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Sampling-accelerated prediction of phonon scattering rates for
converged thermal conductivity and radiative properties
Ziqi Guo 1,2, Zherui Han 1,2, Dudong Feng1,2, Guang Lin 1,3✉ and Xiulin Ruan 1,2✉

The prediction of thermal conductivity and radiative properties is crucial. However, computing phonon scattering, especially for
four-phonon scattering, could be prohibitively expensive, and the thermal conductivity for silicon after considering four-phonon
scattering is significantly under-predicted and not converged in the literature. Here we propose a method to estimate scattering
rates from a small sample of scattering processes using maximum likelihood estimation. The calculation of scattering rates and
associated thermal conductivity and radiative properties are dramatically accelerated by three to four orders of magnitude. This
allows us to use an unprecedented q-mesh (discretized grid in the reciprocal space) of 32 × 32 × 32 for calculating four-phonon
scattering of silicon and achieve a converged thermal conductivity value that agrees much better with experiments. The accuracy
and efficiency of our approach make it ideal for the high-throughput screening of materials for thermal and optical applications.
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INTRODUCTION
Thermal conductivity and radiative properties are important
material properties. Thermal conductivity (κ) is a key parameter
for thermal management1 and thermoelectrics2. Thermal radiative
properties, represented by the dielectric function (ε), are essential
to applications including polaritonics3, thermal-photonic devices4,
radiative energy converters5,6 and radiative cooling7–9. Both of
these properties are related to phonon-phonon scattering, the
process by which atom vibrations in the material interact with
each other. First principles perturbation theory can be used to
predict the phonon scattering rates (τ�1

λ ) and subsequently these
two properties10–14. While the phonon-phonon interaction up to
the lowest order, i.e., three-phonon (3ph) scattering, had long
been considered to be adequate for the prediction of τ�1

λ
13,15–17,

the importance of four-phonon (4ph) scattering, a higher order
intrinsic scattering, was recently predicted by Feng et al.18,19 and
confirmed by lattice thermal conductivity measurements of
BAs20–22, as well as many studies on thermal conductivity23–28,
Raman linewidth29–31, and infrared (IR) spectra7,32,33. For accurate
predictions of κ and ε, especially when dealing with materials
exhibiting ultra-high or ultra-low thermal conductivity, or when
operating at high temperatures, or investigating optical phonons,
both three-phonon and four-phonon (3ph+4ph) scattering
mechanisms should be assessed.
However, the calculation of phonon scattering requires

significant computational resources, especially for 4ph scattering.
As a result, the first-principles predictions of κ and ε have only
been done for a limited number of materials. For various
important materials used in solar cells, thermal barrier coatings,
and thermoelectric devices, the complex crystal structures can
lead to complex phonon dispersion and numerous phonon
branches. This complexity can result in billions of phonon
scattering processes, making 4ph or even 3ph scattering
computationally infeasible.
In this paper, we propose an approach based on sampling and

maximum likelihood estimation (MLE) to reduce the computa-
tional cost of phonon scattering calculations and accelerate the

predictions of κ and ε. Under the relaxation time approximation
(RTA), the sampling method aims to estimate the scattering rates
of 3ph and 4ph scattering for each phonon mode λ (denoted as
τ�1
λ;3ph and τ�1

λ;4ph, respectively) by sampling a subset from all
phonon scattering processes. The concept is simple but works
surprisingly well. After that, κ and ε are determined by using the
scattering rate of all phonon modes and the IR-active phonon
mode only, respectively. We demonstrate that the sampling
method can significantly reduce the computational cost of the
predictions of thermal conductivity and radiative properties. This
allows us to revisit the thermal conductivity prediction of Si with
an unprecedented q-mesh of 32 × 32 × 32, resulting in a
converged thermal conductivity value that closely aligns with
experimental data. The accuracy and efficiency of our approach
make it ideal for high-throughput screenings of materials for
thermal and optical applications.

