Materials program, USA through Grant Number: N00014-20-1-4004. The
program managers of this grant are Dr. W. Nickerson and Dr. A. Rahman. The authors
gratefully acknowledge the support of this work. The authors also gratefully
acknowledge Professor L. Brewer for the experimental data used in this work.
Computational support for this work has been provided by the Advanced Research
Computing at Hopkins (ARCH) core facility supported by the National Science
Foundation (NSF) grant number OAC 1920103. Computational support for this work
is also provided by an AFOSR DURIP grant FA9550-21-1-0303.

AUTHOR CONTRIBUTIONS
S.G. has conceived the overall concept. He has also revised and written parts of the
manuscript. B.M. has proposed the methodology. Both B.M. and J.S. have developed
the models and codes, produced the results, and written the first draft of the
manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-024-01219-4.

Correspondence and requests for materials should be addressed to Somnath Ghosh.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

B. Murgas et al.

14

npj Computational Materials (2024)    32 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://arxiv.org/abs/2112.07804
https://doi.org/10.1038/s41524-024-01219-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Generative adversarial network (GAN) enabled Statistically equivalent virtual microstructures (SEVM) for modeling cold spray formed bimodal polycrystals
	Introduction
	Results
	Characteristics of experimentally acquired EBSD images of the microstructure
	Generating 3D SEVM of complex bimodal AA7050 microstructures
	Challenges with conventional synthetic builders
	Integration of GANs in SliceGAN and the synthetic builder Dream3D for creating�SEVMs
	FE simulation strategy of the SEVMs for mechanical response


	Discussions
	Methods
	Material and manufacturing process
	Steps for generating SEVMs using a combination of SliceGAN and Dream3D
	SliceGAN: a generative adversarial network (GAN)�model
	Post-processing steps for generating 3D SEVMs using quaternions as inputs to the SliceGAN software
	Data visualization

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




