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Superconductivity in unconventional metals
Zhilong Yang1,2,3, Haohao Sheng1,2,3, Zhaopeng Guo1,2, Ruihan Zhang 1,2, Quansheng Wu 1,2, Hongming Weng 1,2,
Zhong Fang1,2 and Zhijun Wang 1,2✉

Based on first-principles calculations, we demonstrate that 1H/2H-phase transition metal dichalcogenides
MX2 (M= Nb, Ta; X= S, Se, Te) are unconventional metals, which have an empty-site band of A0

1@1e elementary band representation
at the Fermi level. The computed phonon dispersions indicate the stability of the system at high temperatures, while the presence of
the soft phonon mode suggests a phase transition to the charge density wave state at low temperatures. Based on the Bardeen-
Cooper-Schrieffer theory and computed electron-phonon coupling, our calculations show that the superconductivity (SC) in NbSe2 is
mainly attributed to the soft phonon mode due to the half filling of the empty-site band. Accordingly, the SC has been predicted in
unconventional metals TaNS monolayer and 2H-TaN2 bulk with computed TC= 10 K and 26 K respectively. These results
demonstrate that the unconventional metals with partial filling of the empty-site band offer an attractive platform to search for
superconductors.
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INTRODUCTION
In the past decades, topological materials have attracted a lot of
attention due to their novel properties in condensed matter
physics1–12. Most recently, a new kind of unconventional materials
has been proposed to be topologically trivial with wannierizable
valence Bloch states, while they have a set of bands from an
elementary band representation (EBR) on an empty site13–15. The
unconventional insulators are also known as obstructed atomic
insulators16–19. Besides, there are also many unconventional
metals, such as electrides14, catalysis20, solid-state hydrogen
storage13, and superconductivity, etc21,22.
Transition metal dichalcogenides (TMD), such as hexagonal

bilayer stackings of dichalcogenides, named 2H-MX2, have
received attention with the discovery of charge density wave
(CDW) and superconductivity (SC). The CDW transition tempera-
ture decreases from around 120 K in 2H-TaSe2, to 80 K in 2H-
TaS2, down to 30 K in 2H-NbSe2 and finally no CDW in 2H-
NbS223,24. The superconducting critical temperature TC increases
from around 0.2 K in 2H-TaSe2 up to 7.2 K and 6 K in 2H-NbSe2
and 2H-NbS2, respectively. Although these properties have been
widely studied in literature, the origin of the SC has not been
revealed yet.
In this work, based on first-principles calculations and band

representation analysis, we demonstrate that the monolayer 1H-
MX2 is an unconventional metal, with a half-filling EBR at an empty
1e site. The real space invariant (RSI) of the empty site is
δ1@1e= 1. The computed phonon dispersions show CDW
instability at low temperatures. Based on the Bardeen-Cooper-
Schrieffer (BCS) theory, the computed electron-phonon coupling
(EPC) suggests the SC is attributed to soft phonon mode. The
results reveal that the partial filling of the empty-site band gives
rise to the strong EPC and potential SC. Following the strategy,
two superconductors, TaNS monolayer and 2H-TaN2 bulk, have
been predicted with TC= 10 K and 26 K respectively.

RESULTS AND DISCUSSION
Unconventional electronic band structure
The 2H-MX2 possesses a hexagonal structure with a space group
(SG) of P63/mmc, where a hexagonal plane of M atoms is
sandwiched by two layers of X atoms in Fig. 1a. The MX2
monolayers are connected by van der Waals force. For conve-
nience, we mainly focus on the monolayer 2H-MX2 (1H-phase). The
M and X are located at the 1c and 2g Wyckoff positions of SG 187.
Based on the atomic configurations, the atomic valence-electron
band representations (ABRs) are generated by POS2ABR in Table 1.
The computed band structures of NbSe2 and TaS2 are presented

in Fig. 1b, c, respectively. The computed irreducible representa-
tions of energy bands indicate that the six lower energy bands
belong to ABR (A1+ E)@2g, corresponding to the p states of
chalcogens in Table 1. An isolated band at EF belongs to A0

1@1e
EBR with a half filling. The RSI of the empty 1e Wyckoff site is
δ1@1e � mðA0

1Þ þmðA00
1Þ �mðA0

2Þ �mðA00
2Þ �mðE0Þ þmðE00Þ ¼ 1,

with m(ρ) is the number of EBR ρ@1e. Due to the presence of C3
symmetry25, the Jenus 1H-TaSeS is also defined as an unconven-
tional metal, and its superconductivity has been confirmed in
experiment26.