RESULTS
Overview of the sampling method
We start with an introduction to the rigorous calculation of τ�1

λ and
how we came up with the idea of using MLE to estimate it. The
rigorous calculation of τ�1

λ;3ph and τ�1
λ;4ph requires an exhaustive

calculation of the scattering rates of all possible 3ph and 4ph
scattering processes for each phonon mode λ, denoted as Γ3ph

λλ0λ00 and

Γ4ph
λλ0λ00λ000 , respectively. Then, under RTA, Γ

3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 are summed
up separately to obtain τ�1

λ;3ph and τ�1
λ;4ph for phonon mode λ. To

account for symmetry, multiple counting needs to be removed
from the summation process (described in Method Section). At last,
based on spectral Matthiessen’s rule11, we calculate the total
phonon scattering rate: τ�1

λ ¼ τ�1
λ;3ph þ τ�1

λ;4ph. Detailed formulations
of 3ph and 4ph scattering rates can be found in12,18.
The huge computational cost of calculating τ�1

λ originates from
the substantial number of scattering processes involved. Calculat-
ing Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 of all of them can be expensive or even
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unaffordable, especially for 4ph scattering. To mitigate this
computational cost, we start to consider the possibility of reducing
the number of processes that we calculate. As τ�1

λ;3ph and τ�1
λ;4ph can

be considered as the population sums of Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 under
RTA, we can estimate the summations using MLE based on a
randomly selected subset of scattering processes. τ̂�1

λ;3ph and τ̂�1
λ;4ph

(‘̂’ is used to denote estimated values) are calculated by
multiplying the average values of Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 for scattering

processes in the subsets and the total number of scattering
processes for each phonon mode λ. In this way, only the Γ3ph

λλ0λ00 and

Γ4ph
λλ0λ00λ000 of the small subset are calculated, resulting in significant
savings of computational cost. The uncertainty of our estimation
can be evaluated by calculating the confidence interval using
statistical information of our sample. After calculating τ̂�1

λ;3ph and

τ̂�1
λ;4ph, we can use them to calculate κ̂ and ε̂. The derivation of the
maximum likelihood estimator of the population sum is shown in
the Supplementary Material. A detailed explanation of the
workflow can be found in the Method Section.

Maximum likelihood estimation of τ�1
λ

We take Si as an example to show the accuracy of our approach.
Figure 1a, c show the model performance at sample size
n= 5 × 104 and n= 5 × 105 for 3ph and 4ph, respectively. Since
the values of τ�1

λ;3ph and τ�1
λ;4ph vary orders of magnitude, the figures

and the calculated R2 values are based on scattering rates in
logarithmic scale, while the result in normal scale is shown in
Supplementary Fig. 1. The high R2 values indicate that our
estimation of τ�1

λ;3ph and τ�1
λ;4ph are quite accurate. Additionally, Fig.

1b, d shows the consistency of estimation and rigorous results
across the frequency range, as well as the satisfaction of the

physical scaling law lim
ω!0

τ�1
λ ¼ 0 for both 3ph and 4ph, which

further supports the accuracy of our estimation. Note that the
average sample sizes we use for 3ph and 4ph scattering represent
only 6.25% and 0.013% of the total 3ph and 4ph scattering
processes for each mode, respectively. This implies that our model
is expected to yield significant time savings, as we will discuss in
the subsequent section.
With the increase in sample size, the estimation accuracy is

improved (Supplementary Fig. 2). This prompts two natural
questions: What level of precision can we achieve with a given
sample size? What is the appropriate sample size that yields an
estimation with an acceptable level of uncertainty? While it’s
possible to determine the uncertainty through multiple random
samplings and estimations, it conflicts with our goal of saving
computational time. Consequently, it is preferable for us to obtain
the uncertainty of our estimation from a single run.
We take a phonon mode #315 as an example to illustrate how

we evaluate the uncertainty, where the index of phonon is defined
within ShengBTE34. The position of this phonon mode on the
phonon dispersion curve is shown in Supplementary Fig. 3.
According to the Central Limit Theorem, when we sample a
sufficiently large number of phonon scattering processes, τ̂�1

λ;3ph and

τ̂�1
λ;4ph are approximately following normal distributions with means
close to τ�1

λ;3ph and τ�1
λ;4ph, and variances decreasing as sample sizes

increase (Fig. 2a, b). Based on this distribution, we can derive a
confidence interval that specifies where the true values of τ�1

λ;3ph

and τ�1
λ;4ph fall with a certain confidence level ((1− α)100%), serving

as a measure of the estimation’s uncertainty. Since each scattering
process is independently and randomly sampled from the under-
lying distribution of Γ3ph

λλ0λ00 or Γ
4ph
λλ0λ00λ000 of phonon mode λ, our method

satisfies the assumption of the Central Limit Theorem that each
random variable should be independent and identically distributed

Fig. 1 Maximum likelihood estimation of τ�1
λ;3ph and τ�1

λ;4ph. a The scatter plot of τ̂�1
λ;3ph with respect to τ�1

λ;3ph. b τ�1
λ;3ph and τ̂�1

λ;3ph as a function of

phonon frequency. c The scatter plot of τ̂�1
λ;4ph with respect to τ�1

λ;4ph. d τ�1
λ;4ph and τ̂�1

λ;4ph as a function of phonon frequency. The estimation is for
all phonon modes of Si at 300 K, with sample size 5 × 104 and 5 × 105 for 3ph and 4ph, respectively. The reported R2 value is calculated from
scattering rates in log scale.

