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Application of machine learning to assess the influence of
microstructure on twin nucleation in Mg alloys
Biaobiao Yang1,2, Valentin Vassilev-Galindo 1 and Javier Llorca 1,2✉

Twin nucleation in textured Mg alloys was studied by means of electron back-scattered diffraction in samples deformed in tension
along different orientations in more than 3000 grains. In addition, 28 relevant parameters, categorized in four different groups
(loading condition, grain shape, apparent Schmid factors, and grain boundary features) were also recorded for each grain. This
information was used to train supervised machine learning classification models to analyze the influence of the microstructural
features on the nucleation of extension twins in Mg alloys. It was found twin nucleation is favored in larger grains and in grains with
high twinning Schmid factors, but also that twins may form in the grains with very low or even negative Schmid factors for
twinning if they have at least one smaller neighboring grain and another one (or the same) that is more rigid. Moreover, twinning of
small grains with high twinning Schmid factors is favored if they have low basal slip Schmid factors and have at least one
neighboring grain with a high basal slip Schmid factor that will deform easily. These results reveal the role of many-body
relationships, such as differences in stiffness and size between a given grain and its neighbors, to assess extension twin nucleation
in grains unfavorably oriented for twinning.
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INTRODUCTION
Magnesium (Mg) and its alloys have emerged as promising
candidates for structural components in transport, owing to their
light weight, high strength-to-weight ratio, and good recyclability1,2,
as well as in biomedical applications due to their biodegradable
and biocompatible behavior and have been recently used in
scaffolds for bone tissue engineering3,4. Mg has a hexagonal close-
packed (hcp) crystal lattice and its plastic deformation is dominated
by <a> basal slip, which presents a very low critical resolved shear
stress (CRSS) (<1MPa in pure Mg5). However, <a> basal slip can
only accommodate deformation in the basal plane, and plastic
strains along the <c> axis have to be accommodated through
different mechanisms. The CRSS for <c+ a> pyramidal slip on Mg is
very high (98MPa in pure Mg6) and, thus, plastic deformation along
the <c> in Mg is often accommodated by twinning, a mechanism
that involves the shearing of the crystal lattice at one side of the
twin plane to mirror the atomic positions with respect to the other
side of the twin plane. The twinning systems are defined by the
twin plane and the twin direction, as well as by the shear
deformation that is accommodated in the twin direction7. In the
case of Mg hcp lattice, the {0112} <0111> extension twins are often
nucleated during plastic deformation because of their low CRSS, as
compared with {0111} <0112> compression twins8–10. It should be
noted, however, that twinning is a polar mechanism that only
occurs when the shear deformation is applied in the appropriate
direction, so the twinned region has a mirror symmetry with the
parent region across the twin plane. Thus, extension twinning in Mg
only occurs under stress states that lead to an extension of the <c>
axis of the hcp Mg lattice. As a result, twinning deformation leads to
a large difference between the tensile and the compressive yield
strengths and work hardening of textured Mg alloys, and this
marked plastic anisotropy has negative effects on the ductility and
formability of wrought Mg alloys11,12.

The accommodation of plastic deformation by twinning
involves two successive steps: twin nucleation and twin growth
(thickening). Twin nucleation is a heterogeneous process that
takes place in regions with large stress concentrations in the
microstructure, such as grain boundaries (GBs). Twin nucleation
has been widely studied13–17 but a definitive theory is still lacking.
Several models for twin nucleation were proposed in the past,
including the pole mechanism of Thompson and Millard18, the slip
dislocation dissociation mechanism of Mendelson19, and the
disconnection mechanism proposed by Serra, Bacon and
Pond20–23. Later, a zonal-twinning mechanism based on atomistic
simulations was proposed by Wang et al.24,25, in which a stable
twin nucleus was created by simultaneous nucleation of a partial
dislocation with a Burgers vector of −50/107 [1011] and multiple
twinning dislocations with a Burgers vector of 1/15 [1011]. In
addition, Wang et al.26 presented a pure-shuffle mechanism for
twin nucleation in Mg at GB due to the stress concentration and
the presence of GB dislocations. Besides, He et al.13 experimentally
reported a dual-step mechanism for extension twin nucleation
through in situ high-resolution transmission electron microscopy
(HRTEM). The nucleation of extension twins was initiated by
disconnections on the prismatic | basal interfaces which establish
the lattice correspondence of the twin with a minor deviation
from the ideal orientation. Subsequently, the formation of
coherent twin boundaries was achieved through the rearrange-
ment of the disconnections at the prismatic | basal interface13.
Once the twin has been formed, it is generally accepted that twin
thickening is mediated by the glide of twinning dislocations along
the twin planes13,21,27–29, and this process is controlled by the
resolved shear stress on the twin plane and direction.
From the polycrystal viewpoint, the most common criterion

used to explain twin nucleation in one grain is the apparent
Schmid factor (SF), based on the hypothesis that the stress state in
one grain is identical to the macroscopic applied stress30–32. This
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criterion is supported, for instance, by the micro-tensile tests in
pure Mg single crystals by Ventura et al.15 who reported that the
appearance of extension twins followed the SF criteria33. Similar
results were found in an AZ31 alloy deformed in compression
along the extrusion direction34 and in a hot rolled AZ31 alloy
during successive in-plane compression tests along two different
directions35. However, many recent works have revealed that
other microstructural features, besides the SF, also have remark-
able influence on twin nucleation36–39. Beyerlein et al. reported
that the GB misorientation angle can affect twin nucleation in
polycrystalline pure Mg, when it comes to twin pairs nucleated at
a GB40. Guan et al. revealed, for a WE43 Mg alloy, that the Luster-
Morris geometric compatibility factor (m′) between <a> basal slip
of neighboring grains and the active extension twin variant plays a
more critical role in twin nucleation than the apparent SF of the
extension twin41. A similar conclusion was also drawn by Zhou
et al. in their analysis of the extension twin variant selection in Mg-
5Y (wt%) alloy by means of in situ electron back-scattered
diffraction (EBSD)42. Koike et al.25 found that the intragranular
localized <a> basal slip was responsible for the formation of
anomalous extension twins with low or even negative SFs in rolled
AZ31 Mg alloy sheets deformed in tension along the rolling
direction43. Furthermore, extension twinning was also found to be
very sensitive to the grain size of Mg alloys44,45. Ghaderi and
Barnett studied the effect of grain size on extension twinning in an
extruded AZ31 Mg alloy and found that the macroscopic stress
required for the activation of extension twins decreased as the
grain size increased46 and a similar behavior was observed by
Dobroň et al.47. Thus, there is still no consensus on the underlying
factors leading to twin nucleation13–16 because extension twins
not necessarily occur in all large grains, at all GBs, or in all grains
with favorable orientations48,49 and it is important to ascertain the
main microstructural features that lead to the nucleation of
extension twins because of the relevance of this mechanism in the
deformation and fracture of Mg alloys.
In this investigation, machine learning (ML) strategies (and, in