Formation of the empty-site EBR at EF
In a compound, all electronic states should originate from the
ABRs13. The orbital-resolved band structures of representative
NbSe2 in Fig. 2b show the Fermi-level band is consist of Nb-dz2
and Nb-dxy;x2�y2 , which induce A0

1@1c and E0@1c ABRs, respec-
tively. The band representations of topological quantum chem-
istry theory show

A0
1@1c þ E0@1c ¼ A0

1@1eþ E0@1e: (1)

Therefore, we conclude that the hybridization of the two ABRs
gives rise to half occupied EBR A0

1@1e and unoccupied EBR E0@1e,
as illustrated in Fig. 2a. In 1H-(Nb,Ta)X2, the empty-site EBR A0

1@1e
is half filled, resulting in an unconventional metal. In the NaxNbX2
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and MoxNb1−xX2, this empty-site EBR becomes fully occupied at
x= 1, resulting in an unconventional insulator/obstructed atomic
insulator13,14,16,20,25.

CDW and electron doping
We use different electronic smearing parameters to simulate
different temperatures. The obtained phonon dispersions are
presented in Fig. 1d, e. At high temperatures, NbSe2 and TaS2 are

stable with no negative frequency mode. While at low tempera-
tures, there is a soft-mode band on ΓM, which is consistent with
previous theoretical works27–30. This soft phonon mode is not
caused by electron Fermi nesting. Instead, it is associated with EPC,
and will lead to a CDW transition at low temperatures. To
investigate electron doping effect, the electronic structures and
phonon dispersions are computed for NaNbX2 and 1H-MoX2. The
crystal structure of NaNbSe2 is shown in the inset of Fig. 3b. It can
be seen that Na atoms are intercalated between the layers. The 1e
Wyckoff position in 1H-NbSe2 corresponds to the 2c Wyckoff
position in bulk NaNbSe2. From its electronic structures and phonon
dispersions in Fig. 3a, b, it shows that the empty-site EBR A0

1@2c is
fully occupied and no negative phonon mode is found, suggesting
a stable structure after Na intercalation. On the other hand, for Mo
atoms substituting Nb atoms, the situation is similar: fully occupied
empty-site EBR A0

1@1e leads to the absence of the negative phonon
mode, as shown in Fig. 3c, d. The results in the electron-doped
compounds reveal that the presence of soft phonon mode is
related to the half filling of the empty-site EBR. The electron doping
can stabilize the crystal structure and suppress CDW transition.

Superconductivity
To investigate the SC property, we calculated the electron-phonon
couplings λqν with σ= 0.02 Ry, depicted by the magenta circles in
Fig. 2c. It shows that the soft phonon mode near M point has the
large λqν. Further, the side and top views of the corresponding
phonon vibration pattern at M point are plotted in Fig. 2d to
analyze the EPC-favorable vibration mode. It shows that the soft
phonon mode at M point is mainly from Nb atoms that only

Fig. 1 The crystal structures, electronic structures, and phonon dispersions of 1H-MX2. a Crystal structure of 1H-MX2. b, c Electronic
structures of NbSe2 and TaS2. d, e Phonon dispersions of NbSe2 and TaS2 with different electronic smearing parameters (σ).

Table 1. The atomic valence-electron band representations (ABRs) of
1H-MX2.

Atom WKS(q) Symm. Conf. Irreps(ρ) ABRs Occ.