Z. Guo et al.

2

npj Computational Materials (2024)    31 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



(i.i.d.). We provide a rigorous derivation of the confidence interval
for τ�1

λ;3ph and τ�1
λ;4ph in Method Section.

We select a confidence level of 90% (α= 0.1) to calculate the
confidence interval for each sample size. Then we perform 50
rounds of random samplings and estimations, and compare them
with the confidence interval to verify the accuracy of our
estimation (Fig. 2c, d). The results show that most of the estimated
values fall within the confidence interval, indicating that our
estimation is reliable. As the sample size increases, the upper and
lower bounds of the confidence interval approach the true
scattering rate, suggesting that the uncertainty decreases with
more sampled phonon processes. With the confidence interval,
we can determine whether the sample size is sufficiently large.

The confidence interval goes below 10% of the scattering rate at
n= 20,000 for τ�1

λ;3ph and n= 800,000 for τ�1
λ;4ph, which indicates

that these sample sizes are sufficient for phonon mode #315. We
also verified our confidence interval on phonon mode #6 and #52,
whose results are shown in Supplementary Fig. 4. Overall, the
analytical derivation of the confidence interval serves to aid users
in understanding the level of accuracy that can be achieved and in
selecting an appropriate sample size.

Time-saving in phonon scattering calculations
Since we only rigorously compute a small subset of all the
scattering processes, we anticipate significant computational cost
savings. Figure 3 and Supplementary Fig. 5 illustrate the nearly

Fig. 2 Calculating confidence interval of ̂τ�1
λ;3ph and ̂τ�1

λ;4ph. All the results of τ̂�1
λ;3ph and τ̂�1

λ;4ph in this figure are for phonon mode #315 at (0.5, 0,
0.5) of Brillouin zone and on the 3th phonon branch, with a phonon frequency of 9.62 THz. We perform random sampling and estimations 50
times for each sample size. a, b The probability density of τ̂�1

λ;3ph and τ̂�1
λ;4ph with different sample sizes. c, d The confidence interval for τ̂�1

λ;3ph and

τ̂�1
λ;4ph with respect to sample sizes, respectively. The green and blue shaded areas are the upper and lower bound of confidence intervals and
the green and blue lines are the means of the corresponding bounds, respectively. The orange dots are the estimation with different samples.
The red lines are for the rigorously calculated scattering rate.

Fig. 3 Average computational cost of estimating scattering rate with respect to sample sizes for Si. a τ̂�1
λ;3ph, b τ̂�1

λ;4ph. For each sample size,
sampling and estimation are repeated 50 times, and the CPU time is represented with error bars based on one standard deviation. The upper
x-axis displays the ratio of the sample size to the total number of phonon scattering processes, while the right y-axis displays the ratio of CPU
time for the sampling method compared to the rigorous calculation.
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linear relationship between the sample size and computational
cost for Si and MgO, respectively. For phonon mode #315 that we
discussed in the previous section, we only need to calculate 2.5%
of all 3ph scattering processes to achieve an accurate τ̂�1

λ;3ph. This
would lead to a 90.6% reduction in computational cost compared
to a full calculation. Comparing with τ̂�1

λ;3ph, τ̂
�1
λ;4ph requires an even

smaller fraction of the sample (0.022% of all 4ph scattering
processes), leading to a significant reduction in computational
cost (99.97%). These substantial computational savings will
significantly accelerate the calculation of κ̂ and ε̂, which we shall
now discuss in the following two sections.