particular, Bayesian inference) are used to establish the relation-
ship between microstructural features and twin nucleation in two
different Mg alloys. To this end, the microstructural features and
the nucleation of twins was ascertained by means of 2D EBSD in
more than 3000 grains, including 28 relevant parameters for each
grain, categorized in four different groups (loading condition,
grain shape, apparent SFs, and GB features). The information
provided by 2D EBSD does not take into account the nucleation of
twins nor the microstructure beneath the surface layer and this
may induce some errors. However, the construction of a large
dataset of 3D EBSD (as the one necessary for ML)50 is an extremely
challenging task and, thus, only 2D EBSD was used in this
investigation. The information was used to train supervised ML
classification models to analyze twinning. The combination of a
large experimental dataset and the potential of ML tools allowed
us to determine the most important microstructural features
promoting twin nucleation. This work, therefore, provides results
on the influence of the microstructural features on the nucleation
of extension twins in Mg alloys. This information can help to
design polycrystal microstructures with controlled twinning
during deformation.

RESULTS
Microstructures
The development of deformation twins in Mg alloys is very
sensitive to the microstructure50–52. The microstructures of
extruded AZ31 Mg and rolled Mg-1Al (at%) alloys before
deformation are depicted in Fig. 1. Most grains in the inverse
pole figure (IPF) of AZ31 alloy were colored in red because their
<c> axis is parallel to the normal direction (ND, Fig. 1a). This agrees

well with the strong intensity of the (0002) pole figure around the
ND in Fig. 1b, which is a 2D graphical representation of orientation
showing the orientation of (0002) plane normal with respect to
the sample reference frame. In contrast, most grains in the Mg-1Al
alloy (Fig. 1e) were colored in green and blue, indicating that their
<c> axis is perpendicular to the extrusion direction (ED).
Accordingly, the (0002) pole diagram of the Mg-1Al alloy is near
90° away from the extrusion direction (Fig. 1f). This means that hot
extrusion results in a strong prismatic texture where most of the
grains have the <c> axis perpendicular to the ED, whereas hot
rolling generates a strong basal texture where the <c> axis is
oriented parallel to the ND of the rolled sheet.
The average grain size of AZ31 Mg and Mg-1Al alloys are

12.4 ± 8.8 μm and 20.4 ± 10.8 μm, respectively (Fig. 1c, g) but both
alloys present a wide size distribution that also includes a few
large grains (>40 µm). Besides, the Mg-1Al alloy with a prismatic
texture (mean: 40.6 ± 19.8°) exhibits a higher GB misorientation
angle than the AZ31 alloy with a basal texture (mean: 32.5 ± 15.5°)
(Fig. 1d, h). This is because the strong basal texture (with the <c>
axis of many grains parallel to the ND) leads to misorientation
angles in the range 0° to 30°. However, the GB misorientation
angle varies from 0° to 90° for strong prismatic texture (with <c>
axis of many grains perpendicular to the extrusion direction). The
schematic illustration of the difference between two textures is
shown in Supplementary Fig. 1 in the Supplementary Information
(SI). Such a difference of GB misorientation angle can influence the
localized twinning behavior40. Overall, the different textures as
well as the wide grain size distributions allowed us to collect a
comprehensive dataset for twin nucleation.

Mechanical behavior
The tensile stress-strain curves of the AZ31 alloy in three different
orientations (S0, parallel to the ND; S90, parallel to the transverse
direction (TD); and S45 at 45° between the TD and ND) and of the
Mg-1Al along the ED are plotted in Fig. 2. The sigmoidal shape and
the parabolic shape of the curves are generally associated with
twin-dominated and slip-dominated deformation, respec-
tively53,54. Thus, the nucleation and growth of extension twins
control the deformation of sample S0, while slip should be the
dominant deformation mode for samples S90 and Mg-1Al. The
stress-strain curve of sample S45 is neither sigmoidal nor
parabolic, suggesting that both slip and twinning may simulta-
neously contribute to the deformation. These hypotheses were
corroborated by the experimental EBSD maps of AZ31 Mg and
Mg-1Al alloys before and after deformation (shown in Supple-
mentary Figs. 2 and 3 in the SI). In fact, after tensile deformation
up to ~6%, the percentage of grains containing extension twins is
57%, 25%, 2.4%, and 15%, for samples S0, S45, S90, and Mg-1Al,
respectively (Table 1). Note that most active extension twins
exhibit low, or even negative SFs, in samples S90 and Mg-1Al
(Table 1). This behavior is conventionally (and ambiguously)
related to stress concentrations at GBs55,56 but its linkage with the
microstructure has not been analyzed.

Database of microstructural features
The EBSD data of all our samples before deformation were
exported using in-house codes based on MTEX (version 5.7.0), an
open-source MATLAB toolbox57,58, to collect the information of all
microstructural features. Given that the microstructural features of
the grains at the edge of the EBSD map were not fully captured,
these grains were removed from the dataset. A total of 28 features
were selected for each grain, which can be categorized into
loading condition, grain shape parameters, apparent SFs, and GB
parameters.
The loading condition is given by the Orientation feature, with

values of 0, 45, and 90 for S0, S45, and S90, respectively, while all
grains have a loading condition of 90 for the Mg-1Al alloy, as
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Fig. 1 Microstructures of AZ31 Mg and Mg-1Al alloys before deformation. EBSD inverse pole figure (IPF) maps in the (a) normal direction
(ND) of AZ31 Mg alloy and (e) extrusion direction (ED) of Mg-1Al alloy. (0002) pole figures of (b) AZ31 Mg alloy and (f) Mg-1Al alloy.
Distributions of (c, g) Grain size and (d, h) grain boundary misorientation angle of (c, d) AZ31 Mg alloy and (g, h) Mg-1Al alloy.
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shown in Fig. 3a. The shape parameters of the grains include the
diameter of a circle with the same area of the grain (Grain_size; in
μm), the number of triple points (Triple_points), and the number of
neighboring grains (Neighbor_grain_n) (Fig. 3b). The apparent SFs
for the 6 possible extension twin variants and for the 3 <a> basal
slip systems were considered for each grain, which are the
dominant plastic deformation mechanisms during tensile defor-
mation, as shown in grain reference orientation deviation (GROD)
maps of Supplementary Fig. 4. The values of the Schmid factors
were ordered from the highest to the lowest and named T_SFn
(n= [1,6]) and S_SFn (n= [1,3]) for the extension twin variants and
the <a> basal slip systems, respectively (Fig. 3c). It should be
noted that the local SFs (that account for the local stress state)
may play more decisive roles than the apparent SFs on the
activation of slip and twinning in polycrystalline Mg alloys50,59.
However, the determination of local SFs for a large dataset (as the
one necessary for ML) is extremely challenging and would require
either costly diffraction experiments or 3D computational poly-
crystalline simulations based on the actual 3D grain struc-
ture50,60–62. Considering that the main aim of this investigation
is to assess the microstructural features that lead to the formation
of extension twins, the apparent SF, which is a geometrical factor
that takes into account interaction between the macroscopic
stress and the grain orientation, is a good descriptor for ML.
Finally, the GB parameters were subdivided into (1) the Luster-