(ρ@q)

Nb 1c -62m d5 dz2 : A01 A01@1c
(M) ð13 23 0Þ dxy;x2�y2 : E0 E0@1c

dxz,yz, : E″ E″@1c

Se 2g 3m p4 pz: A1 A1@2g yes

(X) (00z) px, py: E E@2g yes

1e A01@1e : empty-site EBR

ð23 13 0Þ half-
filled

The ABRs are defined as the band representations induced by the atomic
valence electrons. The Nb d orbitals form the A01; E

0 , and E″ irreps at the
Nb(1c) site, being A0

1@1c; E0@1c, and E″@1c ABRs, while the Se p orbitals
form the A1, and E irreps at the Se(2g) site, being A1@2g and E@2g ABRs.
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vibrate in-plane. On the right of Fig. 2c, we calculated the
Eliashberg spectral function α2F(ω) and the frequency-dependent
coupling λ(ω). It can be seen that the contributions of

λ ¼ Σqvλqv ¼ 2
Z 1

0
dω

α2FðωÞ
ω

(2)

mainly come from the phonon modes near 70 cm−1. Due to the
existence of soft phonon modes near M point, the 1H-NbSe2 hosts
strong EPC (λ > 1)31. In the partially filling situation, the Fermi-level
states are mainly centered at the empty site. On the other hand,
this phonon mode strongly squeezes the empty site in Fig. 2d. The
coincidence between phonon mode and the Fermi-level states

gives rise to the strong EPC, eventually leading to the SC
instability. Besides, the SC in NbSe2 can be tuned through carrier
doping and dimensionality, such as Li/Na/Cu intercalation or
Mo/W substitution32–34.

Prediction of superconductivity in TaNS monolayer and
TaN2 bulk
As the partial filling of the empty-site EBR can lead the strong EPC
and SC. Following this way, we predicted the SC in unconventional
metallic TaNS monolayer [the inset of Fig. 4a]. The electronic
structure is shown Fig. 4a. There exists a half-filling empty-site EBR

Fig. 2 The schematic of band hybridization, orbital-resolved band structures, and the phonon dispersions and vibration modes. a The
schematic of the formation of the empty-site EBR A01@1e at EF. It is formed by the hybridization of A01@1c (from Nb-dz2 ) and E0@1c (from Nb-
dxy;x2�y2 ) ABRs. b Orbital-resolved band structures in 1H-NbSe2 with the corresponding Nb dz2 and dxy;x2�y2 orbitals weights colored in blue
and red, respectively. The size of the symbol represents the orbital weight. c The phonon spectrum of 1H-NbSe2 with magenta circles
representing EPC λqν, and the Eliashberg spectral function α2F(ω), the frequency-dependent coupling λ(ω). d The phonon vibration mode of
the lowest phonon band at M point.

Fig. 3 Electronic structures and phonon dispersions after electron doping. Electronic structures and phonon dispersions of (a, b) bulk
NaNbSe2 and (c, d) 1H-MoSe2. Inset in b presents the crystal structure of the bulk NaNbSe2 with Na intercalation. The electron doping can
stabilize the crystal structure.

Z. Yang et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2024)    25 



at EF, which is colored in blue. With the strong dimerization of N-N
bonds, the band structure of TaNS shares a similar unconventional
nature, with the electronic charge centers at empty sites (red
crossings in the inset). The calculated phonon spectrum is shown
in Fig. 4b. There are no imaginary frequencies in the phonon
spectrum, indicating the stability of the structure. From the
calculated electron-phonon couplings λqν, Eliashberg spectral
functions α2F(ω), and the frequency-dependent coupling λ(ω), it
can be seen that the EPC constants λ are mainly contributed by
the phonon modes near 100 cm−1. The superconducting
transition temperature (TC) is estimated using Allen-Dynes
modified McMillian equation35,36,

TC ¼ ωlog

1:2kB
exp �1:04ð1þλÞ

λð1�0:62μ�Þ�μ�

h i
(3)

where kB is the Boltzmann constant, μ* is the effective screened
Coulomb repulsion constant, typically ~ 0.1, λ is electron-phonon
coupling constant, and ωlog is logarithmic average phonon
frequency. With μ* = 0.10 and λ = 0.72, TC of TaNS is estimated
to be 10 K using Allen-Dynes modified McMillian equation.
Moreover, we predict another unconventional metal 2H-TaN2

with superconductivity. Due to the dimerization of N-N bonds,
they form the state of (N2)4− in bulk TaN2, resulting in the same
situation of 2H-MX2. The calculated electronic structure for bulk
2H-TaN2 is presented in Fig. 5a. There exists a half-filling empty-
site EBR, which is colored in blue. The computed phonon spectra
indicated that 2H-TaN2 is stable with σ= 0.02 Ry, as shown in
Fig. 5b. 2H-TaN2 was also proposed to be a metastable phase at
high pressure using structure prediction method37. With μ* = 0.10