The estimation of lattice thermal conductivity
To predict κ̂3phþ4ph, we first obtain samples of 3ph and 4ph
scattering processes for each phonon mode and calculate τ̂�1

λ;3ph

and τ̂�1
λ;4ph. τ

�1
λ is then determined using the spectral Matthiessen’s

rule11: τ�1
λ ¼ τ�1

λ;3ph þ τ�1
λ;4ph. Finally, we calculate κ̂3phþ4ph consider-

ing the spectral contribution of every phonon mode. When
obtaining κ̂3ph, only 3ph scattering is considered and τ�1

λ contains
only τ�1

λ;3ph term.
Figure 4a, b, d, e shows the relation between the sample size for

each mode and κ̂ for Si and MgO. It is worth noting that for
κ̂3phþ4ph, the 3ph term τ�1

λ;3ph is calculated rigorously. Only the 4ph
contribution τ�1

λ;4ph is estimated with our sampling method. This is
to show the error and the saving of computational cost solely
brought by the estimation of τ�1

λ;4ph. As the sample size increases,
the uncertainty of estimation decreases, and the mean of κ̂
gradually approaches the true κ with a convergence rate
proportional to 1

n for all temperatures and materials. The
converged sample sizes are 9 × 103 for κ̂3ph and 8 × 102 for
κ̂3phþ4ph for both materials, where the relative error for estimations
with two consecutive sample sizes goes below 10%. Notice that
κ̂3ph and κ̂3phþ4ph tend to be higher than the corresponding true
results, which is different from what we observe for τ̂�1

λ;3ph and

τ̂�1
λ;4ph where the means of estimations remain close to the true
result. This discrepancy arises because κ is inversely proportional

to τ�1
λ , which amplifies the negative error and leads to an

overestimation of κ̂. Besides, we observe that κ̂ converges much
faster than τ̂�1

λ;3ph and τ̂�1
λ;4ph as the sample size increases. The

required sample sizes for reaching convergence are much smaller
than those for estimating scattering rates. This is due to the
existence of error-canceling effects when accumulating the
spectral contribution of κ of all phonon modes. As a result, even
if there are errors in τ̂�1

λ;3ph and τ̂�1
λ;4ph, the final results of κ̂ would

not be significantly impacted. Moreover, We find that for both Si
and MgO, the converged sample size for 4ph is smaller than for
3ph. This is because both materials are primarily dominated by
3ph scattering, and the error of τ̂�1

λ;4ph only contributes a small
portion to the error of total thermal resistance, which suggests
that a small sample size is enough to reach convergence for the
estimation of κ3ph+4ph. To further demonstrate the performance
on materials with strong 4ph effects, different symmetry and
anisotropic thermal conductivity, we estimated κ3ph and κ3ph+4ph

of LiCoO2, which is shown in Fig. 5. The converged sample sizes
are 2 × 103 and 4 × 105 for 3ph and 3ph+ 4ph, respectively, with
relative errors of less than 10%.
When calculating the thermal conductivity, the first Brillouin

zone should be discretized into q-mesh which should be
determined based on a rigorous convergence test. While a large
and converged q-mesh can used in 3ph scattering calculation,
many studies employ a small q-mesh in 4ph scattering calculation
due to the large computational cost35–37, which may not be
converged. To reduce the computational cost, a smaller broad-
ening factor (scalebroad in ShengBTE34) was usually adopted in
calculations38–42. However, this method is known to underpredict
the scattering rates. To get the result under high q-mesh, some
meaningful attempts have been made by calculating thermal
conductivity using several small q-meshes and extrapolating the
result to the large q-mesh34,43,44. However, it lacks physical
evidence to support a specific mathematical relationship between
thermal conductivity and the q-mesh size. Since our method
dramatically reduces the computational cost, it is now possible to
study the 4ph scattering with a dense q-mesh. Take Si as an
example. In previous studies, while the 3ph calculation is based on
a dense q-mesh (around 28 × 28 × 28), the rigorous 3ph+ 4ph

Fig. 4 Estimation of κ with the sampling method. Figures a and d show κ̂3ph and figures b and e show κ̂3phþ4ph as functions of sample size.
Subplots a and b are for Si and subplots d and e are for MgO. For each sample size, sampling and estimation are repeated 50 times and the
error bar is based on one standard deviation. Figures c and f show the convergence test of κ̂3phþ4ph of Si and MgO at 300 K, respectively.
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calculation can only be carried out on 16 × 16 × 16 q-mesh at most
due to the limit of computational power18,19,43,45. We do a
convergence test on 3ph+ 4ph scattering at 300 K for Si using our
sampling method, which is shown in Fig. 4c. The calculation of
3ph scattering rates is based on the iterative scheme and the
calculation of 4ph scattering rates is based on RTA with a sample
size 106 to ensure the accuracy. The uncertainty of our method is
only 0.2% while the computational cost is dramatically reduced.
We found that κ3ph+4ph converged at 32 × 32 × 32 q-mesh (133 W
m−1 K−1), which is much higher than the result from 16 × 16 × 16
q-mesh (114 W m−1 K−1) and is closer to the experimental results
(130-150 W m−1 K−1 46–49). For MgO, the 3ph+ 4ph thermal
conductivity converges at 15 × 15 × 15 q-mesh (Fig. 4f), which is
the same as the mesh used in previous study50. In this paper, since
we need to do a rigorous 3ph+ 4ph calculation to get a ground
truth value to verify our estimations, the q-mesh is set to
16 × 16 × 16 for Si when illustrating the model performance of
estimating τ�1