Morris geometric compatibility factor (m′), (2) the GB misorienta-
tion (i.e., disorientation) angle (GB_misang; in °), (3) the difference
of grain size (deltaGs; in μm), and (4) the difference between the
<a> basal slip SF of a given grain and its neighbors (deltaBSF). The

maximum (max), the mean (mean), and the minimum (min) values
of all GB features for each grain were included in the dataset.
The Luster-Morris geometric compatibility factor (m′) is one of

the most relevant criteria to assess slip/twin transfer as well as slip-
induced twinning events at GB41,42,63. It is based upon the angles
between the active slip/twin plane normal directions ψ and the
Burgers vector/twin shear directions κ according to59:

m0 ¼ nin
�!nout

��!� �
din
�!

dout
��!� �

¼ cosðψÞ � cos κð Þ (1)

in which ~nin, ~nout, ~din, and ~dout stand for the vectors normal to the
slip/twin plane and parallel to incoming and outgoing slip/twin
directions, respectively (Supplementary Fig. 5). The m′ between
<a> basal slip systems of a given grain and its neighbors (B-b_m′)
and the m′ between the 6 extension twin variants of a given grain
and the <a> basal slip systems of its neighbors (B-t_ m′) were
chosen as features, as schematically depicted in Fig. 3d. Hence,
transmission of <a> basal slip across the GB and nucleation of
extension twins at the GB induced by <a> basal slip in the
neighbor grain are considered. It is worth noting that, although
there are 3 possible <a> basal slip systems, only the one with the
highest SF was considered to compute m′. However, all 6
extension twin variants were considered since the nucleation of
extension twins induced by <a> basal slip in the neighbor grain is
triggered by the stress concentration at the GB and all extension
twin variants are possible. Even though extension twins in
neighboring grains have also been reported to induce nucleation
of extension twins30,60,61, this feature was not considered because
it is strongly correlated with the GB misorientation angle
(GB_misang)40,62.
The differences of grain size (deltaGs; in μm) and <a> basal slip

SF (deltaBSF) were calculated by subtracting the value of the
feature of a given grain to the value of the feature for each of its
neighbors. For deltaBSF, only the highest SF for the <a> basal slip
systems (S_SF1) in the given grain and its neighbors was
considered.
The mean grain orientations were used to calculate the

geometric compatibility factors and the theoretical Schmid factors
for twinning and slip. The slight deviations in the grain orientation,
indicated by the intragranular grain orientation (mostly <5°), may
lead to small errors in the calculation of the GB characters.
The dataset of AZ31 Mg alloy includes 2301 entries, corre-

sponding to 338 twinned grains and 1963 not twinned grains. The
dataset of Mg-1Al alloy includes 811 entries, corresponding to 115
twinned grains and 696 not twinned grains. The variable Twinned
in the dataset indicates whether a grain is twinned (1) or not
twinned (0).

Presentation of some microstructural features
The distributions of some of the microstructural features used for
descriptors in the dataset are plotted in Fig. 4. The distributions of

Table 1. Summary of the twinning features for various samples.

Tensile strain (true) All grains Twinned grains Twinned fraction Theoretical twinning SF Active twinning SF

S0 ~6% 369 210 57% 0.40 0.40

S45 693 171 25% 0.22 0.23

S90 1578 38 2.4% 0.036 0.083

Mg-1Al 941 138 15% −0.0096 −0.062

9.5% 555 78 14% −0.014 −0.16

Note that the number of grains in the table is slightly larger than the number of grains in database used for ML because the grains on the edge of the EBSD
region were not included in the ML database. The theoretical twinning SF was determined as the average for all grains of the highest SFs of all twin variants in
each grain. For each grain, the average grain orientation obtained from the initial EBSD map was used to calculate the twinning SF.

Fig. 2 Mechanical behavior of Mg alloys. True stress-true strain
curves of samples S0, S45, S90 and Mg-1Al under tension.
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Fig. 3 Schematic of the microstructural features considered in the ML models. a Loading conditions for various samples, b grain shape
parameters, c apparent SFs, and d grain boundary (GB) parameters.

Fig. 4 Distributions of some microstructural features. a S_SF1 (upper), T_SF1 (middle), and Mean_deltaBSF (bottom) values for different
loading conditions of the AZ31 alloy and for the Mg-1Al alloy, and b Min/Max values of GB_misang (upper), B-b_m′ (middle) and B-t_m′
(bottom) for both alloys.
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the maximum SF for <a> basal slip (S_SF1) and extension twinning
(T_SF1) in Fig. 4a confirm that the three loading orientations in
AZ31 lead to the activation of different dominant deformation
mechanisms. For instance, the S45 sample exhibits the highest SF
for <a> basal slip, while the highest SF is found for extension
twinning in the S0 sample. Hard-oriented samples (S90 and Mg-
1Al) show the lowest SFs for both <a> basal slip (although there
are grains with high SFs) and extension twinning (Fig. 4a). These
data are in good agreement with the experimental results in Fig. 2
and Supplementary Figs. 1 and 2.
Other features, such as Mean_deltaBSF (Fig. 4a Bottom), are,

however, independent of the orientation, and are distributed
symmetrically around 0 within a wide range from −0.3 to 0.2.
Other GB parameters, such as GB_misang, B-b_m′, and B-t_m′ are
also independent of the loading orientations and their distribu-
tions for the full AZ31 dataset (including the three orientations)
are provided in Fig. 4b. The GB_misang feature for the Mg-1Al
alloy is considerably higher than that of the AZ31 alloy (Fig. 4b
upper), which could be ascribed to the different textures of both
alloys (Fig. 1). Despite that, the distributions of B-b_m′, and B-t_m′

are independent of the alloy. These distributions demonstrate the
comprehensive sampling of different features in the database.