and λ = 1.04, TC of bulk 2H-TaN2 is estimated to be 26 K using
Allen-Dynes modified McMillian equation, which is close to
McMillan limit (~40 K). As the λ is compatible with conventional
superconductors, the high ωlog is important in the final calculated
TC, which is mainly contributed from light mass N atoms. The
phonon spectrum, and corresponding λqv, α2F(ω), λ(ω) of 2H-TaN2

are also shown in Fig. 5b. The contributions of λ(ω) mainly come
from the phonon modes of ω < 400 cm−1. Among these phonon
modes, we find that the low frequency phonon modes
(~100 cm−1) along K-M high symmetry line show significant
contribution to λ. The corresponding phonon vibration mode
around M is shown in Fig. 5c. In this phonon mode, the Ta atoms
vibrate along z direction, and the N atoms vibrate in xy plane,
which has a higher amplitude than Ta atoms. It is noted that, the N
atoms vibration modes along z direction have frequencies higher
than 500 cm−1 because of strong N-N bonds. Thus, the in-plane
vibration modes of N atoms couple with electride electron states
around EF, inducing high EPC constants.

Discussion
The unconventional metals with an empty-site EBR encompass
intriguing correlated states due to the soft phonon mode and
strong EPC. We find that 1H/2H-phase TMD MX2 has a half-filled
empty-site EBR at EF. The strong EPC is associated with half filling
of the empty-site A0

1@1e EBR near the Fermi level. The strong EPC
may originate from the quantum geometric contributions of the
unconventional electronic structure38; for example, the σ-bond
band of MgB2 belongs to the A1g@3f EBR at empty sites with
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Fig. 4 Electronic structures, phonon dispersions, and electron-phonon couplings in TaNS monolayer. a Band structures of TaNS monolayer
in SG 164. b Phonon spectrum, Eliashberg spectral functions α2F(ω), and the frequency-dependent coupling λ(ω). The electron-phonon
couplings λqv are represented by magenta circles.

Fig. 5 Electronic structures, phonon dispersions, and electron-phonon couplings in bulk 2H-TaN2. a Band structures and density of states
of bulk 2H-TaN2 in SG 194. The EBR of the low energy bands (in blue) is A01@2c, whose sites (indicated by “x" in c) are empty in crystals.
b Phonon spectrum, Eliashberg spectral functions α2F(ω), and the frequency-dependent coupling λ(ω). The electron-phonon couplings λqv are
represented by magenta circles. c The phonon vibration mode of lowest frequency at M.
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partial filling. Our results indicate that the empty-site band in
unconventional metals is crucial for electron-phonon coupling and
superconductivity. Following this strategy, we predict unconven-
tional metals TaNS monolayer and 2H-TaN2 bulk with SC TC= 10 K
and 26 K respectively. It deserves further experimental focus and
confirmation. In conclusion, our findings reveal that the partial
filling of the empty-site EBR in unconventional metals can give rise
to strong EPC, as the Fermi-level states and phonon modes
coincide spatially. The unconventional metals provide an ideal
platform to search for superconductors.

METHODS
Calculation method
We performed the first-principles calculations with QUANTUM
ESPRESSO (QE) package39 based on the density functional theory
(DFT) with the projector-augmented wave (PAW) pseudopoten-
tials40,41. The Perdew-Bruke-Ernzerhof (PBE) exchange-correlation
functional of generalized gradient approximation was adopted.
The dynamical matrices and electron-phonon coupling calcula-
tions were performed in the framework of density functional
perturbation theory, as implemented in the QE package. The
superconducting temperature was evaluated with Allen-Dynes
modified McMillian equation using QE. The irreducible representa-
tions are computed by IR2PW42.

DATA AVAILABILITY
All data are available from the corresponding author on reasonable requests.

CODE AVAILABILITY
All codes used for this work are open-source. The DFT calculations are based on
QUANTUM ESPRESSO. IR2PW is available in https://github.com/zjwang11/IR2PW,
which is used to compute the irreducible representation in QE. The POS2ABR is
available at https://github.com/zjwang11/UnconvMat.
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