λ , the confidence interval and the time-saving. The
estimation of thermal conductivity of Si that we have shown in Fig.
4 is based on 32 × 32 × 32 q-mesh, while the result with
16 × 16 × 16 q-mesh is shown in Supplementary Fig. 6.
To evaluate the time-saving effect, we test our method on Si

and MgO at 300 K for both 3ph and 4ph calculations. For a sample
size that reaches a relative uncertainty of less than 10%, our
method achieves three to four orders of magnitude acceleration
for 4ph scattering calculations (Fig. 6). The reduction in computa-
tional time is significant.

The estimation of thermal radiative properties
For the prediction of ε, τ�1

λ of IR-active phonon modes are
required, which are used as the damping factor (γ) in the Lorentz
oscillator model to determine ε. Since Si has no IR-active phonon
modes, we take MgO, a polar material, to demonstrate the
performance of our method.
Figure 7a, b show the relation between γ̂ for both LO

(longitudinal optical) and TO (transverse optical) modes and
sample size. Again, for γ̂LO;3phþ4ph and γ̂TO;3phþ4ph, the 3ph
scattering part is calculated rigorously and 4ph scattering part is
estimated with our sampling method. Similar to τ̂�1

λ;3ph and τ̂�1
λ;4ph,

increasing the sample size leads to a decrease in the uncertainty
of damping factor. We then employ the Lorentz oscillator model
with these damping factors to estimate ε̂3ph and ε̂3phþ4ph, as
shown in Fig. 7c, d. To emphasize the uncertainty brought by the
sampling method, we only show the wavelength range near the
resonance frequency. Our sampling method gives more and more
accurate estimations as the sample size increases. The predictions
of a wider wavelength range and under different temperatures are
shown in Supplementary Figs. 7–9, together with other thermal
radiative properties including refractive index (n) and normal
reflectance from a material-air interface (R). We take 6 × 104 for
3ph scattering and 2 × 104 for 4ph scattering as sufficiently large
sample sizes where the relative error of the damping factors for
both LO and TO modes go below 5%. Regarding the time-saving
effect, we can accelerate the calculation by 4 × and 34,000 × for
3ph and 3ph+4ph scattering calculations, respectively.

DISCUSSION
Our method is based on the RTA, which treats normal and
umklapp scattering processes equally. This approximation is
accurate for predicting thermal radiative properties because the
optical responses only involve the excitation and decay of IR-
active phonon modes, and Umklapp and normal processes are
both effective decay channels for an excited (over-populated)
zone-center optical phonon. Previous works have demonstrated
the success of the RTA in predicting thermal radiative properties
for such cases7,32. For predicting lattice thermal conductivity, the
RTA is suitable for materials in which the Umklapp processes are
the dominant contributors to thermal resistance.
We should highlight that the sample is not from the phonon

phase space but from all possible combinations of 3ph/4ph no
matter whether they obey the energy or momentum conservation
or not. Since the phonon phase space calculation accounts for
nearly a quarter of the total computational time (Supplementary
Fig. 10), if we first determine the phonon phase space and then
perform sampling within it, the time-saving effect will be at most

Fig. 5 Estimation of the anisotropic κ of LiCoO2 with the sampling method. The figures show κ̂3ph (a) and κ̂3phþ4ph (b) with respect to sample
size. The calculation is performed at 300 K. For each sample size, sampling and estimation are repeated 50 times and the error bar is based on
one standard deviation.