Machine learning for twin nucleation
With the goal of finding the apparent causal relations of twinning,
the datasets were used to train ML models that can predict if a
given grain will twin or not. This can be achieved through ML
classification methods, a type of supervised ML approaches whose
objective is the prediction of labels (in our case, “twinned” or “not
twinned”). Several ML models (e.g., support vector machines,
decision trees, random forests, AdaBoost, Gradient boosting,
Bayesian networks or BNs, etc.) were initially trained on the
AZ31 dataset to select the most suitable method for predicting
twinning. As a preprocessing step before training, “MinMax”
scaling procedure was used to scale all features in the dataset to
values in a range between 0 and 1, and removed all highly
correlated features (absolute values of Pearson coefficient ≥0.95)
that led us to a final dataset containing 24 features. A stratified 10-
fold cross-validation procedure was used for training to avoid
possible biases (and overfitting). The area under the receiver
operating characteristic curve (ROC AUC) score64–66 was used to
evaluate the performance of our ML models since it is a good
metric to select optimal models independently from the cost
context or the class distribution.
The accuracy in terms of the ROC AUC score for the 6 best

performing ML models as well as the individual accuracy on
predicting if the grain twins or not is shown in Table 2. All models
present a rather good overall prediction accuracy (over 0.8) that
indicates that the dataset contains enough information to
differentiate the grains that will twin from those that will not.
However, there are differences in the accuracy when predicting
twinned (or not twinned) grains between the ensemble methods
(gradient boosting [GDB]67, AdaBoost68, and random forests69)
and the “Bayes-based” methods (naïve Bayes70 and the BNs71).
While the former show a contrast in accuracy between twinned
(0.663 in average) and not twinned (0.964 in average) grains, the
latter have a more balanced prediction accuracy of 0.850 and
0.866 in average for twinned and not twinned grains, respectively.
This means that ensemble methods are prone to bias toward
more populated classes in the datasets, compromising their
potential to learn from the less populated classes. In our case, both
datasets are significantly unbalanced, with twinned grains
accounting only for ~15% of the total grains. Hence, the ensemble
methods are not considered suitable to achieve our goal of
predicting twinning and ascertain the microstructural factors
responsible for it.

Regarding the Bayes-based models, BNs outperform naïve
Bayes (Table 2). Compared to naïve Bayes, BNs provide both a
higher overall accuracy (ROC AUC of 0.871) and a more reliable
prediction of twinned grains (0.879), while keeping a similar
accuracy when predicting not twinned grains (0.863). Moreover,
BN models, as their name indicates, are constructed by building a
network (a directed acyclic graph) from data, where nodes
represent all features available in the dataset (including the target
variable) and the edges connecting the nodes indicate depen-
dences between features (see Fig. 5a, for an example of a BN for
the AZ31 dataset). For instance, the BN in Fig. 5a shows that the
model is able to learn the connection between features belonging
to the same category (size, SF, or angle features) directly from
data, without any prior bias. In addition to a remarkable prediction
accuracy, BNs can “explain” what the model is learning. Hence,
they offer the appropriate framework to obtain insights into the
most relevant features defining twin nucleation. Henceforward,
we will only focus on training BN models.
The next step to find the best possible model to describe

twinning is to optimize the hyperparameters (i.e., those para-
meters that need to be fixed before training) of the BN model. A
grid search cross-validation procedure was used to this end. The
description of the optimized hyperparameters and their optimal
values for each model are provided in the “Methods” section and
in the Supplementary Methods, respectively. The prediction
accuracy in terms of the ROC AUC score and the individual
accuracy on predicting twinned and not twinned grains for
different optimized BN models are shown in Table 3. The BN
model for the AZ31 dataset (BN1 in Table 3) shows a slight
improvement in accuracy with respect to the non-optimized one
(ROC AUC score increased from 0.871 to 0.877). Figure 5a shows
the BN obtained from model BN1. Focusing on the target variable
(Twinned), there are only three nodes directly connected to it:
Grain_size, T_SF1, and S_SF1. Such a group of directly connected
nodes is the Markov blanket (MB) of the variable Twinned. A MB is
a subset of all the available features in the dataset that alone
contains all the useful information to infer the random variable to
which the MB belongs (Twinned, in this case). This is confirmed
after building a model for the AZ31 dataset using for training only
the MB (BN2 in Table 3). The overall accuracy is kept (ROC AUC
score of 0.878), and there are only small differences in the
accuracy on predicting (not) twinned grains (from 0.885 to 0.893
and from 0.869 to 0.862 for twin and not twins, respectively).

Table 2. Overall accuracy in terms of the ROC AUC score and
individual (twinned and not twinned) accuracy for the five best
performing ML methods for the AZ31 dataset.

Method ROC AUC Twinned
accuracy

Not twinned
accuracy

Bayesian networks 0.871 0.879 0.863

Gaussian naïve
Bayes

0.851 0.834 0.868

GDB 0.825 0.683 0.966

Random forests 0.812 0.660 0.954

AdaBoost 0.807 0.645 0.972

The scores presented here are the mean over the 10 cross-validation tasks.
The “individual” scores were obtained by calculating the ratio between
correct predictions and total samples (i.e., a value of 0 would mean that all
predictions were incorrect and a value of 1 that all predictions were
correct). The default settings were used as implemented in the pyAgrum84

and scikit-learn83 Python packages for the Bayesian network and for all
other methods, respectively. The highest accuracies are highlighted with
bold font.
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For the AZ31 dataset, the members of the MB of twinning can
change depending on the training set. For example, T_SF3 is
sometimes selected instead of T_SF1. However, both features
provide almost the same information since there is not much
differences between the distribution of the former with respect to
the one of the latter for the samples corresponding to S0 and S45
samples (see Fig. 5b). Moreover, the highest twinning SF
(represented by the T_SF1 feature) endows a more relevant
physical meaning because it corresponds to the twin variant with
the highest resolved shear stress, under the macroscopic loading.
Therefore, only T_SF1 was used to train MB-based models for the
AZ31 dataset. Another possible variation in the MB is the choice of
Max_deltaBSF over S_SF1. For this case, training a BN including the
former in the MB produces a model (BN3 in Table 3) with an
accuracy equal to the BN2 model (ROC AUC score of 0.878 in the
case of S_SF1).
So far, the accuracy of the models has been discussed. The next

step is to analyze the insights they provide in describing twinning.
Two features, Grain_size and T_SF1, can be highlighted from the
MB of the AZ31 dataset (Fig. 5a). They are also generally
considered as the most important factors to predict twin
nucleation from experimental observations33–35,44–47. The decision

surface of a BN trained on the AZ31 dataset considering only the
Grain_size and T_SF1 features is shown in Fig. 6a. Remarkably, the
BN is learning from our dataset a well-known causal relation: a
grain has a high probability of twinning if its size is rather large
(Grain_size > 7 µm) and its highest twinning SF has a high value
(T_SF1 > 0.16)33–35,44–47. This conclusion is true for all samples,
regardless of the orientation of the sample.
However, the interplay between the size of the grains and their

twinning SFs accounts only for 97% of the correct “twinned”
predictions of the BN2 (or BN3) model. In total, the BN2 (or BN3)
model predicts correctly as “twinned” 302 samples out of 338,
meaning that the third member of the MB (either S_SF1 or
Max_deltaBSF) helps in correctly classifying 9 twinned grains more
than when using only Grain_size and T_SF1. These additional
correct predictions correspond to grains that have a grain size
lower than 7 µm and a very large twinning SF (T_SF1 > 0.46)
identified in Fig. 6a with an orange square. The scatter plots of all
twinned samples of the AZ31 dataset considering all variables in
the MBs are presented in Fig. 6b, one with S_SF1 and another one
with Max_deltaBSF. The analysis of the new correctly predicted
samples (surrounded by an orange square like in Fig. 6a) shows
that these samples possess both a very high value of

Fig. 5 Selection of the members of the Markov blanket (MB) for twinning. a Example of a Bayesian network for the AZ31 dataset with the
Markov blanket for the target variable “Twinned” delimited with a dashed red square. Different colors for the nodes are used to indicate
different types of features. b Distribution of values of the T_SF1 and T_SF3 features for the different loading conditions in the AZ31 dataset.
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Max_deltaBSF (i.e., neighboring grains have higher basal slip SFs)
and a very small value of S_SF1. Specifically, Max_deltaBSF > 0.22
and S_SF1 < 0.22. These results indicate that small grains with a
high twinning SF still have a high probability to twin if they do not
have favorable conditions to deform (e.g., low basal slip SFs), but
also have at least one neighboring grain with high basal slip SFs
that will deform easily because the CRSS for basal slip is very low.
Besides small-sized grains that twin, the decision surface in

Fig. 6a also shows that there are some grains in the S45 and
S90 samples that twin despite having low, even negative,
twinning SFs (T_SF1 < 0.16). Given that the BN trained on the full
AZ31 dataset does not provide any clue on why these grains twin,
a BN model was trained using only the samples in the AZ31
dataset with values of T_SF1 lower than 0.16 (the value at the
boundary in the decision surface) and another model was trained
on the Mg-1Al dataset (for which almost all twinned grains have
very low, and negative twinning SFs). The performance of the
“reduced” AZ31 model (BN4 in Table 3) shows that, despite the
number of twinned samples is very small (22) and the dataset is
extremely unbalanced (1465 not twinned samples), the model is
able to correctly predict almost half of the twinned grains (0.417)
while achieving a good accuracy on the not twinned samples
(0.862). As per the model trained on the Mg-1Al dataset (BN5 in
Table 3), the overall accuracy is comparable to that of the BN4
model (0.626) but shows a more balanced prediction accuracy
between twinned (0.629) and not twinned (0.622) samples than

Table 3. Overall accuracy in terms of the ROC AUC score and
individual (Twinned and Not twinned) accuracy for different BN
models with optimized hyperparameters.

Model Dataset ROC
AUC

Twinned
accuracy

Not twinned
accuracy

BN1 AZ31 0.877 0.885 0.869

BN2 AZ31 MB (S_SF1) 0.878 0.893 0.862

BN3 AZ31 MB
(Max_deltaBSF)

0.878 0.894 0.862

BN4 AZ31 [T_SF1 < 0.16] 0.639 0.417 0.862

BN5 Mg-1Al 0.626 0.629 0.622

BN6 AZ31 [T_SF1 < 0.16] MB 0.735 0.767 0.703

BN7 Mg-1Al MB 0.685 0.664 0.705

BN8 AZ31 [T_SF1 < 0.16] MB
(Min_deltaGs)

0.686 0.667 0.704

BN9 Mg-1Al MB (Grain_size) 0.676 0.652 0.701

The scores presented here are the mean over the 10 cross-validation tasks.
The “individual” scores were obtained by calculating the ratio between
correct predictions and total samples (i.e., a value of 0 would mean that all
predictions were incorrect and a value of 1 that all predictions were
correct). The models were trained with the BN implementation available in
the pyAgrum Python package84.

Fig. 6 Feature analysis of small-sized grains that twin. a Decision surface of a BN model trained on the AZ31 dataset using only the
Grain_size and T_SF1 features. Blue and red colors identify the zones of the xy plane where the model will predict “Not twinned” or “Twinned”,
respectively. b Scatter plots of all twinned grains in the AZ31 dataset considering all variables in the MBs. The dashed lines delimit the range of
values of the third member of the MB (Max_deltaBSF or S_SF1) within which the probability of twinning is high for small grains
(Grain_size < 7 µm) with very high twinning SF (T_SF1 > 0.46). The orange squares surround the small-sized grains that are correctly predicted
as “twinned” by the BN model when considering for training the three features in the Markov Blanket.

B. Yang et al.

8

npj Computational Materials (2024)    26 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



the BN4 model. Apart from the comparable performances of both
models, their MBs share similar information. Their MBs indicate
that Min_deltaBSF and a size-related feature (Grain_size for the
AZ31 alloy and Min_deltaGs for the Mg-1Al alloy) are the most
important features defining twinning in grains with low twinning
SFs. Indeed, training BN models using only the features in the MBs
leads to an increment of the prediction accuracy. For the AZ31
dataset (BN6 in Table 3), the ROC AUC score increases from 0.639
to 0.735, whereas the model for the Mg-1Al (BN7 in Table 3)
presents an increment from 0.626 to 0.685.
The similarities in the MBs suggest that the information both