Fig. 6 Time-saving of predicting lattice thermal conductivity. The
average CPU times for calculating κ̂3ph and κ̂3phþ4ph are based on 50
runs at their respective converged sample sizes. The speed-ups are
47 × for Si with 3ph scattering, 23,000 × for Si with 3ph+4ph
scattering, 24 × for MgO with 3ph scattering and 44,000 × for MgO
with 3ph+4ph scattering, 65 × for LiCoO2 with 3ph scattering and
1.700 × for LiCoO2 with 3ph+4ph scattering.
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78%. Instead of taking this approach, we perform sampling based
on all 3ph and 4ph scattering processes before the evaluation of
phonon phase space. Scattering rates of scattering processes that
violate the energy or momentum selection rules are set to zero. By
adopting this method, we can bypass the calculation of the
phonon phase space on the entire phonon dispersion but
effectively only do this for the chosen sample, hence achieving
a time reduction of over 99%. Furthermore, in a similar manner,
we can also estimate the size of phonon phase space and the
corresponding confidence interval using the sampling method,
which is shown in the Supplementary Material.
In our previous study51, we introduced a machine learning-

based approach that can reduce the computational cost of
calculating phonon scattering by up to two orders of magnitudes.
It’s important to note that this machine learning method and the
sampling method proposed in this paper are fundamentally
different. The machine learning method in our previous work
predicts the scattering rate of each individual scattering process (
Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 ) with a machine learning model trained on a
subset of scattering processes. The scattering rate of one phonon
mode (τ�1

λ;3ph and τ�1
λ;4ph) is calculated subsequently. Theoretically,

this method can work both under RTA and with the iterative
scheme, since it retains all the details of phonon scattering
processes. On the other hand, the sampling method does not
predict Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 , but directly estimate τ�1

λ;3ph and τ�1
λ;4ph

based on the sample. This inherent simplicity enables the
sampling method to achieve even greater computational effi-
ciency, as it eliminates the need for a time-consuming training
process. However, it does not retain detailed information about
phonon scattering processes and is designed to operate
exclusively under RTA. The comparison of these two methods is
shown in Table 1, where we choose a sample size that leads to a
similar relative error for better comparison.

For the prediction of thermal conductivity, there are mainly two
computationally expensive steps: calculating force constants and
calculating phonon scattering. Take Si as an example, calculating
the 4th order force constants takes approximately 6000 CPU hours
while computing the 4ph scattering takes around 7000 CPU hours
with q-mesh 16 × 16 × 16. For larger q-mesh, the computational
cost of phonon scattering would be higher. Our work aims to
reduce the computational cost of the latter step, which by itself is
a challenging task, while the former warrants further study in the
future. There are some works that aim to accelerate the calculation
of force constants such as using compressive sensing lattice
dynamics52 and utilizing machine learning potentials to compute
force constants53,54. Future work could be done on combining our
approach with these methods to reduce the total computational
cost of predicting thermal conductivity.
There is some room to further improve our method. In our study,

we employ sampling with replacement during the sampling process
as it is computationally faster and more memory-efficient, given the
large number of phonon scattering processes involved in our
analysis. With sampling with replacement, the chosen scattering
process is returned to the population after being selected, allowing
for the possibility of selecting the same process multiple times during

Fig. 7 Estimation of dielectric function for MgO at 300 K. a γ̂LO;3ph and γ̂TO;3ph with respect to different sample sizes. b γ̂LO;3phþ4ph and
γ̂TO;3phþ4ph with respect to different sample sizes. The error bar is based on one standard deviation. c, d The dielectric function for 3ph (̂ε3ph)
and 3ph+4ph (̂ε3phþ4ph), respectively. “Re" stands for the real part and “Im" stands for the imaginary part of the dielectric function, respectively.
The rigorously calculated results are given by solid lines. The upper and lower boundaries of the shaded area are the maximum and minimum
estimations of the 50 runs, so all estimations are within the shaded areas.

Table 1. Comparison of the sampling method and machine learning
method51 on Si and LiCoO2.

Speed-up Relative error Sample fraction

Si ML 64.3× 0.09% 2.30 × 10−3

Sampling 15,300× 0.08% 1.70 × 10−5

LiCoO2 ML 17.1× 4.46% 3.01 × 10−2

Sampling 757× 4.33% 5.79 × 10−4

Z. Guo et al.

6

npj Computational Materials (2024)    31 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



the sampling. However, theoretically, sampling without replacement
can provide even greater accuracy than sampling with replacement
under the same sample size. By removing each selected sample from
the population after selection, sampling without replacement
reduces the potential for redundancy in the sampled data, leading
to a more diverse and representative sample. The confidence interval
can be corrected by incorporating a finite population factor55 to
account for the finite size of the population. A detailed description is
shown in the Supplementary Material. Future work can focus on
implementing this sampling scheme. Besides, when estimating κ, we
sample the same number of scattering processes from all phonon
modes. However, since acoustic phonon modes have a larger
contribution to κ compared to optical phonon modes, it would be
more beneficial to focus on improving the accuracy of predictions for
acoustic phonon modes. Thus, choosing different sample sizes for
each mode based on their contributions to thermal conductivity can
lead to a faster and more accurate estimation of κ. The same thing
happens to the estimation of thermal radiative properties, where the
convergence rate of LO and TO modes can be quite different. The
model efficiency can be further improved by choosing different
sample sizes for these two modes.
To summarize, this study demonstrates a significant acceleration in

the prediction of thermal conductivity and radiative properties, both
of which are closely linked to phonon anharmonicity. By using a
maximum likelihood estimation, we have successfully accelerated the
calculation by orders of magnitude. This work removes the
computational barrier associated with phonon scattering calculations,
allowing for calculation with a converged q-mesh as well as high-
throughput screening of materials’ thermal and optical properties.