models are learning is, if not the same, very similar. In view of
this, it was decided to exchange between the datasets the non-
shared member of the MB and retrain the models (i.e., Grain_size
was used for the Mg-1Al dataset and Min_deltaGs for the AZ31
dataset). As expected, the accuracy of the models dropped (see
BN8 and BN9 models in Table 3), but it was possible to compare
the BN models of both datasets. The decision surfaces are
plotted in Fig. 7a, c for the “reduced” AZ31 models and in
Fig. 7b, d for the Mg-1Al models. Focusing on the shared feature
in the MB, all models set almost the same upper limit for
Min_deltaBSF (around −0.06) for large grains (larger than 24 µm
in Fig. 7a, b, or at least 16 µm larger than their smallest
neighboring grain in Fig. 7c, d). This means that large grains that
have at least one neighboring grain more rigid (i.e., lower basal
slip SFs) than them have a high probability to twin. Note that
there is a difference in the limits learnt for the Min_deltaBSF
feature between the AZ31 and the Mg-1Al models for smaller
grains. Namely, the latter indicates that grains between 15 µm
and 24 µm (or that are 2 µm to 16 µm larger than their smallest
neighboring grain) will be prone to twin only if at least one of
their neighbors is far more rigid than them (Min_deltaBSF values
lower than −0.16). Also, the Mg-1Al model suggests that grains

smaller than 15 µm are very unlikely to twin regardless of the
stiffness of their neighbors. Conversely, the “reduced” AZ31
model trained with its MB shows that twin nucleation in a grain
is favorable for almost all grain sizes (Grain_size > 2.4 µm) given
that at least one neighbor is more rigid.
The differences between the AZ31 and Mg-1Al models are

probably a consequence of the lack of data in the “reduced” AZ31
dataset (there were only 22 twinned samples compared to the 115
available in the Mg-1Al) and not a difference in the causal relations
of twinning between the alloys. To prove this, the Mg-1Al models
of Fig. 7b, d were used to predict the labels of the samples in the
“reduced” AZ31 dataset. The boundary of the decision surface of
the Mg-1Al models is also shown in Fig. 7a, c for an easy visual
comparison between the models. While the models trained using
Grain_size differ considerably in the region of very small grains
(smaller than 15 µm), there is not much difference between the
models trained with Min_deltaGs (the feature included in the MB
of the Mg-1Al dataset). This is reflected in the accuracy of the Mg-
1Al models in predicting the “reduced” AZ31 dataset. The Mg-1Al
model trained using Grain_size achieves a ROC AUC score of 0.639
with a very unbalanced accuracy between twinned (0.318) and not
twinned (0.960) grains. On the other hand, the Mg-1Al model
trained using Min_deltaGs has an overall accuracy of 0.782 with a
good accuracy for both twinned (0.818) and not twinned (0.747)
grains. Such accuracies are even higher than the ones obtained by
constructing any model from the “reduced” AZ31 dataset directly
(compared to models BN4, BN6, and BN8 in Table 3). This suggests
that Min_deltaGs is more crucial than Grain_size to define twin
nucleation for grains with low twinning SFs. Therefore, it can be
concluded from our BN models that twin nucleation in grains with
low (even negative) twinning SFs is the consequence of many-
body relationships, where one needs to consider not only the
grain itself but also its neighbors. Namely, these grains will have a

Fig. 7 Decision surfaces of Bayesian Networks models. Decision surfaces of different BN models trained on the (a, c) “reduced” AZ31 and
(b, d) the Mg-1Al datasets. Models were trained using Min_deltaBSF and either (a, b) Grain_size or (c, d) Min_deltaGs. Blue and red colors identify
the zones of the xy plane where the model will predict “Not twinned” or “Twinned”, respectively. For comparison, the boundary of the Mg-1Al
models is drawn with a yellow line on top the decision surfaces of the AZ31 models.
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high probability of twinning if they have at least one smaller
neighboring grain and another one (or the same) that is more
rigid because its basal SF is very low.
The BN models suggested that the presence of a more rigid

neighboring grain promotes twin nucleation in grains with
unfavorable twinning SFs. To validate this conclusion, one of the
grains that twinned with a low twinning SF was analyzed. The
results of this analysis are presented in Fig. 8. Grain G1 with a size
of 11 µm and Euler angles of (140°, 77.4°, 6.5°) has 8 neighbors
(Fig. 8a). The SFs for <a> basal slip of the neighboring grains span
a broad range from 0.015 to 0.44, while the maximum SF for <a>
basal slip of G1 is equal to 0.44 (Fig. 8b). After deformation, one
twin (Twin1) with Euler angles of (38.8°, 91.7°, 11.5°) nucleates
inside G1 (Fig. 8c). According to the projection of Twin1 on the
(0002) pole shown in Fig. 8d—and taking the mean orientation of
G1 as reference—Twin1 is located near the projection of an
extension twin variant with a SF of −0.14. It is interesting to note
that the deflection of G1 before and after deformation reveals that
a slip deformation mode takes place at the same time that
twinning (cf. Fig. 8d)72. More remarkable is, however, that Twin1
nucleates near the GB between G1 and the neighboring grain
(N1), that has the lowest <a> basal slip SF (0.015) of all neighbors.
This suggests that the nucleation of Twin1 tend to satisfy the
strain compatibility between G1 and N1. Furthermore, the SFs for
<a> basal slip of G1 and N1 lead to a deltaBSF equal to−0.425 (it is
also the Min_deltaBSF value of G1), which is in full agreement with
the criterion provided by the BN models.

DISCUSSION
The finding that twin nucleation is preferable in large grains with
high twinning SF is in accordance with the current knowledge. For
instance, Hong et al.73 studied twin nucleation by post-mortem
EBSD in hot-rolled AZ31 Mg alloy deformed in compression
perpendicular to the <c> axis and in tension parallel to the <c>
axis. They found that most active ET variants followed the SF
criteria under both strain paths and similar results can be found in
refs. 30–33. Moreover, GB are recognized as the preferred sites for
twin nucleation as a result of the local stress concentrations to
maintain compatibility during the deformation74. Besides, Raeisi-
nia and Agnew44 carried out uniaxial tension and uniaxial
compression experiments on a series of cast polycrystalline pure
Mg and binary Mg-Zn alloys with various grain sizes, and the
experimental results were subsequently analyzed using an elastic-
viscoplastic self-consistent model. The larger the grain size of the
sample, the smaller the CRSS to activate extension twinning. Choi
et al.45 studied the deformation behavior of a series of Mg alloys
with different grain sizes ranging from 120 μm to 60 nm. Their
results showed that extension twinning is gradually suppressed as
the grain size decreases. It was hypothesized that the larger the
grain size, the higher the dislocation accumulation caused by slip
at the grain boundary, and the higher the stress concentrations
near the grain boundary, leading to twin nucleation.
Furthermore, this study also reveals that extension twins may

nucleate in grains with negative twinning SFs if the grain has at
least one smaller neighboring grain and another one (or the same)
that is more rigid. The condition that “at least one smaller

Fig. 8 Experimental evidence of twinning nucleation in grain with a low twinning SF in sample S90. a IPF-Z map of grain G1 and its
neighboring grains before deformation. Based on the mean orientation for each grain, the crystal lattice as well as the basal plane trace were
determined and overlaid in this figure as a red line. b <a> basal slip Schmid factor map of the same grains under the tension along the
horizontal direction. c IPF-Z map of grain G1 and formed Twin1 after deformation. The rotation of the crystal lattice and basal plane trace
reveals a possible twinning behavior. d Projections of the orientation of grain G1 and Twin1 on the (0002) pole figure before (blue) and after
(black) deformation. Based on the mean orientation of grain G1 before deformation, the orientations of all six possible extension twin variants
were obtained, with their projections added in the pole figure.
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neighboring grain” indicates that the number of neighboring
grains may be larger, providing more GBs with the optimum
conditions to nucleate twins. As a result, Min_deltaGs is more
important than Grain_size to define twin nucleation for grains with
low twinning SFs (Fig. 7). In addition, the condition that “at least
one more rigid neighboring grain” points out to the development
of a stress concentration at the GB to maintain the compatibility
between the grain and its hard neighbor, which should be
relieved by the activation of twinning, a hard slip system
(prismatic or pyramidal) or even cracking75–80. Koike et al.43

reported that anomalous extension twins with negative twinning
Schmid factors are formed to minimize strain incompatibility
caused by the greater activity of basal slip in the twinned grain
than in the surrounding grains, in agreement with the ML
predictions and the experimental results shown in Fig. 8.
In conclusion, twin nucleation of Mg alloys was investigated by

the combination of large database (over 3000 grains × 28 features)
obtained from in situ EBSD and state-of-the-art machine learning
tools. The Bayesian network (BN) models reveal that twin nucleation
is favored in larger grains and in grains with high twinning Schmid
factors, but also point out that twins may form in the grains with
very low or even negative SFs for twinning (<0.16) if they have at
least one smaller neighboring grain and another one (or the same)
that is more rigid. Moreover, twinning of small grains with high
twinning SFs is favored if they have low basal slip SFs and have at
least one neighboring grain with a high basal slip SF that will deform
easily. Very likely, twinning will be triggered in these small grains
because it is the only way to maintain the deformation compatibility
with soft neighbor grain. These results reveal that many-body
relationships, such as differences in stiffness and size between a
given grain and its neighbors, are crucial to assess extension twin
nucleation in grains with characteristics commonly considered
unfavorable for twinning (e.g., small grain size, low twinning SF).
Finally, the combination of the strategy presented in this work

in combination with 3D microstructural characterization (to get
information about the microstructure and of twinning beneath the
surface) and of crystal plasticity simulations (to obtain information
about the local SFs)81,82 is a promising path for future work to
understand the physical mechanisms responsible for twin
nucleation.

METHODS
Sample preparation
Slabs of 80 × 65 × 500mm3 of a rolled AZ31B-O Mg alloy were
purchased from Magnesium Elektron Ltd. (Manchester, UK). The
nominal chemical composition of the alloy is 2.89 wt% Al, 1.05 wt
% Zn, and 0.42 wt% Mn. In addition, a Mg-1Al (at.%) alloy was
prepared by casting, homogenization treatment (400 °C, 2 h), hot
extrusion (temperature: 300 °C, extrusion ratio: 16:1, ram speed: ≈
2mm s−1), followed by another heat treatment (400 °C, 2 h).
Samples for microstructural and mechanical characterization

were cut into dog-bone shape via electro-discharge machining. The
dimensions (length × width × thickness) of the central gauge of the
specimens were 15 × 5 × 2.5mm3 (to obtain whole tensile stress-
strain curves) and 10 × 3 × 1.5mm3 (to perform interrupted EBSD
measurements), for both Mg-1Al and AZ31 Mg alloys. The longest
dimensions of the AZ31 samples were parallel to the normal
direction (ND; denominated S0), at 45° between transverse
direction (TD) and ND (denominated S45), and to the TD
(denominated S90). The sample surface was always perpendicular
to the rolling direction (RD). In the case of Mg-1Al alloy, the longest
dimension of the sample was parallel to the extrusion direction
(ED). For EBSD measurement, the surfaces of all samples were
manually ground on an abrasive SiC paper with a grit size of 3000,
followed by four polishing steps with 3 µm, 1 µm, 0.25 µm diamond
paste and with a suspension containing oxide particles of 40 nm.

Mechanical tests
Tensile tests along the longest direction of each sample were
conducted in an Instron model 8501 universal testing machine
under displacement control at room temperature. Deformation
was measured with an extensometer (Instron model 2620-602,
gauge length: 12.5 mm) at an average strain rate of 10−3 s−1 while
the applied load was monitored with a load cell. The tension for
EBSD measurement before and after deformation was carried out
in the micromechanical testing machine (Kammrath and Weiss
Technologies, Inc., Model MZ.Sb) under the displacement control
at 1 μm/s, which leads to an approximate strain rate of
1 × 10−4 s−1.

EBSD observations
The sample surface was analyzed within the gage length before
and after deformation using a scanning electron microscope (SEM,
Apreo 2S LoVac, FEI Company, Portland, OR, USA; beam current:
2.7 nA, accelerating voltage: 20 kV) equipped with EBSD (Oxford
HKL Channel 5, Oxford Instruments, Abingdon, UK; step size:
0.4 μm for AZ31 Mg alloy and 0.5 μm for Mg-1Al alloy, working
distance: ~10 mm). The area of EBSD observation for the initial
microstructure of AZ31 Mg and Mg-1Al alloys was 560 × 900 μm2

and 1130 × 1645 µm2, respectively. The step size of EBSD
observation for the initial microstructure of both alloys was
1 μm. The microstructures in terms of inverse pole figure (IPF) of
samples S0, S45, S90 and Mg-1Al before and after deformation are
shown in Supplementary Figs. 2 and 3 in the SI.