METHOD
Estimate τ�1

λ

We first describe how we use MLE to estimate τ�1
λ;3ph and τ�1

λ;4ph. The
analytical equation for calculating τ�1

λ;3ph and τ�1
λ;4ph are:

τ�1
λ;3ph ¼ ðτðþÞ

λ;3phÞ
�1 þ ðτð�Þ

λ;3phÞ
�1
; (1)

τ�1
λ;4ph ¼ ðτðþþÞ

λ;4phÞ
�1 þ ðτðþ�Þ

λ;4phÞ
�1 þ ðτð��Þ

λ;4phÞ
�1
; (2)

where (+) and (−) terms stands for 3ph combination and splitting
processes and the (++), (+−) and (−−) terms stand for 4ph
combination, redistribution and splitting processes. Under RTA,
the scattering rate of each type is given by12,13,18,19:

ðτðþÞ
λ;3phÞ

�1 ¼ 1
Ngrid

XðþÞ

λ0λ00
Γ
ðþÞ
λλ0λ00

 !
(3)

ðτð�Þ
λ;3phÞ

�1 ¼ 1
Ngrid

Xð�Þ

λ0λ00

1
2
Γ
ð�Þ
λλ0λ00

 !
(4)

ðτðþþÞ
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�1 ¼ 1
Ngrid

XðþþÞ

λ0λ00λ000

1
2
Γ
ðþþÞ
λλ0λ00λ000

 !
; (5)

ðτðþ�Þ
λ;4phÞ

�1 ¼ 1
Ngrid

Xðþ�Þ

λ0λ00λ000

1
2
Γ
ðþ�Þ
λλ0λ00λ000

 !
; (6)

ðτð��Þ
λ;4phÞ

�1 ¼ 1
Ngrid

Xð��Þ

λ0λ00λ000

1
6
Γ
ð��Þ
λλ0λ00λ000

 !
; (7)

where Ngrid stands for the total grid of q-mesh and Γ terms stand for
the scattering rates of phonon scattering processes, which can be
computed using Fermi’s golden rule56 and has been described in
previous literature. The fractions in the summation account for the

multiple counting of phonon scattering processes originated from
symmetry. When illustrating the model performance of estimating
τ�1
λ , the confidence interval and the time saving, the q-mesh for Si
is set to 32 × 32 × 32 for 3ph and 16 × 16 × 16 for 4ph scattering. For
MgO, both 3ph and 4ph scattering are using a meth of 15 × 15 × 15.
When estimating κ and/or ε, the q-mesh is set to 32 × 32 × 32 for Si,
15 × 15 × 15 for MgO and 10 × 10 × 10 for LiCoO2, respectively.
We sample nλ scattering processes from all phonon scattering

processes of a phonon mode λ. The total number of phonon
scattering processes Nλ is given by:

Nλ ¼
N2
bandsNgrid 3ph scattering

N3
bandsN

2
grid 4ph scattering

(
(8)

where Nbands is the number of phonon branches.
After sampling, we use the MLE to estimate τ�1

λ , which is given
by:

ðτ̂ðþÞ
λ;3phÞ

�1 ¼ 1
Ngrid

NðþÞ
λ

nðþÞ
λ
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λ0nλ
00
n
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1
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where λ0nλ
00
n and λ0nλ

00
nλ

000
n stand for the sampled 3ph and 4ph

scattering process for phonon mode λ, nλ stands for sample size.