ML methods
The performance of several ML classification methods was tested
in order to select the best method to predict twin nucleation,
including nearest neighbors, logistic regression, support vector
machines, decision trees, Gaussian processes, neural networks,
random forests, extremely randomized trees, Adaboost, gradient
boosting (GDB), naïve Bayes, local discriminant analysis, and
Bayesian networks (BNs). All of them were used as implemented in
the scikit-learn Python package83, except from the BN models that
were constructed as implemented in the pyAgrum Python
package84. However, only those methods that performed the
best (i.e., the methods whose results are presented later in Table 2)
are described here. Such methods are Adaboost68, GDB67, random
forest69, naïve Bayes70, and BNs71.
The first three methods (Adaboost, GDB, and random forest) are

part of a family of methods known as ensemble methods.
Ensemble methods combine the predictions of different base
estimators built with a given algorithm (e.g., a decision tree) with
the goal of providing a more robust/more general model over the
one provided by a single estimator. The difference between
different ensemble methods relies on the strategy followed in
order to combine the predictions of all base estimators. In general,
these methods either take the average of the predictions of all
estimators (averaging methods) or build the base estimators
sequentially in order to reduce the bias of the combined
estimator, for instance, by applying weights depending on how
difficult is to correctly predict a given sample (boosting methods).
The remaining two methods (Gaussian naïve Bayes and BNs) are
based in Bayesian statistics. The main pillar of Bayesian statistics is
Bayes’ theorem:

P yð jx1; ¼ ; xnÞ ¼ P yð ÞP x1; ¼ ; xn; j; yð Þ
P x1; ¼ ; xnð Þ (2)

where y is the class (target) variable and vector x1 through xn
correspond to the vector of features. PðyÞ is known as the prior
probability of the target variable y, which expresses the
probability of having a given value of y before evidence is
considered. P x1; ¼ ; xnð jyÞ is the likelihood function that contains
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the probability of having x1; ¼ ; xn given that y is true.
P yð jx1; ¼ ; xnÞ is the posterior probability, the probability of
having y after taking the evidence x1; ¼ ; xn into account. Finally,
Pðx1; ¼ ; xnÞ is the probability of the evidence. The objective of
Bayes-based classifiers is to find the class that has the maximum
posterior probability:

ŷ ¼ argmax
y

P y; j; x1; ¼ ; xnð Þ (3)

The difference between different Bayes-based models depends
on the adopted assumptions on probability distributions. For
instance, naïve Bayes methods assume a “naïve” conditional
independence between every pair of features given the value of
the class variable:

P x1; ¼ ; xnjyð Þ ¼
Yn
i¼1

P xi jyð Þ (4)

In the case of the Gaussian naïve Bayes method used in this
work, the likelihood of the features is assumed to be Gaussian:

P xi jyð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

y

q e
� xi�μyð Þ2

2σ2y (5)

where σ2
y and μy are the variance and mean of the continuous

variable xi computed by a maximum likelihood estimation for a
given class y.
On the other hand, BNs assume conditional independence in

the joint distribution following the Markov condition (i.e., every
node in a BN is conditionally independent of its non-descendants,
given its parents):

P y; x1; ¼ ; xnð Þ ¼ P y; j; Parents yð Þð Þ
Yn
i

P xi; j; Parents xið Þð Þ (6)

where the class (target) variable y also forms part of the BN.

Preprocessing of ML models
Before constructing any ML model, two preprocessing steps were
carried out: (1) feature scaling and (2) removal of highly correlated
features. Feature scaling is important to avoid biases toward
features having values with big magnitudes. For instance, an ML
model could consider angles to be more important than twinning
SFs solely because the former can be as large as 90°, while the
latter cannot exceed a value of 0.5. The feature scaling procedure
that we followed was a MinMax scaling setting all features in a
range between 0 and 1. For a given feature vector ~X and a sample
i, the scaled value was obtained by:

Xscaled
i ¼

Xi �min ~X
� �

max ~X
� �

�min ~X
� � : (7)

To assess the correlation between features we computed
Pearson coefficients (r) for every pair of features in our dataset.
Such coefficients were calculated with:

r ¼
P

~x �mxð Þ ~y �my
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
~x �mxð Þ2 P ~y �my

� �2q (8)

in which ~x and ~y are the feature vectors whose correlation is
being calculated, and mx and my are the mean of vectors~x and~y,
respectively. We removed one feature of all pairs whose absolute
value of Pearson coefficient was above 0.95. Specifically, the
features that we removed with this procedure were Neighbor_-
grain_n (neighboring grain numbers), T_SF2, T_SF4, and T_SF6
(correlated with Triple_points (triple point numbers), T_SF1, T_SF3,
and T_SF5, respectively).

Performance of ML models
The accuracy of our ML models was assessed by the area under the
receiver operating characteristic curve (ROC AUC) score64–66. The
ROC curve is created by plotting the rate of true positive predictions
against the false positive ones at various threshold settings (i.e., the
threshold used to decide whether a prediction is positive or
negative in a binary classification task). It has advantages over other
evaluation measures since it decouples classifier performance from
class skew and error costs. However, a ROC curve is a two-
dimensional depiction of classifier performance and, as such, it does
not provide a single scalar value to compare easily the expected
performance of different classifiers. Hence, a common method to
solve this issue is to calculate the AUC of the ROC curve. Since the
AUC is always a portion within the area of the unit square defined
by the rate of true positive and false positive predictions, its value
will always be between 0 and 1. However, no realistic classifier will
present a ROC AUC below 0.5 because this is a result random
guessing would produce. The AUC performs very well and is often
used when a general measure of predictiveness is desired66.

Model selection
The final step in the ML model pipeline was the model selection.
The objective at this step was to select the best performing model
out of several models trained using both different hyperparameters
as well as different training/test sets. The procedure to achieve this
is cross-validation (CV). In general terms, CV is a resampling method
that uses different portions of the data to train and test a model on
different iterations. Among the different CV approaches, the
stratified 10-fold CV was used because it ensures that each portion
of the dataset approximately contains the same percentage of
samples of each target class in the complete dataset. Here, 10-fold
means that the dataset was split into 10 subsets and repeated the
training and testing 10 times. At each of these iterations, 9 subsets
were used for training and the remaining one for testing. Formally,
the stratified 10-fold CV was not used directly to select a model, but
for assessing the performance of different models as the average of
all CV tasks. This allowed to avoid overfitting.
In addition to stratified CV, the robustness of our BN models

was ensured by implementing a grid search CV procedure for
selecting the best hyperparameters. The main idea behind grid
search techniques is to find the optimal parameters that are not
learnt from data by training models with different combinations
taken from a grid of parameter values. The best model was the
one that achieved the highest CV score (we used again as CV
procedure a stratified 10-fold CV). Specifically, we optimized the
number of discretization bins (“discretizationNbBins”), the dis-
cretization strategy (“discretizationStrategy”), the learning method
(“learningMethod”), and whether to use or not the threshold of
precision-recall curves to make predictions (“UsePR”). All other
hyperparameters were kept with default values since initial tests
showed that they remain unchanged after the grid search. The
reader is referred to PyAgrum’s documentation for an explanation
of all hyperparameters for training a BN model84.

DATA AVAILABILITY
The datasets of microstructural features for both the AZ31 and Mg-1Al alloys can be
found in Zenodo85.
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