Confidence interval of τ�1
λ

We take ðτðþÞ
λ;3phÞ

�1
as an example to show the derivation of the

confidence interval. The mean Γ
ðþÞ
λ and variance ðsðþÞ

λ Þ2 of the

sampled Γ
ðþÞ
λλ0nλ

00
n
is given by:

Γ
ðþÞ
λ ¼ 1

nðþÞ
λ

XðþÞ

λ0nλ
00
n

Γ
ðþÞ
λλ0nλ

00
n

(14)

ðsðþÞ
λ Þ2 ¼

XðþÞ

λ0nλ
00
n

Γ
ðþÞ
λλ0nλ

00
n
� Γ

ðþÞ
λ

� �2
nðþÞ
λ � 1

(15)

According to Central Limit Theorem, the distribution of the

sample mean Γ
ðþÞ
λ is approximately a normal distribution with a

variance given by:

VarðΓðþÞ
λ Þ ¼ ðsðþÞ

λ Þ2

nðþÞ
λ

(16)

The variance of ðτ̂ðþÞ
λ;3phÞ

�1
is then given by:

Varððτ̂ðþÞ
λ;3phÞ

�1Þ ¼ VarðNðþÞ
λ Γ

ðþÞ
λ Þ ¼ NðþÞ

λ

ðsðþÞ
λ Þ2

nðþÞ
λ

(17)
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As the sample variance is approximated, we use t-distribution to

calculate the confidence interval of ðτ̂ðþÞ
λ;3phÞ

�1
. The (1− α)100%

confidence interval for ðτ̂ðþÞ
λ;3phÞ

�1
is given by:

ðτ̂ðþÞ
λ;3phÞ

�1
± t

α=2;nðþÞ
λ

NðþÞ
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðþÞ
λ

2
=nðþÞ

λ

q
(18)

where t
α=2;nðþÞ

λ

is the t-value of a t-distribution with ðnðþÞ
λ � 1Þ

degrees of freedom and significant level α/2.
Similarly, we can derive the confidence interval of ðτ̂ð�Þ

λ;3phÞ
�1
,

which is given by:

ðτ̂ð�Þ
λ;3phÞ

�1
± t

α=2;nð�Þ
λ

Nð�Þ
λ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð�Þ
λ

2
=nð�Þ

λ

q
(19)

We denote the half length of the confidence interval with the
symbol CI and we have:

CIðþÞ
λ;3ph ¼ t

α=2;nðþÞ
λ

NðþÞ
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðþÞ
λ

2
=nðþÞ
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(20)
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λ;3ph ¼ t
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λ
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λ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð�Þ
λ

2
=nð�Þ

λ

q
(21)

When summing up scattering rates in different categories,
based on the rule of error propagation, the confidence interval of
τ̂�1
λ;3ph is given by:

τ̂�1
λ;3ph ± CIðþÞ

λ;3ph

� �2
þ CIð�Þ

λ;3ph

� �2� �1=2

(22)

The confidence interval of τ̂�1
λ;4ph can be derived in a similar

manner:

τ̂�1
λ;4ph ± CIðþþÞ

λ;4ph

� �2
þ CIðþ�Þ
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� �2
þ CIð��Þ
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� �2� �1=2

(23)

where CIðþþÞ
λ;4ph, CI

ðþ�Þ
λ;4ph and CIð��Þ

λ;4ph are given by:

CIðþþÞ
λ;4ph ¼ t
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Predicting lattice thermal conductivity
The total scattering rate of a phonon mode τλ is calculated based
on spectral Matthiessen’s rule11:

τ�1
λ ¼

τ�1
λ;3ph 3ph scattering

τ�1
λ;3ph þ τ�1

λ;4ph 3ph+4ph scattering

(
(27)

The lattice thermal conductivity is calculated by:

κ ¼ 1
V

X
λ

cλv
2
λ τλ; (28)

where V is the unit cell volume, vλ and cλ are the group velocity
and the specific heat of phonon mode λ, respectively.

Predicting thermal radiative properties
The complex dielectric function of polar dielectrics in the mid-IR
range can be described by the Lorentz oscillator model57–59:

εðωÞ ¼ ε1
Y
m

ω2
LO;m � ω2 � iγLO;mω

ω2
TO;m � ω2 � iγTO;mω

 !
(29)

where ε∞ is the dielectric constant at the high-frequency limit, ω is
the photon frequency, ωLO,m and ωTO,m are frequencies of the
zone-center IR active LO an TO phonon modes, respectively. γLO,m
and γTO,m are the damping factors, which can be derived from the
phonon scattering rate of zone-center IR active LO and TO phonon
modes, respectively.
From the dielectric function, we can further derive many useful

thermal radiative properties including the complex refractive index
(m) and the normal reflectance of the air-materials interface (R).

m ¼ ffiffi
ε

p
(30)

R ¼
ffiffi
ε

p � 1ffiffi
ε

p þ 1

����
����
2

(31)
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